生物技术通报 ›› 2022, Vol. 38 ›› Issue (1): 258-268.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0080
朱永安(), 王淼(), 曹静, 喻鹤, 曹振, 金茂俊, 王静(), 佘永新
收稿日期:
2021-01-19
出版日期:
2022-01-26
发布日期:
2022-02-22
作者简介:
朱永安,男,硕士研究生,研究方向:食品质量与安全; 基金资助:
ZHU Yong-an(), WANG Miao(), CAO Jing, YU He, CAO Zhen, JIN Mao-jun, WANG Jing(), SHE Yong-xin
Received:
2021-01-19
Published:
2022-01-26
Online:
2022-02-22
摘要:
为保障消费者食用安全,迫切需要研发农产品和食品中的农药残留快速检测技术。酶抑制法检测是目前农药残留快速检测技术中的主要研究方向之一,而酶的固定化是用基于酶抑制法原理对农药残留检测研究中的重要步骤。通过物理或化学的方法高效地将酶固定于载体上,同时保持酶的催化活性是开发各类基于酶抑制法检测农药残留传感器的关键。本文将从固定化酶方法、载体以及固定化酶产品在农药残留检测中的实际应用进行论述,为固定化酶在农药残留检测中的应用提供一定参考。
朱永安, 王淼, 曹静, 喻鹤, 曹振, 金茂俊, 王静, 佘永新. 农药残留检测关键用酶固定化研究进展[J]. 生物技术通报, 2022, 38(1): 258-268.
ZHU Yong-an, WANG Miao, CAO Jing, YU He, CAO Zhen, JIN Mao-jun, WANG Jing, SHE Yong-xin. Research Progress in the Immobilization of Key Enzymes for Pesticides Residue Detection[J]. Biotechnology Bulletin, 2022, 38(1): 258-268.
MOFs名称 MOFs name | 固定化酶 Immobilized enzyme | 检测农药 Detection of pesticide | 线性范围 Linear range | 检出限 LOD | 参考文献 Reference |
---|---|---|---|---|---|
Pt@UiO66-NH2 | AChE | 马拉硫磷Malathion | 1×10-14 -1×10-9 mol/L | 4.9 × 10-15 mol/L | [ |
MXene/AuNPs/MnO2/Mn3O4/GCE | AChE | 甲胺磷Methamidophos | 1×10-12 -1×10-6 mol/L | 1.34 × 10-13 mol/L | [ |
MOF-Basolite Z1200/μE | AChE | 毒死蜱Chlorpyrifos | 10-100 ng/L | 6 ng/L | [ |
UiO-66-NH2 | OPH | 甲基对硫磷Parathion-methyl | 10-106 ng/mL | 10 ng/mL | [ |
Ce-UiO-66/MWCNTs/GCE | AChE | 对氧磷Paraoxon | 0.01-150 nmol/L | 0.004 nmol/L | [ |
Fe3O4 NPs@ZIF-8 | AChE | 二嗪磷Dizinon | 0.5-500 nmol/L | 0.2 nmol/L | [ |
MOF-Pt | AChE | 毒死蜱Chlorpyrifos | 0.5 ng/mL-1.0 μg/mL | 0.21 ng/mL | [ |
LDH@ZIF-8 | AChE | 二嗪磷Dizinon | 0.5-300 nmol/L | 0.22 nmol/L | [ |
Cu-Hemin MOFs/NECF | AChE | 敌百虫Dipterex | 0.25-20 ng/mL | 0.082 ng/mL | [ |
表1 不同类型MOFs载体检测性能比较
Table 1 Comparison of detection performance of different types of MOFs carriers
MOFs名称 MOFs name | 固定化酶 Immobilized enzyme | 检测农药 Detection of pesticide | 线性范围 Linear range | 检出限 LOD | 参考文献 Reference |
---|---|---|---|---|---|
Pt@UiO66-NH2 | AChE | 马拉硫磷Malathion | 1×10-14 -1×10-9 mol/L | 4.9 × 10-15 mol/L | [ |
MXene/AuNPs/MnO2/Mn3O4/GCE | AChE | 甲胺磷Methamidophos | 1×10-12 -1×10-6 mol/L | 1.34 × 10-13 mol/L | [ |
MOF-Basolite Z1200/μE | AChE | 毒死蜱Chlorpyrifos | 10-100 ng/L | 6 ng/L | [ |
