生物技术通报 ›› 2020, Vol. 36 ›› Issue (9): 49-63.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0117
• 根际微生物专题(专题主编:张瑞福 研究员) • 上一篇 下一篇
谢伟1,2, 郝志鹏1, 郭兰萍3, 张莘1, 张淑彬4, 王幼珊4, 陈保冬1,2
收稿日期:
2020-02-10
出版日期:
2020-09-26
发布日期:
2020-09-30
作者简介:
谢伟,男,博士研究生,研究方向:丛枝菌根真菌与植物次生代谢;E-mail:wxie_st@rcees.ac.cn
基金资助:
XIE Wei1,2, HAO Zhi-peng1, GUO Lan-ping3, ZHANG Xin1, ZHANG Shu-bin4, WANG You-shan4, CHEN Bao-dong1,2
Received:
2020-02-10
Published:
2020-09-26
Online:
2020-09-30
摘要: 萜类化合物在植物生长及适应环境变化过程中发挥着重要作用,是某些药用植物的主要活性成分。丛枝菌根(AM)真菌是一类能够与大多数陆地植物形成共生关系的土壤真菌,其在促进植物生长及调节植物次生代谢方面具有重要作用,因而对于提高植物,尤其是药用植物萜类活性成分含量具有潜在应用价值。收集整理了2000年-2019年期间发表的相关文献,提取了宿主植物种类、萜类化合物种类、萜类化合物积累部位、AM真菌种类、试验条件及试验处理类型等数据,综合分析了AM真菌影响植物萜类化合物合成与积累的研究进展。从AM真菌调节萜类化合物合成的营养和非营养机制,以及转运和积累等方面阐述了AM真菌影响萜类化合物含量及其机制,并讨论了试验条件、接种方式及环境因子对AM真菌调节植物萜类化合物合成与积累的影响,分析了当前研究不足,并对未来的研究方向作出展望。
谢伟, 郝志鹏, 郭兰萍, 张莘, 张淑彬, 王幼珊, 陈保冬. 丛枝菌根影响植物萜类化合物合成与积累研究进展[J]. 生物技术通报, 2020, 36(9): 49-63.
XIE Wei, HAO Zhi-peng, GUO Lan-ping, ZHANG Xin, ZHANG Shu-bin, WANG You-shan, CHEN Bao-dong. Research Advances in Terpenoids Synthesis and Accumulation in Plants as Influenced by Arbuscular Mycorrhizal Symbiosis[J]. Biotechnology Bulletin, 2020, 36(9): 49-63.
[1] Wink M.Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective[J]. Phytochemistry, 2003, 64(1):3-19. [2] 董娟娥, 张康健, 梁宗锁. 植物次生代谢与调控[M]. 杨凌:西北农林科技大学出版社, 2009. Dong JE, Zhang KJ, Liang ZS.Plant secondary metabolism and its regulation[M]. Yangling:Northwest A&F University Press, 2009. [3] 潘瑞炽. 植物生理学[M]. 第7版. 北京:高等教育出版社, 2012. Pan RZ.Plant physiology[M]. 7rd Edition. Beijing:Higher Education Press, 2012. [4] Pusztahelyi T, Holb IJ, Pócsi I.Secondary metabolites in fungus-plant interactions[J]. Frontiers in Plant Science, 2015, 6:573. [5] Bakkali F, Averbeck S, Averbeck D, et al.Biological effects of essential oils-a review[J]. Food and Chemical Toxicology, 2008, 46(2):446-475. [6] Bohlmann J, Keeling CI.Terpenoid biomaterials[J]. The Plant Journal, 2008, 54(4):656-669. [7] Kappers IF, Aharoni A, van Herpen TWJM, et al. Genetic engineering of terpenoid metabolism attracts, bodyguards to Arabidopsis[J]. Science, 2005, 309:2070-2072. [8] Sharma E, Anand G, Kapoor R.Terpenoids in plant and arbuscular mycorrhiza-reinforced defence against herbivorous insects[J]. Annals of Botany, 2017, 119(5):791-801. [9] Duhamel M, Pel R, Ooms A, et al.Do fungivores trigger the transfer of protective metabolites from host plants to arbuscular mycorrhizal hyphae?[J]. Ecology, 2013, 94(9):2019-2029. [10] Babikova Z, Gilbert L, Bruce TJA, et al.Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack[J]. Ecol Lett, 2013, 16(7):835-843. [11] Hayashi H, Sudo H.Economic importance of licorice[J]. Plant Biotechnology, 2009, 26(1):101-104. [12] Mandal S, Upadhyay S, Wajid S, et al.Arbuscular mycorrhiza increase artemisinin accumulation in Artemisia annua by higher expression of key biosynthesis genes via enhanced jasmonic acid levels[J]. Mycorrhiza, 2015, 25(5):345-357. [13] 王凌健, 方欣, 杨长青, 等. 