生物技术通报 ›› 2022, Vol. 38 ›› Issue (1): 125-131.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0432
收稿日期:
2021-04-02
出版日期:
2022-01-26
发布日期:
2022-02-22
作者简介:
武杞蔓,女,硕士研究生,研究方向:分子生物学;E-mail: 基金资助:
WU Qi-man(), TIAN Shi-han, LI Yun-ye, PAN Ying-jie, ZHANG Ying()
Received:
2021-04-02
Published:
2022-01-26
Online:
2022-02-22
摘要:
为探讨微生物菌肥在设施栽培黄瓜上的应用效果,以水果黄瓜为实验材料,设定施用“宁盾”A液(T1)、施用“宁盾”B液(T2)、同时施用“宁盾”A液与“宁盾”B液(T3)、对照(CK)4个处理,结果表明“宁盾”能够促进黄瓜植株生长、提高叶绿素含量和产量、改善果实营养品质;同时提高根际土壤蔗糖酶、脲酶的活性,增加根际土壤中氮、磷、钾等大量元素的含量,其中“宁盾”A液与B液配合使用效果最佳。
武杞蔓, 田诗涵, 李昀烨, 潘英杰, 张颖. 微生物菌肥对设施黄瓜生长、产量及品质的影响[J]. 生物技术通报, 2022, 38(1): 125-131.
WU Qi-man, TIAN Shi-han, LI Yun-ye, PAN Ying-jie, ZHANG Ying. Effects of Microbial Fertilizer on Cucumis sativus L. Growth,Yield and Quality[J]. Biotechnology Bulletin, 2022, 38(1): 125-131.
处理 Treatment | 株高增长量 Plant height increase/cm | 茎粗增长量 Stem diameter growth/mm | 叶片数增长量/片 Increment in number of leaves/Pieces | ||||||
---|---|---|---|---|---|---|---|---|---|
2020.9.22- 2020.9.27 | 2020.9.27- 2020.10.2 | 2020.10.2- 2020.10.7 | 2020.9.22- 2020.9.27 | 2020.9.27- 2020.10.2 | 2020.10.2- 2020.10.7 | 2020.9.22- 2020.9.27 | 2020.9.27- 2020.10.2 | 2020.10.2- 2020.10.7 | |
CK | 14.67±1.15b | 21.33±0.58c | 11.00±0.00c | 0.97±0.01b | 0.59±0.04c | 0.99±0.02b | 3.0±0.00a | 2.0±0.00b | 1.6±0.55a |
T1 | 22.33±0.58a | 23.00±0.00b | 9.33±1.15d | 1.09±0.09a | 0.87±0.07b | 0.65±0.03c | 3.4±0.55a | 2.2±0.45b | 2.2±0.45a |
T2 | 21.33±0.58a | 25.33±1.53a | 16.33±0.58a | 0.9±0.01b | 1.14±0.04a | 0.67±0.08d | 3.6±0.55a | 2.2±0.45b | 2.2±0.45a |
T3 | 21.33±0.58a | 24.67±0.58a | 13.67±1.15b | 0.8±0.01c | 0.62±0.06c | 1.14±0.02a | 3.6±0.55a | 3.0±0.00a | 2.0±0.00a |
表1 “宁盾”对黄瓜生长指标的影响
Table 1 Effects of “Ningdun” on the growth indexes of cucumber
处理 Treatment | 株高增长量 Plant height increase/cm | 茎粗增长量 Stem diameter growth/mm | 叶片数增长量/片 Increment in number of leaves/Pieces | ||||||
---|---|---|---|---|---|---|---|---|---|
2020.9.22- 2020.9.27 | 2020.9.27- 2020.10.2 | 2020.10.2- 2020.10.7 | 2020.9.22- 2020.9.27 | 2020.9.27- 2020.10.2 | 2020.10.2- 2020.10.7 | 2020.9.22- 2020.9.27 | 2020.9.27- 2020.10.2 | 2020.10.2- 2020.10.7 | |
CK | 14.67±1.15b | 21.33±0.58c | 11.00±0.00c | 0.97±0.01b | 0.59±0.04c | 0.99±0.02b | 3.0±0.00a | 2.0±0.00b | 1.6±0.55a |
T1 | 22.33±0.58a | 23.00±0.00b | 9.33±1.15d | 1.09±0.09a | 0.87±0.07b | 0.65±0.03c | 3.4±0.55a | 2.2±0.45b | 2.2±0.45a |
T2 | 21.33±0.58a | 25.33±1.53a | 16.33±0.58a | 0.9±0.01b | 1.14±0.04a | 0.67±0.08d | 3.6±0.55a | 2.2±0.45b | 2.2±0.45a |
T3 | 21.33±0.58a | 24.67±0.58a | 13.67±1.15b | 0.8±0.01c | 0.62±0.06c | 1.14±0.02a | 3.6±0.55a | 3.0±0.00a | 2.0±0.00a |