UiO-66-NH2 | OPH | 甲基对硫磷Parathion-methyl | 10-106 ng/mL | 10 ng/mL | [ |
Ce-UiO-66/MWCNTs/GCE | AChE | 对氧磷Paraoxon | 0.01-150 nmol/L | 0.004 nmol/L | [ |
Fe3O4 NPs@ZIF-8 | AChE | 二嗪磷Dizinon | 0.5-500 nmol/L | 0.2 nmol/L | [ |
MOF-Pt | AChE | 毒死蜱Chlorpyrifos | 0.5 ng/mL-1.0 μg/mL | 0.21 ng/mL | [ |
LDH@ZIF-8 | AChE | 二嗪磷Dizinon | 0.5-300 nmol/L | 0.22 nmol/L | [ |
Cu-Hemin MOFs/NECF | AChE | 敌百虫Dipterex | 0.25-20 ng/mL | 0.082 ng/mL | [ |
传感器名称 Sensor name | 类型 Type | 农药 Pesticide | 线性范围 Linear range | 检出限 LOD | 参考文献 Reference |
---|---|---|---|---|---|
AChE/e-pGON/GCE | 电化学生物传感器 Electrochemical biosensor | 甲萘威 Carbaryl | 0.3-6.1 ng/mL | 0.15 ng/mL | [ |
AChE/Au/ssDNA- SWCNT/PANI | 电化学生物传感器 Electrochemical biosensor | 甲基对硫磷 Parathion-methyl 毒死蜱 Chlorpyrifos | 1.0×10-11-1.0×10-6 mol/L | 1.0×10-12 mol/L | [ |
Tyr-BCs/Au | 电化学发光传感器 ECL | 阿特拉津 Atrazine | 0.0001-0.01 μg/L 0.01-20 μg/L | 0.08 ng/L | [ |
ACh/CNT/NH2 | 生物传感器 Biosensor | 对氧磷 Paraoxon | 0.2-1 nmol/L | 0.08 nmol/L | [ |
AChE/GMA/EDMA | 微流控芯片 Micro-fluidic chip | 对氧磷 Paraoxon | 0.25-2.5 mg/mL | 0.17 mg/mL | [ |
AChE-FH-A-GNPs | 生物传感器 Biosensor | 克百威 Carbofuran 杀线威 Oxamyl 灭多威 Methomyl 甲萘威 Carbaryl | NR | 2 nmol/L 21 nmol/L 113 nmol/L 236 nmol/L | [ |
AChE/Ce-UiO-66 /MWCNTs/GCE | 电化学生物传感器 Electrochemical biosensor | 对氧磷 Paraoxon | 0.01-150 nmol/L | 0.004 nmol/L | [ |
AChE/AuPt/PDA | 生物传感器 Biosensor | 对氧磷 Paraoxon | 0.5-1000 ng/L | 0.185 ng/L | [ |
GCE/P-ABSA/DAR /AuNPs/DAR/AChE | 生物传感器 Biosensor | 马拉硫磷 Malathion 甲基对硫磷 Parathion-methyl | 0.003-30 pmol/L 0.0038-38 pmol/L | 0.0016 pmol/L 0.0022 pmol/L | [ |
AChE/PET/Ag/AgCl | 微流控芯片 Micro-fluidic chip | 对硫磷 Parathion | 1.0×10-7-1.0×10-5 g/mL | 3.3×10-8 g/mL | [ |
NF/AChE-CS/SNS-NF/GCE | 生物传感器 Biosensor | 甲基对硫磷 Parathion-methyl 毒死蜱 Chlorpyrifos 克百威 Carbofuran | 10-12-10-10 mol/L 10-10-10-8 mol/L | 5.0×10-13 mol/L | [ |
表2 不同类型传感器比较
Table 2 Comparison of different types of sensors
传感器名称 Sensor name | 类型 Type | 农药 Pesticide | 线性范围 Linear range | 检出限 LOD | 参考文献 Reference |
---|---|---|---|---|---|
AChE/e-pGON/GCE | 电化学生物传感器 Electrochemical biosensor | 甲萘威 Carbaryl | 0.3-6.1 ng/mL | 0.15 ng/mL | [ |
AChE/Au/ssDNA- SWCNT/PANI | 电化学生物传感器 Electrochemical biosensor | 甲基对硫磷 Parathion-methyl 毒死蜱 Chlorpyrifos | 1.0×10-11-1.0×10-6 mol/L | 1.0×10-12 mol/L | [ |