植物萜类次生代谢及其调控[J]. 中国科学:生命科学, 2013, 43(12):1030-1046. Wang LJ, Fang X, Yang CQ, et al.Biosynthesis and regulation of secondary terpenoid metabolism in plants[J]. Science in China(Series C), 2013, 43(12):1030-1046. [14] Smith SE, Read DJ.Mycorrhizal symbiosis[M]. Pittsburgh:Academic Press, 2008. [15] Jiang Y, Wang W, Xie Q, et al.Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi[J]. Science, 2017, 356(6343):1172-1175. [16] Drigo B, Pijl AS, Duyts H, et al.Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2[J]. Proc Natl Acad Sci, 2010, 107(24):10938-10942. [17] van der Heijden MGA, Martin FM, Selosse MA, et al. Mycorrhizal ecology and evolution:the past, the present, and the future[J]. New Phytol, 2015, 205(4):1406-1423. [18] Welling MT, Liu L, Rose TJ, et al.Arbuscular mycorrhizal fungi:effects on plant terpenoid accumulation[J]. Plant Biology, 2016, 18(4):552-562. [19] Zeng Y, Guo L, Chen B, et al.Arbuscular mycorrhizal symbiosis and active ingredients of medicinal plants:current research status and prospectives[J]. Mycorrhiza, 2013, 23(4):253-265. [20] Kapoor R, Anand G, Gupta P, et al.Insight into the mechanisms of enhanced production of valuable terpenoids by arbuscular mycorrhiza[J]. Phytochem Rev, 2017, 16(4):677-692. [21] Treseder, Kathleen K.The extent of mycorrhizal colonization of roots and its influence on plant growth and phosphorus content[J]. Plant Soil, 2013, 371(1-2):1-13. [22] 秦明森, 关佳威, 刘永俊, 等. 丛枝菌根真菌对车轴草属植物生长影响的 Meta 分析[J]. 草业科学, 2015, 32(10):1576-1585. Qin MS, Guan JW, Liu YJ, et al.A Meta-analysis of arbuscular mycorrhizal fungi effects on Trifolium plants growth[J]. Pratacultural Science,2015, 32(10):1576-1585. [23] Verbruggen E, van der Heijden MGA, Rillig MC, et al. Mycorrhizal fungal establishment in agricultural soils:factors determining inoculation success[J]. New Phytol, 2013, 197(4):1104-1109. [24] Berruti A, Lumini E, Balestrini R, et al.Arbuscular mycorrhizal fungi as natural biofertilizers:let’s benefit from past successes[J]. Front Microbiol, 2016, 6:1559. [25] Öpik M, Vanatoa A, Vanatoa E, et al.The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi(Glomeromycota)[J]. New Phytol, 2010, 188(1):223-241. [26] Oehl F, Laczko E, Bogenrieder A, et al.Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities[J]. Soil Biology and Biochemistry, 2010, 42(5):724-738. [27] 黄璐琦, 郭兰萍. 环境胁迫下次生代谢产物的积累及道地药材的形成[J]. 中国中药杂志, 2007, 32(4):277-280. Huang LQ, Guo LP.Secondary metabolites accumulating and geoherbs formation under enviromental stress[J]. China Journal of Chinese Materia Medica, 2007, 32(4):277-280. [28] Selmar D, Kleinwächter M.Influencing the product quality by deliberately applying drought stress during the cultivation of medicinal plants[J]. Ind Crops Prod, 2013, 42:558-566. [29] Thakur M, Bhattacharya S, Khosla PK, et al.Improving production of plant secondary metabolites through biotic and abiotic elicitation[J]. Journal of Applied Research on Medicinal and Aromatic Plants, 2019, 12:1-12. [30] Xie W, Hao Z, Zhou X, et al.Arbuscular mycorrhiza facilitates the accumulation of glycyrrhizin and liquiritin in Glycyrrhiza uralensis under drought stress[J]. Mycorrhiza, 2018, 28(3):285-300. [31] 张华, 孙纪全, 包玉英. 