处理Treatment | 瓜条数 Number of melons | 总产量 Yield/g | 平均单果重 Average weight of an individual melon/g |
---|---|---|---|
CK | 56 | 3274.57b | 58.47b |
T1 | 78 | 5081.59a | 65.15a |
T2 | 76 | 4879.31a | 64.20a |
T3 | 70 | 4804.76a | 68.64a |
表2 “宁盾”对黄瓜产量的影响
Table 2 Effect of “Ningdun”on cucumber yield
处理Treatment | 瓜条数 Number of melons | 总产量 Yield/g | 平均单果重 Average weight of an individual melon/g |
---|---|---|---|
CK | 56 | 3274.57b | 58.47b |
T1 | 78 | 5081.59a | 65.15a |
T2 | 76 | 4879.31a | 64.20a |
T3 | 70 | 4804.76a | 68.64a |
处理Treatment | N/(mg·kg-1) | P/(g·kg-1) | K/(g·kg-1) | Ca/(g·kg-1) | Mg/(g·kg-1) | Mn/(mg·kg-1) | Zn/(mg·kg-1) | Cu/(mg·kg-1) |
---|---|---|---|---|---|---|---|---|
CK | 345.61±36.15b | 0.66±0.08a | 4.583±0.30a | 7.00±0.22a | 4.64±0.24a | 0.32±0.04a | 84.76±4.72a | 25.11±2.57a |
T1 | 397.45±44.15ab | 0.65±0.02a | 4.243±0.20a | 7.09±0.07a | 4.57±0.18a | 0.31±0.03a | 90.92±5.85a | 24.82±1.01a |
T2 | 365.10±23.64b | 0.63±0.02a | 4.184±0.15a | 7.10±0.24a | 4.07±0.36a | 0.31±0.05a | 91.87±3.6a | 24.08±1.22a |
T3 | 463.63±43.75a | 0.62±0.03a | 4.707±0.35a | 7.42±0.24a | 4.68±0.16a | 0.34±0.02a | 91.37±3.12a | 24.94±0.18a |
表3 “宁盾”对根际土壤环境的影响
Table 3 Effects of “Ningdun” on rhizosphere soil environment
处理Treatment | N/(mg·kg-1) | P/(g·kg-1) | K/(g·kg-1) | Ca/(g·kg-1) | Mg/(g·kg-1) | Mn/(mg·kg-1) | Zn/(mg·kg-1) | Cu/(mg·kg-1) |
---|---|---|---|---|---|---|---|---|
CK | 345.61±36.15b | 0.66±0.08a | 4.583±0.30a | 7.00±0.22a | 4.64±0.24a | 0.32±0.04a | 84.76±4.72a | 25.11±2.57a |
T1 | 397.45±44.15ab | 0.65±0.02a | 4.243±0.20a | 7.09±0.07a | 4.57±0.18a | 0.31±0.03a | 90.92±5.85a | 24.82±1.01a |
T2 | 365.10±23.64b | 0.63±0.02a | 4.184±0.15a | 7.10±0.24a | 4.07±0.36a | 0.31±0.05a | 91.87±3.6a | 24.08±1.22a |
T3 | 463.63±43.75a | 0.62±0.03a | 4.707±0.35a | 7.42±0.24a | 4.68±0.16a | 0.34±0.02a | 91.37±3.12a | 24.94±0.18a |
[1] | 毛爱军, 陈春秀, 温常龙, 等. 春秋保护地黄瓜新品种京研109的选育[J]. 中国蔬菜, 2019(2):69-72. |
Mao AJ, Chen CX, Wen CL, et al. A new cucumber F1 hybrid—‘Jingyan 109’ for protected field in spring and autumn[J]. China Veg, 2019(2):69-72. | |
[2] | 李英楠, 曹正, 杜南山, 等. 三种PGPR菌株对黄瓜生长及根际土壤环境的影响[J]. 北方园艺, 2019(24):21-27. |
Li YN, Cao Z, Du NS, et al. Effects of three PGPR strains on cucumber growth and rhizosphere soil environment[J]. North Hortic, 2019(24):21-27. | |
[3] | 刘金秀, 马正, 申屠旭萍, 等. 黄瓜枯萎病拮抗放线菌筛选及其生防作用鉴定[J]. 园艺学报, 2012, 39(6):1123-1130. |
Liu JX, Ma Z, Shentu XP, et al. Isolation and identification of antagonistic actinomycetes and their application in the biocontrol of Fusarium oxysporum f. sp. cucumerinum[J]. Acta Hortic Sin, 2012, 39(6):1123-1130. | |