Tyr-BCs/Au | 电化学发光传感器 ECL | 阿特拉津 Atrazine | 0.0001-0.01 μg/L 0.01-20 μg/L | 0.08 ng/L | [ |
ACh/CNT/NH2 | 生物传感器 Biosensor | 对氧磷 Paraoxon | 0.2-1 nmol/L | 0.08 nmol/L | [ |
AChE/GMA/EDMA | 微流控芯片 Micro-fluidic chip | 对氧磷 Paraoxon | 0.25-2.5 mg/mL | 0.17 mg/mL | [ |
AChE-FH-A-GNPs | 生物传感器 Biosensor | 克百威 Carbofuran 杀线威 Oxamyl 灭多威 Methomyl 甲萘威 Carbaryl | NR | 2 nmol/L 21 nmol/L 113 nmol/L 236 nmol/L | [ |
AChE/Ce-UiO-66 /MWCNTs/GCE | 电化学生物传感器 Electrochemical biosensor | 对氧磷 Paraoxon | 0.01-150 nmol/L | 0.004 nmol/L | [ |
AChE/AuPt/PDA | 生物传感器 Biosensor | 对氧磷 Paraoxon | 0.5-1000 ng/L | 0.185 ng/L | [ |
GCE/P-ABSA/DAR /AuNPs/DAR/AChE | 生物传感器 Biosensor | 马拉硫磷 Malathion 甲基对硫磷 Parathion-methyl | 0.003-30 pmol/L 0.0038-38 pmol/L | 0.0016 pmol/L 0.0022 pmol/L | [ |
AChE/PET/Ag/AgCl | 微流控芯片 Micro-fluidic chip | 对硫磷 Parathion | 1.0×10-7-1.0×10-5 g/mL | 3.3×10-8 g/mL | [ |
NF/AChE-CS/SNS-NF/GCE | 生物传感器 Biosensor | 甲基对硫磷 Parathion-methyl 毒死蜱 Chlorpyrifos 克百威 Carbofuran | 10-12-10-10 mol/L 10-10-10-8 mol/L | 5.0×10-13 mol/L | [ |
[1] | 陈晓明, 王程龙, 薄瑞. 中国农药使用现状及对策建议[J]. 农药科学与管理, 2016, 37(2):4-8. |
Chen XM, Wang CL, Bo R. Current situation of Chinese pesticide application and policy suggestions[J]. Pestic Sci Adm, 2016, 37(2):4-8. | |
[2] |
Liu DM, Chen J, Shi YP. Advances on methods and easy separated support materials for enzymes immobilization[J]. Trac Trends Anal Chem, 2018, 102:332-342.
doi: 10.1016/j.trac.2018.03.011 URL |
[3] |
Stéfanne e Silva T, Soares IP, Gonçalves Lacerda LR, et al. Electrochemical modification of electrodes with polymers derived from of hydroxybenzoic acid isomers:Optimized platforms for an alkaline phosphatase biosensor for pesticide detection[J]. Mater Chem Phys, 2020, 252:123221.
doi: 10.1016/j.matchemphys.2020.123221 URL |
[4] |
Li YN, Yang HQ, Xu F. Identifying and engineering a critical amino acid residue to enhance the catalytic efficiency of Pseudomonas sp. methyl parathion hydrolase[J]. Appl Microbiol Biotechnol, 2018, 102(15):6537-6545.
doi: 10.1007/s00253-018-9108-0 URL |
[5] |
Du D, Chen S, Cai J, et al. Immobilization of acetylcholinesterase on gold nanoparticles embedded in Sol-gel film for amperometric detection of organophosphorous insecticide[J]. Biosens Bioelectron, 2007, 23(1):130-134.