丛枝菌根真菌影响植物次生代谢产物的研究进展[J]. 农业生物技术学报, 2015, 23(8):1093-1103. Zhang H, Sun JQ, Bao YY.Advances in studies on plant secondary metabolites influenced by arbuscular mycorrhizal fungi[J]. Journal of Agricultural Biotechnology, 2015, 23(8):1093-1103. [32] Zubek S, Stojakowska A, Anielska T, et al.Arbuscular mycorrhizal fungi alter thymol derivative contents of Inula ensifolia L[J]. Mycorrhiza, 2010, 20(7):497-504. [33] Amiri R, Nikbakht A, Rahimmalek M, et al.Variation in the essential oil composition, antioxidant capacity, and physiological characteristics of Pelargonium graveolens L. inoculated with two species of mycorrhizal fungi under water deficit conditions[J]. Journal of Plant Growth Regulation, 2017, 36(2):502-515. [34] Asensio D, Rapparini F, Peñuelas J.AM fungi root colonization increases the production of essential isoprenoids vs. nonessential isoprenoids especially under drought stress conditions or after jasmonic acid application[J]. Phytochem, 2012, 77:149-161. [35] Adolfsson L, Nziengui H, Abreu IN, et al.Enhanced secondary-and hormone metabolism in leaves of arbuscular mycorrhizal Medicago truncatula[J]. Plant Physiology, 2017, 4597-4602. [36] Copetta A, Lingua G, Berta G.Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. Genovese[J]. Mycorrhiza, 2006, 16(7):485-494. [37] Shrivastava G, Ownley BH, Augé RM, et al.Colonization by arbuscular mycorrhizal and endophytic fungi enhanced terpene production in tomato plants and their defense against a herbivorous insect[J]. Symbiosis, 2015, 65(2):65-74. [38] Walter MH, Floβ DS, Hans J, et al.Apocarotenoid biosynthesis in arbuscular mycorrhizal roots:contributions from methylerythritol phosphate pathway isogenes and tools for its manipulation[J]. Phytochemistry, 2007, 68(1):130-138. [39] Baas R, Lambers H.Effects of vesicular-arbuscular mycorrhizal infection and phosphate on Plantago major ssp. pleiosperma in relation to the internal phosphate concentration[J]. Physiologia Plantarum 1988, 74:701-707. [40] Schweiger R, Baier MC, Müller C.Arbuscular mycorrhiza-induced shifts in foliar metabolism and photosynthesis mirror the developmental stage of the symbiosis and are only partly driven by improved phosphate uptake[J]. Molecular Plant-Microbe Interactions, 2014, 27(12):1403-1412. [41] Xie W, Hao Z, Yu M, et al.Improved phosphorus nutrition by arbuscular mycorrhizal symbiosis as a key factor facilitating glycyrrhizin and liquiritin accumulation in Glycyrrhiza uralensis[J]. Plant Soil, 2018, 1-15. [42] Kapoor R, Giri B, Mukerji KG.Improved growth and essential oil yield and quality in Foeniculum vulgare mill on mycorrhizal inoculation supplemented with