[4] | 李欢可. 微生物有机肥对土壤改良及烟草钾素累积规律研究[D]. 长沙:湖南大学, 2013. |
Li HK. Soil improvement and potassium accumulation of tobacco using bio-organic fertilizer[D]. Changsha:Hunan University, 2013. | |
[5] | 王涛, 乔卫花, 李玉奇, 等. 轮作和微生物菌肥对黄瓜连作土壤理化性状及生物活性的影响[J]. 土壤通报, 2011, 42(3):578-583. |
Wang T, Qiao WH, Li YQ, et al. Effects of rotation and microbial fertilizers on the properties of continuous cucumber cropping soil[J]. Chin J Soil Sci, 2011, 42(3):578-583. | |
[6] | 张萍, 赵建华, 鞠召彬, 等. 放线菌肥对新疆加工番茄促生、防病增产及列当的防控效果[J]. 中国蔬菜, 2019(2):49-52. |
Zhang P, Zhao JH, Ju ZB, et al. Effect of actinomycete fertilizer on growth promotion, disease prevention, yield increase and broomrape control of processing tomato in Xinjiang[J]. China Veg, 2019(2):49-52. | |
[7] |
Hauser F, Pessi G, Friberg M, et al. Dissection of the Bradyrhizobium japonicum NifA+sigma54 regulon, and identification of a ferredoxin gene(fdxN)for symbiotic nitrogen fixation[J]. Mol Genet Genomics, 2007, 278(3):255-271.
pmid: 17569992 |
[8] | 吕鹏超, 王成慧, 林悦香, 等. 复合微生物菌剂对温室黄瓜生长和品质的影响[J]. 安徽农学通报, 2020, 26(17):47-49, 131. |
Lv PC, Wang CH, Lin YX. Effect of compound microbial agents on growth and quality of cucumber in greenhouse[J]. Anhui Agric Sci Bull, 2020, 26(17):47-49, 131. | |
[9] | 张佼, 屈锋, 朱玉尧, 等. 增施有机肥和微生物菌剂对春季杨凌设施番茄产量和品质的影响[J]. 西北农业学报, 2019, 28(5):767-773. |
Zhang J, Qu F, Zhu YY, et al. Effects of more organic fertilizer and microbial agents on yield and quality of spring greenhouse tomato in Yangling[J]. Acta Agric Boreali Occidentalis Sin, 2019, 28(5):767-773. | |
[10] | 杨志刚, 叶英杰, 常海文, 等. 微生物菌肥及土壤修复剂对干制辣椒生长、品质及产量的影响[J]. 北方园艺, 2020(19):1-7. |
Yang ZG, Ye YJ, Chang HW, et al. Effects of microbial fertilizer and soil amendment on the growth, quality and yield of dry pepper[J]. North Hortic, 2020(19):1-7. | |
[11] | 刘洋洋, 束怀瑞, 陈伟. 混施微生物菌剂和有机肥对‘新红星’苹果解袋后果实品质的影响[J]. 中国土壤与肥料, 2021(1):169-179. |
Liu YY, Shu HR, Chen W. Effects of organic fertilizer containing microbial inoculants on fruit quality of ‘Starkrimson’ apples after bag removal[J]. Soil Fertil Sci China, 2021(1):169-179. | |
[12] | 周进. 微生物菌肥配施对葡萄土壤养分和品质的影响[J]. 北方园艺, 2020(24):51-56. |
Zhou J. Effects of microbial bacterial manure combined with reduced fertilizer on soil nutrients and quality of grapes in greenhouse[J]. North Hortic, 2020(24):51-56. | |
[13] | 赵贞, 杨延杰, 林多, 等. 微生物菌肥对日光温室黄瓜生长发育及产量品质的影响[J]. 中国蔬菜, 2012(18):149-153. |
Zhao Z, Yang YJ, Lin D, et al. Effects of microbe bacterial manures on growth, development, yield and quality of cucumber in solar greenhouse[J]. China Veg, 2012(18):149-153. | |