doi: 10.1016/j.bios.2007.03.008 URL |
[6] |
Fernandez Caresani JR, Dallegrave A, Santos JHZ. Amylases immobilization by Sol-gel entrapment:application for starch hydrolysis[J]. J Sol Gel Sci Technol, 2020, 94(1):229-240.
doi: 10.1007/s10971-019-05136-7 URL |
[7] | 孔军, 李子杰, 中西秀树, 等. 固定化酶新技术——酿酒酵母孢子微胶囊固定化酶技术[J]. 食品与发酵工业, 2017, 43(1):257-265. |
Kong J, Li ZJ, Nakanishi Hideki, et al. A novel way for enzyme immobilization—Saccharomyces cerevisiae spore microencapsulated enzyme[J]. Food Ferment Ind, 2017, 43(1):257-265. | |
[8] |
Khaldi K, Sam S, Gouget-Laemmel AC, et al. Active acetylcholinesterase immobilization on a functionalized silicon surface[J]. Langmuir, 2015, 31(30):8421-8428.
doi: 10.1021/acs.langmuir.5b01928 pmid: 26153025 |
[9] |
Jiang B, Dong P, Zheng J. A novel amperometric biosensor based on covalently attached multilayer assemblies of gold nanoparticles, diazo-resins and acetylcholinesterase for the detection of organophosphorus pesticides[J]. Talanta, 2018, 183:114-121.
doi: S0039-9140(18)30129-2 pmid: 29567153 |
[10] |
Kazenwadel F, Wagner H, Rapp BE, et al. Optimization of enzyme immobilization on magnetic microparticles using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide(EDC)as a crosslinking agent[J]. Anal Methods, 2015, 7(24):10291-10298.
doi: 10.1039/C5AY02670A URL |
[11] |
Weltin A, Kieninger J, Urban GA. Microfabricated, amperometric, enzyme-based biosensors for in vivo applications[J]. Anal Bioanal Chem, 2016, 408(17):4503-4521.
doi: 10.1007/s00216-016-9420-4 URL |
[12] | 毛罕平, 左志强, 施杰, 等. 基于纸质微流控芯片的农药检测系统[J]. 农业机械学报, 2017, 48(5):94-100. |
Mao HP, Zuo ZQ, Shi J, et al. Detection system for pesticides with paper-based microfluidic chip[J]. Trans Chin Soc Agric Mach, 2017, 48(5):94-100. | |
[13] |
Sun X, Wang XY, Liu Z. Study on immobilization methods of acetylcholinesterase[J]. Int J Food Eng, 2008, 4(8). DOI: 10.2202/1556-3758.1464.
doi: 10.2202/1556-3758.1464 |
[14] |
Hernandez K, Fernandez-Lafuente R. Control of protein immobilization:Coupling immobilization and site-directed mutagenesis to improve biocatalyst or biosensor performance[J]. Enzym Microb Technol, 2011, 48(2):107-122.
doi: 10.1016/j.enzmictec.2010.10.003 URL |
[15] |
Zhang KX, Liu GZ, Goldys EM. Robust immunosensing system based on biotin-streptavidin coupling for spatially localized femtogram mL-1 level detection of interleukin-6[J]. Biosens Bioelectron, 2018, 102:80-86.
doi: 10.1016/j.bios.2017.11.023 URL |
[16] |
Yang L, Wang GC, Liu YJ, et al. Development of a stable biosensor based on a SiO2 nanosheet-Nafion-modified glassy carbon electrode for sensitive detection of pesticides[J]. Anal Bioanal Chem, 2013, 405(8):2545-2552.
doi: 10.1007/s00216-012-6634-y URL |
[17] |
Won YH, Jang HS, Kim SM, et al. Biomagnetic glasses:preparation, characterization, and biosensor applications[J]. Langmuir, 2010, 26(6):4320-4326.
doi: 10.1021/la903422q URL |
[18] |
Ruiz-Hitzky E, Aranda P, Darder M, et al. Hybrid materials based on clays for environmental and biomedical applications[J]. J Mater Chem, 2010, 20(42):9306-9321.