P-fertilizer[J]. Bioresource Technology, 2004, 93(3):307-311. [43] Saia S, Benítez E, García-Garrido JM, et al.The effect of arbuscular mycorrhizal fungi on total plant nitrogen uptake and nitrogen recovery from soil organic material[J]. The Journal of Agricultural Science, 2014, 152(3):370-378. [44] Zhao R, Guo W, Bi N, et al.Arbuscular mycorrhizal fungi affect the growth, nutrient uptake and water status of maize(Zea mays L.)grown in two types of coal mine spoils under drought stress[J]. Applied Soil Ecology, 2015, 88:41-49. [45] Hodge A, Fitter AH.Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling[J]. Proc Natl Acad Sci, 2010, 107(31):13754-13759. [46] Graciano C, Goya JF, Frangi JL, et al.Fertilization with phosphorus increases soil nitrogen absorption in young plants of Eucalyptus grandis[J]. For Ecol Manage, 2006, 236(2-3):202-210. [47] 刘文兰, 师尚礼, 田福平, 等. 紫花苜蓿生物量空间层次分布与叶片 C, N, P 化学计量特征对 P 添加的响应[J]. 草地学报, 2017, 25(2):322-329. Liu WL, Shi SL, Tian FP, et al.Spatial distribution of alfalfa biomass and response of leaf C, N, P ecological stoichiometry to P addition[J]. Acta Agrestia Sinica, 2017, 25(2):322-329. [48] Gershenzon J.Metabolic costs of terpenoid accumulation in higher plants[J]. J Chem Ecol, 1994, 20(6):1281-1328. [49] Hamilton JG, Zangerl AR, DeLucia EH, et al. The carbon-nutrient balance hypothesis:its rise and fall[J]. Ecology Letters, 2001, 4(1):86-95. [50] Fritz C, Palacios-Rojas N, Feil R, et al.Regulation of secondary metabolism by the carbon-nitrogen status in tobacco:nitrate inhibits large sectors of phenylpropanoid metabolism[J]. The Plant Journal, 2006, 46(4):533-548. [51] Gavito, ME, Jakobsen I, Mikkelsen TN, et al. Direct evidence for modulation of photosynthesis by an arbuscular mycorrhiza-induced carbon sink strength[J]. New Phytol, 2019, 223(2):896-907. [52] Huang J, Hammerbacher A, Forkelová L, et al.Release of resource constraints allows greater carbon allocation to secondary metabolites and storage in winter wheat[J]. Plant Cell and Environment, 2017, 40(5):672-685. [53] Schweiger R, Müller C.Leaf metabolome in arbuscular mycorrhizal symbiosis[J]. Curr Opin Plant Biol, 2015, 26:120-126. [54] Black KG, Mitchell DT, Osborne BA.Effect of mycorrhizal-enhanced leaf phosphate status on carbon partitioning, translocation and photosynthesis in cucumber[J]. Plant Cell and Environment, 2000, 23(8):797-809. [55] Nielsen KL, Eshel A, Lynch JP.The effect of phosphorus availability on the carbon economy of contrasting common bean(Phaseolus vulgaris L.)genotypes[J]. J Exp Bot, 2001, 52(355):329-339. [56] Shinde S, Naik D, Cumming JR.Carbon allocation and partitioning in Populus tremuloides are modulated by ectomycorrhizal fungi under phosphorus limitation[J]. Tree Physiol, 2017, 38(1):52-65. [57] Kapoor R, Chaudhary V, Bhatnagar AK.Effects of arbuscular mycorrhiza and phosphorus application on artemisinin concentration in Artemisia annua L[J]. Mycorrhiza, 2007, 