[14] | 管文芳, 谢越盛, 戴相群, 等. 微生物肥料“宁盾”粉剂在叶菜类作物生产上的应用效果[J]. 安徽农业科学, 2016, 44(5):152-154. |
Guan WF, Xie YS, Dai XQ, et al. Application effects of bio-fertilizer“Nanjing shield”Powder on leafy vegetable production[J]. J Anhui Agric Sci, 2016, 44(5):152-154. | |
[15] | 范娜, 彭之东, 白文斌, 等. 微生物菌剂对土壤酶活性及高粱生长的影响[J]. 中国农业科技导报, 2021(2):185-192. |
Fan N, Peng ZD, Bai WB, et al. Influences of microbial agents on soil enzyme activity and Sorghum growth[J]. J Agric Sci Technol, 2021(2):185-192. | |
[16] | 李敏, 王胜楠, 邵美乐, 等. 生物菌肥冲施对黄瓜生长及土壤酶活性的影响[J]. 北方园艺, 2015(16):153-156. |
Li M, Wang SN, Shao ML, et al. Effect of bacterial manure flushed on cucumber growth and soil enzyme activity[J]. North Hortic, 2015(16):153-156. | |
[17] | 冯敬涛, 于天武, 吴晓娴, 等. 微生物菌肥对苹果土壤理化特性及养分吸收的影响[J]. 北方园艺, 2021(2):97-102. |
Feng JT, Yu TW, Wu XX, et al. Effects of microbial fertilizer on the physical and chemical properties and nutrient absorption of apple soil[J]. North Hortic, 2021(2):97-102. | |
[18] | 卢培娜, 刘景辉, 赵宝平, 等. 菌肥对盐碱地土壤特性及燕麦根系分泌物的影响[J]. 作物杂志, 2017(5):85-92. |
Lu PN, Liu JH, Zhao BP, et al. Effects of microbial fertilizer on soil characteristics and root exudates of oats in saline-alkali land[J]. Crops, 2017(5):85-92. | |
[19] | 武杞蔓, 张金梅, 李玥莹, 等. 有益微生物菌肥对农作物的作用机制研究进展[J]. 生物技术通报, 2021(5):217-226. |
Wu QM, Zhang JM, Li YY, et al. Research progress on the mechanism of beneficial microbial fertilizers on crops[J]. Biotechnology Bulletin, 2021(5):217-226. | |
[20] | 刘燕, 潘婷, 孙萍, 等. 农用微生物菌肥在黄瓜上的应用效果研究[J]. 现代农业科技, 2020(6):60-61. |
Liu Y, Pan T, Sun P, et al. Study on application effect of agricultural microbial fertilizer on cucumber[J]. Mod Agric Sci Technol, 2020(6):60-61. | |
[21] | 余小兰, 李光义, 邹雨坤, 等. 蚯蚓粪和巨大芽孢杆菌互作对小白菜产量与品质的影响[J]. 中国土壤与肥料, 2020(2):206-212. |
Yu XL, Li GY, Zou YK, et al. Effect of vermicompost and Bacillus megaterium interaction on yield and quality of pakchoi[J]. Soil Fertil Sci China, 2020(2):206-212. | |
[22] | 庞强强, 蔡兴来, 周曼, 等. 微生物菌肥对设施白菜生长、品质和土壤酶活性的影响[J]. 热带农业科学, 2018, 38(4):20-23. |
Pang QQ, Cai XL, Zhou M, et al. Effects of microbial fertilizer on the growth, quality and soil enzyme activities of pakchoi in the solar greenhouse[J]. Chin J Trop Agric, 2018, 38(4):20-23. | |
[23] |
温丹, 王晓, 孙凯宁, 等. 不同形态微生物菌剂对不结球白菜生长和品质的影响[J]. 应用生态学报. doi: 10.13287/j.1001-9332, 202105.021.
doi: 10.13287/j.1001-9332 |
Wen D, Wang X, Sun KN, et al. Effects of different forms of microbial agents on the growth and quality of Brassica rapa L. ssp. chinensis Makino(non-heading Chinese cabbage)[J]. Chinese Journal of Applied Ecology. doi: 10.13287/j.1001-9332, 202105.021.