doi: 10.1039/c0jm00432d URL |
[19] | 鲍赛, 操丽丽, 庞敏, 等. 磷脂酶固定化载体材料的研究进展[J]. 中国油脂, 2018, 43(12):50-54. |
Bao S, Cao LL, Pang M, et al. Progress in carrier materials for immobilization of phospholipase[J]. China Oils Fats, 2018, 43(12):50-54. | |
[20] |
Patel H, Rawtani D, Agrawal YK. A newly emerging trend of chitosan-based sensing platform for the organophosphate pesticide detection using Acetylcholinesterase- a review[J]. Trends Food Sci Technol, 2019, 85:78-91.
doi: 10.1016/j.tifs.2019.01.007 URL |
[21] | Bayramoğlu G. Methacrylated chitosan based UV curable support for enzyme immobilization[J]. Mat Res, 2017, 20(2):452-459. |
[22] | 伍周玲, 燕冰宇, 梁东军, 等. 新型固载酶生物传感器制备及食品中有机磷农药检测[J]. 中国食品学报, 2015, 15(3):166-174. |
Wu ZL, Yan BY, Liang DJ, et al. Preparation of novel immobilized enzyme electrochemical biosensor and detection of organophosphorus pesticide in food[J]. J Chin Inst Food Sci Technol, 2015, 15(3):166-174. | |
[23] | 陈俊英, 周航宇, 唐焕妍, 等. 响应面法优化纤维素基载体固定糖化酶的研究[J]. 郑州大学学报:工学版, 2019, 40(2):66-71. |
Chen JY, Zhou HY, Tang HY, et al. Optimization for cellulose carrier immobilized glucoamylase by response surface methodology[J]. J Zhengzhou Univ:Eng Sci, 2019, 40(2):66-71. | |
[24] |
Çakmakçi E, Demir S. Nonhydrolytic Sol-gel synthesized oligosiloxane resin reinforced thiol-ene photocured coatings for the immobilization of acetylcholinesterase[J]. J Sol Gel Sci Technol, 2019, 91(1):72-81.
doi: 10.1007/s10971-019-05006-2 URL |
[25] |
Li C, Zhang GF, Liu N, et al. Preparation and properties of Rhizopus oryzae lipase immobilized using an adsorption-crosslinking method[J]. Int J Food Prop, 2016, 19(8):1776-1785.
doi: 10.1080/10942912.2015.1107732 URL |
[26] |
Gao Y, Truong YB, Cacioli P, et al. Bioremediation of pesticide contaminated water using an organophosphate degrading enzyme immobilized on nonwoven polyester textiles[J]. Enzyme Microb Technol, 2014, 54:38-44.
doi: 10.1016/j.enzmictec.2013.10.001 URL |
[27] |
Han WJ, Xin YR, Hasegawa U, et al. Enzyme immobilization on polymethacrylate-based monolith fabricated via thermally induced phase separation[J]. Polym Degrad Stab, 2014, 109:362-366.
doi: 10.1016/j.polymdegradstab.2014.05.032 URL |
[28] |
Li L, Zhao AW, Wang DP, et al. Fabrication of cube-like Fe3O4@SiO2@Ag nanocomposites with high SERS activity and their application in pesticide detection[J]. J Nanoparticle Res, 2016, 18(7):1-10.
doi: 10.1007/s11051-015-3308-7 URL |
[29] | 刘佳, 杨启华. 介孔材料固定化酶的研究进展及其应用前景[J]. 石油化工, 2014, 43(4):357-363. |
Liu J, Yang QH. Research progress and application prospect of enzyme immobilization on mesoporous silica-based materials[J]. Petrochem Technol, 2014, 43(4):357-363. | |
[30] |
Ji H, Xia C, Xu J, et al. A highly sensitive immunoassay of pesticide and veterinary drug residues in food by tandem conjugation of bi-functional mesoporous silica nanospheres[J]. Analyst, 2020, 145(6):2226-2232.
doi: 10.1039/C9AN02430A URL |
[31] |
Wu Y, Chen Y, Zhang S, et al. Bifunctional S, N-Codoped carbon dots-based novel electrochemiluminescent bioassay for ultrasensitive detection of atrazine using activated mesoporous biocarbon as enzyme nanocarriers[J]. Anal Chim Acta, 2019, 1073:45-53.
doi: 10.1016/j.aca.2019.04.068 URL |
[32] |
Krishnan SK, Singh E, Singh P, et al. A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors[J]. RSC Adv, 2019, 9(16):8778-8881.