17(7):581-587. [58] Khaosaad T, Vierheilig H, Nell M, et al.Arbuscular mycorrhiza alter the concentration of essential oils in oregano(Origanum sp. , Lamiaceae)[J]. Mycorrhiza, 2006, 16(6):443-446. [59] Mandal S, Upadhyay S, Singh VP, et al.Enhanced production of steviol glycosides in mycorrhizal plants:a concerted effect of arbuscular mycorrhizal symbiosis on transcription of biosynthetic genes[J]. Plant Physiol Biochem, 2015, 89:100-106. [60] Chappell J, Wolf F, Proulx J, et al.Is the reaction catalyzed by 3-hydroxy-3-methylglutaryl coenzyme A reductase a rate-limiting step for isoprenoid biosynthesis in plants?[J]. Plant Physiology, 1995, 109(4):1337-1343. [61] Gerlach N, Schmitz J, Polatajko A, et al.An integrated functional approach to dissect systemic responses in maize to arbuscular mycorrhizal symbiosis[J]. Plant Cell and Environment, 2015, 38(8):1591-1612. [62] Opitz S, Nes WD, Gershenzon J.Both methylerythritol phosphate and mevalonate pathways contribute to biosynthesis of each of the major isoprenoid classes in young cotton seedlings[J]. Phytochemistry, 2014, 98:110-119. [63] Laule O, Fürholz A, Chang HS, et al.Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana[J]. Proc Natl Acad Sci, 2003, 100(11):6866-6871. [64] Mendoza-Poudereux I, Kutzner E, Huber C, et al.Metabolic cross-talk between pathways of terpenoid backbone biosynthesis in spike lavender[J]. Plant Physiol Biochem, 2015, 95:113-120. [65] Lillo C, Lea US, Ruoff P.Nutrient depletion as a key factor for manipulating gene expression and product formation in different branches of the flavonoid pathway[J]. Plant Cell and Environment, 2008, 31:587-601. [66] Lazzara S, Militello M, Carrubba A, et al.Arbuscular mycorrhizal fungi altered the hypericin, pseudohypericin, and hyperforin content in flowers of Hypericum perforatum grown under contrasting P availability in a highly organic substrate[J]. Mycorrhiza, 2017, 27(4):345-354. [67] Essigmann B, Güler S, Narang RA, et al.Phosphate availability affects the thylakoid lipid composition and the expression of SQD1, a gene required for sulfolipid biosynthesis in Arabidopsis thaliana[J]. Proc Natl Acad Sci, 1998, 95(4):1950-1955. [68] Jørgensen ME, Nour-Eldin HH, Halkier BA.Transport of defense compounds from source to sink:lessons learned from glucosinolates[J]. Trends Plant Sci, 2015, 20(8):508-514. [69] Mylona P, Owatworakit A, Papadopoulou K, et al.Sad3 and Sad4 are required for saponin biosynthesis and root development in oat[J]. Plant Cell, 2008, 20(1):201-212. [70] Kurosawa Y, Takahara H, Shiraiwa M.UDP-glucuronic acid:soyasapogenol glucuronosyltransferase involved in saponin biosynthesis in germinating soybean seeds[J]. Planta, 2002, 215(4):620-629. [71] Zhao J, Dixon RA.The ‘ins’ and ‘outs’ of flavonoid transport[J]. Trends Plant Sci, 2010, 15(2):72-80. [72] Jasiński M, Stukkens Y, Degand H, et al.A plant plasma membrane ATP binding cassette-type transporter is involved