doi: 10.13287/j.1001-9332 |
|
[24] | 王涛, 辛世杰, 乔卫花, 等. 几种微生物菌肥对连作黄瓜生长及土壤理化性状的影响[J]. 中国蔬菜, 2011(18):52-57. |
Wang T, Xin SJ, Qiao WH, et al. Effects of different microbial fertilizers on continuous cropping cucumber growth and soil physiochemical properties[J]. China Veg, 2011(18):52-57. | |
[25] |
Argueso CT, Hansen M, Kieber JJ. Regulation of ethylene biosynjournal[J]. J Plant Growth Regul, 2007, 26(2):92-105.
doi: 10.1007/s00344-007-0013-5 URL |
[1] | 周嫒婷, 彭睿琦, 王芳, 伍建榕, 马焕成. 生防菌株DZY6715在不同生长期的代谢差异分析[J]. 生物技术通报, 2023, 39(9): 225-235. |
[2] | 杨玉梅, 张坤晓. 应用CRISPR/Cas9技术建立ERK激酶相分离荧光探针定点整合的稳定细胞株[J]. 生物技术通报, 2023, 39(8): 159-164. |
[3] | 付钰, 贾瑞瑞, 何荷, 王良桂, 杨秀莲. 两种砧木楸树嫁接苗生长差异及转录组比较分析[J]. 生物技术通报, 2023, 39(8): 251-261. |
[4] | 褚睿, 李昭轩, 张学青, 杨东亚, 曹行行, 张雪艳. 黄瓜枯萎病拮抗芽孢杆菌的筛选、鉴定及其生防潜力[J]. 生物技术通报, 2023, 39(8): 262-271. |
[5] | 胡海琳, 徐黎, 李晓旭, 王晨璨, 梅曼, 丁文静, 赵媛媛. 小肽激素调控植物生长发育及逆境生理研究进展[J]. 生物技术通报, 2023, 39(7): 13-25. |
[6] | 冯珊珊, 王璐, 周益, 王幼平, 方玉洁. WOX家族基因调控植物生长发育和非生物胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(5): 1-13. |
[7] | 刘辉, 卢扬, 叶夕苗, 周帅, 李俊, 唐健波, 陈恩发. 外源硫诱导苦荞镉胁迫响应的比较转录组学分析[J]. 生物技术通报, 2023, 39(5): 177-191. |
[8] | 罗义, 张丽娟, 黄伟, 王宁, 吾尔丽卡·买提哈斯木, 施宠, 王玮. 一株耐铀菌株的鉴定及其促生特性研究[J]. 生物技术通报, 2023, 39(5): 286-296. |
[9] | 姚姿婷, 曹雪颖, 肖雪, 李瑞芳, 韦小妹, 邹承武, 朱桂宁. 火龙果溃疡病菌实时荧光定量PCR内参基因的筛选[J]. 生物技术通报, 2023, 39(5): 92-102. |
[10] | 薛皦, 朱庆锋, 冯彦钊, 陈沛, 刘文华, 张爱霞, 刘勤坚, 张琪, 于洋. 植物基因上游开放阅读框的研究进展[J]. 生物技术通报, 2023, 39(4): 157-165. |
[11] | 魏明, 王欣玉, 伍国强, 赵萌. NAD依赖型去乙酰化酶SRT在植物表观遗传调控中的作用[J]. 生物技术通报, 2023, 39(4): 59-70. |
[12] | 桑田, 王鹏程. 植物SUMO化修饰研究进展[J]. 生物技术通报, 2023, 39(3): 1-12. |
[13] | 杨春洪, 董璐, 陈林, 宋丽. 大豆VAS1基因家族的鉴定及参与侧根发育的研究[J]. 生物技术通报, 2023, 39(3): 133-142. |
[14] | 谢洋, 邢雨蒙, 周国彦, 刘美妍, 银珊珊, 闫立英. 黄瓜二倍体及其同源四倍体果实转录组分析[J]. 生物技术通报, 2023, 39(3): 152-162. |
[15] | 王琪, 胡哲, 富薇, 李光哲, 郝林. 伯克霍尔德氏菌GD17对黄瓜幼苗耐干旱的调节[J]. 生物技术通报, 2023, 39(3): 163-175. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||