doi: 10.1039/c8ra09577a |
[33] |
Quan J, Liu Z, Branford-White C, et al. Fabrication of glycopolymer/MWCNTs composite nanofibers and its enzyme immobilization applications[J]. Colloids Surf B Biointerfaces, 2014, 121:417-424.
doi: 10.1016/j.colsurfb.2014.06.030 URL |
[34] |
Yu GX, Wu WX, Zhao Q, et al. Efficient immobilization of acetylcholinesterase onto amino functionalized carbon nanotubes for the fabrication of high sensitive organophosphorus pesticides biosensors[J]. Biosens Bioelectron, 2015, 68:288-294.
doi: 10.1016/j.bios.2015.01.005 URL |
[35] |
Mahmoudpour M, Torbati M, Mousavi MM, et al. Nanomaterial-based molecularly imprinted polymers for pesticides detection:Recent trends and future prospects[J]. Trac Trends Anal Chem, 2020, 129:115943.
doi: 10.1016/j.trac.2020.115943 URL |
[36] |
Mahmoudifard M, Soudi S, Soleimani M, et al. Efficient protein immobilization on polyethersolfone electrospun nanofibrous membrane via covalent binding for biosensing applications[J]. Mater Sci Eng C Mater Biol Appl, 2016, 58:586-594.
doi: 10.1016/j.msec.2015.09.007 URL |
[37] |
Mei S, Shi JF, Zhang SH, et al. Nanoporous phyllosilicate assemblies for enzyme immobilization[J]. ACS Appl Bio Mater, 2019, 2(2):777-786.
doi: 10.1021/acsabm.8b00642 URL |
[38] | 范铮, 唐咸昌, 张旭, 等. 金属有机骨架材料载体用于酶固定化的研究进展[J]. 化工进展, 2019, 38(10):4606-4613. |
Fan Z, Tang XC, Zhang X, et al. Progress of on enzyme immobilization with metal-organic frameworks[J]. Chem Ind Eng Prog, 2019, 38(10):4606-4613. | |
[39] |
Wu XL, Hou M, Ge J. Metal-organic frameworks and inorganic nanoflowers:a type of emerging inorganic crystal nanocarrier for enzyme immobilization[J]. Catal Sci Technol, 2015, 5(12):5077-5085.
doi: 10.1039/C5CY01181G URL |
[40] | 陈海欣, 张赛男, 赵力民, 等. 固定化酶: 从策略到材料设计[J]. 生物加工过程, 2020, 18(1):88-95. |
Chen HX, Zhang SN, Zhao LM, et al. Enzyme immobilization:from strategies to materials design[J]. Chin J Bioprocess Eng, 2020, 18(1):88-95. | |
[41] |
Cai XY, Zhang MJ, Wei W, et al. The Immobilization of Candida antarctica lipase B by ZIF-8 encapsulation and macroporous resin adsorption:preparation and characterizations[J]. Biotechnol Lett, 2020, 42(2):269-276.
doi: 10.1007/s10529-019-02771-6 URL |
[42] | Hu C, Bai Y, Hou M, et al. Defect-induced activity enhancement of enzyme-encapsulated metal-organic frameworks revealed in microfluidic gradient mixing synjournal[J]. Sci Adv, 2020, 6(5):eaax5785. |
[43] |
Li MM, Qiao S, Zheng YL, et al. Fabricating covalent organic framework capsules with commodious microenvironment for enzymes[J]. J Am Chem Soc, 2020, 142(14):6675-6681.
doi: 10.1021/jacs.0c00285 URL |
[44] |
Ma L, He Y, Wang YR, et al. Nanocomposites of Pt nanoparticles anchored on UiO66-NH2 as carriers to construct acetylcholinesterase biosensors for organophosphorus pesticide detection[J]. Electrochimica Acta, 2019, 318:525-533.
doi: 10.1016/j.electacta.2019.06.110 URL |
[45] |
Song DD, Jiang XY, Li YS, et al. Metal-organic frameworks-derived MnO2/Mn3O4 microcuboids with hierarchically ordered nanosheets and Ti3C2 MXene/Au NPs composites for electrochemical pesticide detection[J]. J Hazard Mater, 2019, 373:367-376.