in antifungal terpenoid secretion[J]. Plant Cell, 2001, 13(5):1095-1107. [73] Crouzet J, Roland J, Peeters E, et al.NtPDR1, a plasma membrane ABC transporter from Nicotiana tabacum, is involved in diterpene transport[J]. Plant Mol Biol, 2013, 82(1-2):181-192. [74] Kretzschmar T, Kohlen W, Sasse J, et al.A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching[J]. Nature, 2012, 483(7389):341-344. [75] Boursiac Y, Léran S, Corratgé-Faillie C, et al.ABA transport and transporters[J]. Trends Plant Sci, 2013, 18(6):325-333. [76] 张婧, 陈梦词, 马清, 等. 植物ABCG 转运蛋白研究进展[J]. 草业学报, 2015, 24(7):180-188. Zhang J, Chen MC, Ma Q, et al.Review of advances in the study of plant ABCG transporters[J]. Acta Prataculturae Sinica, 2015, 24(7):180-188. [77] Nadal M, Paszkowski U.Polyphony in the rhizosphere:presymbiotic communication in arbuscular mycorrhizal symbiosis[J]. Curr Opin Plant Biol, 2013, 16(4):473-479. [78] Holbrook NM, Shashidhar VR, James RA, et al.Stomatal control in tomato with ABA-deficient roots:response of grafted plants to soil drying[J]. J Exp Bot, 2002, 53(373):1503-1514. [79] Aroca R, del Mar Alguacil M, Vernieri P, et al. Plant responses to drought stress and exogenous ABA application are modulated differently by mycorrhization in tomato and an ABA-deficient mutant(sitiens)[J]. Microbial Ecology, 2008, 56(4):704. [80] Zager JJ, Lange BM.Assessing flux distribution associated with metabolic specialization of glandular trichomes[J]. Trends Plant Sci, 2018, 23(7):638-647. [81] Shi P, Fu X, Shen Q, et al.The roles of AaMIXTA1 in regulating the initiation of glandular trichomes and cuticle biosynthesis in Artemisia annua[J]. New Phytol, 2018, 217(1):261-276. [82] Mandal S, Evelin H, Giri B, et al.Arbuscular mycorrhiza enhances the production of stevioside and rebaudioside-A in Stevia rebaudiana via nutritional and non-nutritional mechanisms[J]. Applied Soil Ecology, 2013, 72:187-194. [83] Hazzoumi Z, Moustakime Y, Joutei KA.Effect of arbuscular mycorrhizal fungi and water stress on ultrastructural change of glandular hairs and essential oil compositions in Ocimum gratissimum[J]. Chemical and Biological Technologies in Agriculture, 2017, 4(1):20. [84] 李宏富, 彭励, 刘滨, 等. 甘草根中甘草酸的免疫组织化学定位研究[J]. 西北植物学报, 2012, 32(7):1361-1364. Li HF, Peng L, Liu B, et al.Immunohistochemical localization of glycyrrhizic acid in the radix of Glycyrrhiza uralensis Fisch.[J]. Acta Botanica Boreali-Occidentalia Sinica,2012, 32(7):1361-1364. [85] Marquez N, Giachero ML, Gallou A.Transcriptional changes in mycorrhizal and nonmycorrhizal soybean plants upon infection with the fungal pathogen Macrophomina phaseolina[J]. Molecular Plant-Microbe Interactions, 2018, 31(8):842-855. [86] Scheller HV, Ulvskov P.Hemicelluloses[J]. Annual Review of Plant Biology, 2010, 61:263-289. [87] Chen X, Kang Y, San SP, et al.Arbuscular mycorrhizal fungi increase the proportion of cellulose and hemicellulose in the root stele of vetiver