doi: 10.1016/j.jhazmat.2019.03.083 URL |
[46] |
Nagabooshanam S, Roy S, Mathur A, et al. Electrochemical micro analytical device interfaced with portable potentiostat for rapid detection of chlorpyrifos using acetylcholinesterase conjugated metal organic framework using Internet of Things[J]. Sci Rep, 2019, 9(1):19862.
doi: 10.1038/s41598-019-56510-y pmid: 31882767 |
[47] |
Mehta J, Dhaka S, Paul AK, et al. Organophosphate hydrolase conjugated UiO-66-NH2 MOF based highly sensitive optical detection of methyl parathion[J]. Environ Res, 2019, 174:46-53.
doi: 10.1016/j.envres.2019.04.018 URL |
[48] |
Mahmoudi E, Fakhri H, Hajian A, et al. High-performance electrochemical enzyme sensor for organophosphate pesticide detection using modified metal-organic framework sensing platforms[J]. Bioelectrochemistry, 2019, 130:107348.
doi: S1567-5394(19)30262-2 pmid: 31437810 |
[49] |
Bagheri N, Khataee A, Hassanzadeh J, et al. Sensitive biosensing of organophosphate pesticides using enzyme mimics of magnetic ZIF-8[J]. Spectrochimica Acta Part A:Mol Biomol Spectrosc, 2019, 209:118-125.
doi: 10.1016/j.saa.2018.10.039 URL |
[50] |
Lu Y, Wei M, Wang C, et al. Enhancing hydrogel-based long-lasting chemiluminescence by a platinum-metal organic framework and its application in array detection of pesticides and d-amino acids[J]. Nanoscale, 2020, 12(8):4959-4967.
doi: 10.1039/D0NR00203H URL |
[51] |
Bagheri N, Khataee A, Hassanzadeh J, et al. Highly sensitive chemiluminescence sensing system for organophosphates using mimic LDH supported ZIF-8 nanocomposite[J]. Sensor Actuat B:Chem, 2019, 284:220-227.
doi: 10.1016/j.snb.2018.12.147 URL |
[52] |
Song YG, Shan BX, Feng BW, et al. A novel biosensor based on ball-flower-like Cu-hemin MOF grown on elastic carbon foam for trichlorfon detection[J]. RSC Adv, 2018, 8(47):27008-27015.
doi: 10.1039/C8RA04596H URL |
[53] | 中华人民共和国卫生部, 中国国家标准化管理委员会. 中华人民共和国推荐性国家标准:蔬菜中有机磷和氨基甲酸酯类农药残留量快速检测 GB/T 5009, 199—2003[S]. 北京: 中国标准出版社, 2004. |
Ministry of Health of the People’s Republic of China, Standardization Administration of the People’s Republic of China. National Standard(Recommended)of the People’s Republic of China:Rapid determination for organophosphate and carbamate pesticide residues in vegetables. GB/T 5009, 199—2003[S]. Beijing: Standards Press of China, 2004. | |
[54] | 叶嘉明, 苑宝龙, 黄昱俊. 一种基于微流控的酶抑制反应平台及分析方法: CN103865754A[P]. 2014-06-18. |
Ye JM, Yuan BL, Huang YJ. Microfluidic-based enzyme inhibition reaction platform and analysis method: CN103865754A[P]. 2014-06-18. | |
[55] |
Chen H, Zuo X, Su S, et al. An electrochemical sensor for pesticide assays based on carbon nanotube-enhanced acetycholinesterase activity[J]. Analyst, 2008, 133(9):1182-1186.
doi: 10.1039/b805334k URL |
[56] |
Wang YL, Jin J, Yuan CX, et al. A novel electrochemical sensor based on zirconia/ordered macroporous polyaniline for ultrasensitive detection of pesticides[J]. Analyst, 2015, 140(2):560-566.
doi: 10.1039/C4AN00981A URL |
[57] |
El-Moghazy AY, Huo J, Amaly N, et al. An innovative nanobody-based electrochemical immunosensor using decorated nylon nanofibers for point-of-care monitoring of human exposure to pyrethroid insecticides[J]. ACS Appl Mater Interfaces, 2020, 12(5):6159-6168.