grass[J]. Plant Soil, 2018, 425(1-2):309-319. [88] Tomczak VV, Müller C.Influence of arbuscular mycorrhizal stage and plant age on the performance of a generalist aphid[J]. Journal of Insect Physiology, 2017, 98:258-266. [89] Smith SE, Jakobsen I, et al.Roles of arbuscular mycorrhizas in plant phosphorus nutrition:interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition[J]. Plant Physiology, 2011, 156(3):1050-1057. [90] Rosendahl S, Peter M, Joseph BM.Lack of global population genetic differentiation in the arbuscular mycorrhizal fungus Glomus mosseae suggests a recent range expansion which may have coincided with the spread of agriculture[J]. Molecular Ecology, 2009, 18(20):4316-4329. [91] Wagg C, Barendregt C, Jansa J, et al.Complementarity in both plant and mycorrhizal fungal communities are not necessarily increased by diversity in the other[J]. J Ecol, 2015, 103(5):1233-1244. [92] Rivero J, Gamir J, Aroca R, et al.Metabolic transition in mycorrhizal tomato roots[J]. Front Microbiol, 2015, 6:598. [93] Xue Z, Tan Z, Huang A, et al.Identification of key amino acid residues determining product specificity of 2, 3-oxidosqualene cyclase in Oryza species[J]. New Phytol, 2018, 218(3):1076-1088. [94] Devarenne TP, Shin DH, Back K, et al.Molecular characterization of tobacco squalene synthase and regulation in response to fungal elicitor[J]. Arch Biochem Biophysics, 1998, 349:205-215. [95] Song Y, Wang M, Zeng R, et al.Priming and filtering of anti-herbivore defenses among Nicotiana attenuata plants connected by mycorrhizal networks[J]. Plant Cell and Environment, 2019, 42(11):2945-2961. |
[1] | 李月, 余婉贤, 李宁, 姚明华, 李峰, 邓颖天. 辣椒苗期炭疽菌接种方法[J]. 生物技术通报, 2023, 39(4): 221-226. |
[2] | 穆德添, 万凌云, 章瑶, 韦树根, 陆英, 付金娥, 田艺, 潘丽梅, 唐其. 钩藤管家基因筛选及生物碱合成相关基因的表达分析[J]. 生物技术通报, 2023, 39(2): 126-138. |
[3] | 位欣欣, 兰海燕. 植物MYB转录因子调控次生代谢及逆境响应的研究进展[J]. 生物技术通报, 2022, 38(8): 12-23. |
[4] | 张婵, 吴友根, 于靖, 杨东梅, 姚广龙, 杨华庚, 张军锋, 陈萍. 光与茉莉酸信号介导的萜类化合物合成分子机制[J]. 生物技术通报, 2022, 38(8): 32-40. |
[5] | 雷君, 陈勤, 邓兵, 张金渝, 刘迪秋, 崔秀明, 葛锋. R2R3-MYB转录因子PnMYB1调控三七皂苷生物合成[J]. 生物技术通报, 2022, 38(5): 74-83. |
[6] | 洪雅萍, 陈雪津, 王鹏杰, 谷梦雅, 高婷, 叶乃兴. 茉莉花萜类合成酶基因的转录组鉴定及响应外源激素的表达研究[J]. 生物技术通报, 2022, 38(3): 41-49. |
[7] | 李楠海, 孙卓, 杨利民. 磷水平与丛枝菌根真菌对桔梗生长及品质的影响[J]. 生物技术通报, 2022, 38(1): 132-140. |
[8] | 叶敏, 高教琪, 周雍进. 非常规酵母细胞工厂合成天然产物[J]. 生物技术通报, 2021, 37(8): 12-24. |
[9] | 梁振霆, 唐婷. 内生菌对植物次生代谢产物的生物合成影响和抗逆功能研究[J]. 生物技术通报, 2021, 37(8): 35-45. |
[10] | 孙雨, 常晶晶, 田春杰. 作物根际微生物组重组构建技术体系探讨[J]. 生物技术通报, 2020, 36(9): 25-30. |
[11] | 王丹, 李圣彦, 刘进平, 郎志宏. 玉米萜类合成酶基因tps2的功能及其启动子功能区段鉴定[J]. 生物技术通报, 2020, 36(12): 1-11. |
[12] | 李佳秀, 蔡倩茹, 吴杰群. 萜类化合物在酿酒酵母中的合成生物学研究进展[J]. 生物技术通报, 2020, 36(12): 199-207. |
[13] | 张麒, 陈静, 李俐, 赵明珠, 张美萍, 王义. 植物AP2/ERF转录因子家族的研究进展[J]. 生物技术通报, 2018, 34(8): 1-7. |
[14] | 赵荣荣,刘斌,郭超,刘恒,张元湖. 梨萜类合成酶基因家族生物信息学与表达模式分析[J]. 生物技术通报, 2018, 34(5): 131-141. |
[15] | 张浩宇, 樊俊苗, 王婷, 韩渊怀, 杜方. 植物萜类合成关键基因DXS研究进展[J]. 生物技术通报, 2018, 34(3): 1-8. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||