doi: 10.1021/acsami.9b16193 URL |
[58] |
Liu HB, Chen PP, Liu Z, et al. Electrochemical luminescence sensor based on double suppression for highly sensitive detection of glyphosate[J]. Sensor Actuat B:Chem, 2020, 304:127364.
doi: 10.1016/j.snb.2019.127364 URL |
[59] |
Li YP, Shi LY, Han GY, et al. Electrochemical biosensing of carbaryl based on acetylcholinesterase immobilized onto electrochemically inducing porous graphene oxide network[J]. Sensor Actuat B:Chem, 2017, 238:945-953.
doi: 10.1016/j.snb.2016.07.152 URL |
[60] |
Viswanathan S, Radecka H, Radecki J. Electrochemical biosensor for pesticides based on acetylcholinesterase immobilized on polyaniline deposited on vertically assembled carbon nanotubes wrapped with ssDNA[J]. Biosens Bioelectron, 2009, 24(9):2772-2777.
doi: 10.1016/j.bios.2009.01.044 URL |
[61] |
Rattanakit P, Greenway GM, Liawruangrath S. Development and evaluation of microfluidic device for the determination of organophosphorus pesticide incorporating monolith based immobilized AChE with spectrophotometric detection[J]. Int J Environ Anal Chem, 2013, 93(7):739-754.
doi: 10.1080/03067319.2012.755620 URL |
[62] |
Kestwal RM, Bagal-Kestwal D, Chiang BH. Fenugreek hydrogel-agarose composite entrapped gold nanoparticles for acetylcholinesterase based biosensor for carbamates detection[J]. Anal Chim Acta, 2015, 886:143-150.
doi: 10.1016/j.aca.2015.06.004 pmid: 26320646 |
[63] | Wu Y, Jiao L, Xu W, et al. Polydopamine-capped bimetallic AuPt hydrogels enable robust biosensor for organophosphorus pesticide detection[J]. Small, 2019, 15(17):e1900632. |
[1] | 张雅涵, 朱丽霞, 胡静, 朱亚静, 张雪婧, 曹叶中. 草甘膦在我国生物育种产业化应用中的机遇与挑战[J]. 生物技术通报, 2022, 38(11): 1-9. |
[2] | 徐刘佳, 郑明明. 皮克林乳液酶反应体系的构建与应用研究进展[J]. 生物技术通报, 2021, 37(2): 187-194. |
[3] | 韩姝然, 卢磊. 交联酶聚集体的制备及在漆酶固定化中的应用进展[J]. 生物技术通报, 2019, 35(3): 164-170. |
[4] | 高启禹, 徐光翠, 陈红丽, 周晨妍. 纳米材料固定化酶的研究进展[J]. 生物技术通报, 2013, 0(6): 20-24. |
[5] | 高启禹, 李宏彬, 陈红丽, 孔雨, 周晨妍. 壳聚糖修饰的PLGA纳米颗粒固定化碱性磷酸单酯酶的技术研究[J]. 生物技术通报, 2013, 0(5): 199-204. |
[6] | 赵杰宏;赵德刚;韩洁;. 转基因表达OPH提高番茄果实降解有机磷农药能力的研究[J]. , 2010, 0(12): 213-216. |
[7] | 邵文海;张先恩;AnthonyE.Cass. 固定化酶的空间取向控制策略[J]. , 2000, 0(03): 25-28. |
[8] | . 食品上的应用[J]. , 1993, 0(08): 74-80. |
[9] | 孙国凤;. 用固定化酶去除溶解氧保持饮料的品质[J]. , 1993, 0(06): 32-32. |
[10] | 朱遐;. 水净化新进展:清除地下水中的硝酸盐[J]. , 1992, 0(09): 18-19. |
[11] | . 食品上的应用[J]. , 1992, 0(06): 85-90. |
[12] | . 农业其它[J]. , 1992, 0(04): 85-90. |
[13] | 孙国凤;. 陶瓷生物反应器[J]. , 1992, 0(03): 7-8. |
[14] | . 食品上的应用[J]. , 1992, 0(01): 77-84. |
[15] | . 酶工程[J]. , 1991, 0(03): 55-70. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||