[1] |
Wang JT, Peng J, Zhao MY, et al. Significant trade-off for the impact of Grain-for-Green Programme on ecosystem services in North-western Yunnan, China[J]. Sci Total Environ, 2017, 574:57-64.
doi: 10.1016/j.scitotenv.2016.09.026
URL
|
[2] |
梁宇鹏, 赵江源, 杨佩文, 等. 哀牢山森林环境对铁载体子囊菌分布的影响[J]. 森林与环境学报, 2020, 40(3):298-305.
|
|
Liang YP, Zhao JY, Yang PW, et al. Influences of the Ailao Mountain forest environment on the distribution of siderophore-producing Ascomycetes[J]. J For Environ, 2020, 40(3):298-305.
|
[3] |
Miethke M, Marahiel MA. Siderophore-based iron acquisition and pathogen control[J]. Microbiol Mol Biol Rev, 2007, 71(3):413-451.
doi: 10.1128/MMBR.00012-07
URL
|
[4] |
Saha M, Sarkar S, Sarkar B, et al. Microbial siderophores and their potential applications:a review[J]. Environ Sci Pollut Res Int, 2016, 23(5):3984-3999.
doi: 10.1007/s11356-015-4294-0
URL
|
[5] |
江志波, 李星星, 任卫聪, 等. 基因组发掘策略指导铁载体类化合物的发现[J]. 中国医药生物技术, 2019, 14(2):97-107.
|
|
Jiang ZB, Li XX, Ren WC, et al. Discovery of siderophore compounds using genome mining strategy[J]. Chin Med Biotechnol, 2019, 14(2):97-107.
|
[6] |
Albelda-Berenguer M, Monachon M, Joseph E. Siderophores:From natural roles to potential applications[J]. Adv Appl Microbiol, 2019, 106:193-225.
doi: S0065-2164(18)30055-8
pmid: 30798803
|
[7] |
Retamal-Morales G, Mehnert M, Schwabe R, et al. Detection of arsenic-binding siderophores in arsenic-tolerating Actinobacteria by a modified CAS assay[J]. Ecotoxicol Environ Saf, 2018, 157:176-181.
doi: 10.1016/j.ecoenv.2018.03.087
URL
|
[8] |
Tistechok SI, Tymchuk IV, Korniychuk OP, et al. Genetic identification and antimicrobial activity of Streptomyces sp. strain je 1-6 isolated from rhizosphere soil of Juniperus excelsa bieb[J]. Cytol Genet, 2021, 55(1):28-35.
doi: 10.3103/S0095452721010138
URL
|
[9] |
Chua M, Chan K, Hocking TJ, et al. Methodologies for the extraction and analysis of konjac glucomannan from corms of Amorphophallus konjac K. Koch[J]. Carbohydr Polym, 2012, 87(3):2202-2210.
doi: 10.1016/j.carbpol.2011.10.053
URL
|
[10] |
王雪梅, 黄利群, 刘成, 等. 基于Biolog-ECO分析稀土、铅和氟复合污染农田土壤微生物群落功能多样性[J]. 应用与环境生物学报, 2021, 27(6):1485-1491.
|
|
Wang XM, Huang LQ, Liu C, et al. Analysis of microbial community functional diversity in rare earth element, lead and fluorine compound polluted soil based on Biolog-ECO[J]. Chin J Appl Environ Biol, 2021, 27(6):1485-1491.
|
[11] |
Ge Z, Du H, Gao Y, et al. Analysis on metabolic functions of stored rice microbial communities by BIOLOG ECO microplates[J]. Front Microbiol, 2018, 9:1375.
doi: 10.3389/fmicb.2018.01375
URL
|
[12] |
Gryta A, Frąc M, Oszust K. The application of the Biolog EcoPlate approach in ecotoxicological evaluation of dairy sewage sludge[J]. Appl Biochem Biotechnol, 2014, 174(4):1434-1443.
doi: 10.1007/s12010-014-1131-8
URL
|
[13] |
Wang CH, Gu LF, Liu XY, et al. Removal of Pyrene in simulated wetland by joint application of Kyllinga brevifolia Rottb. and immobilized microbes[J]. Int Biodeterior Biodegrad, 2016, 114:228-233.
doi: 10.1016/j.ibiod.2015.11.008
URL
|
[14] |
Arora NK, Verma M. Modified microplate method for rapid and efficient estimation of siderophore produced by bacteria[J]. 3 Biotech, 2017, 7(6):381.
doi: 10.1007/s13205-017-1008-y
URL
|
[15] |
Machuca A, Milagres AM. Use of CAS-agar plate modified to study the effect of different variables on the siderophore production by Aspergillus[J]. Lett Appl Microbiol, 2003, 36(3):177-181.
pmid: 12581379
|
[16] |
Sah S, Singh N, Singh R. Iron acquisition in maize(Zea mays L.)using Pseudomonas siderophore[J]. 3 Biotech, 2017, 7(2):1-7.
doi: 10.1007/s13205-016-0582-8
URL
|
[17] |
Chen LH, Lin CH, Chung KR. A nonribosomal peptide synthetase mediates siderophore production and virulence in the Citrus fungal pathogen Alternaria alternata[J]. Mol Plant Pathol, 2013, 14(5):497-505.
doi: 10.1111/mpp.12021
pmid: 23438010
|
[18] |
Zhao L, Wang Y, Kong S. Effects of Trichoderma asperellum and its siderophores on endogenous auxin in Arabidopsis thaliana under iron-deficiency stress[J]. Int Microbiol, 2020, 23(4):501-509.
doi: 10.1007/s10123-020-00122-4
URL
|
[19] |
Hu QB, Dong TY. Non-ribosomal Peptides from Entomogenous Fungi[M]//Sree KS, Varma A. Biocontrol of Lepidopteran Pests. Soil Biology, vol 43. Switzerland:Springer, Cham, 2015:169-206.
|
[20] |
Petrik M, Pfister J, Misslinger M, et al. Siderophore-based molecular imaging of fungal and bacterial infections—current status and future perspectives[J]. JoF, 2020, 6(2):73.
|
[21] |
Osman Y, Gebreil A, Mowafy AM, et al. Characterization of Aspergillus niger siderophore that mediates bioleaching of rare earth elements from phosphorites[J]. World J Microbiol Biotechnol, 2019, 35(6):93.
doi: 10.1007/s11274-019-2666-1
URL
|
[22] |
Arfaoui M, Vallance J, Bruez E, et al. Isolation, identification and in vitro characterization of grapevine rhizobacteria to control ochratoxigenic Aspergillus spp. on grapes[J]. Biol Control, 2019, 129:201-211.
doi: 10.1016/j.biocontrol.2018.10.019
|
[23] |
Blatzer M, Schrettl M, Sarg B, et al. SidL, an Aspergillus fumigatus transacetylase involved in biosynjournal of the siderophores ferricrocin and hydroxyferricrocin[J]. Appl Environ Microbiol, 2011, 77(14):4959-4966.
doi: 10.1128/AEM.00182-11
URL
|
[24] |
Ahmed E, Holmström SJM. Siderophores in environmental research:roles and applications[J]. Microb Biotechnol, 2014, 7(3):196-208.
doi: 10.1111/1751-7915.12117
pmid: 24576157
|
[25] |
Miransari M. Soil microbes and plant fertilization[J]. Appl Microbiol Biotechnol, 2011, 92(5):875-885.
doi: 10.1007/s00253-011-3521-y
pmid: 21989562
|
[26] |
Cai L, Chen J, Liu Z, et al. Magnesium oxide nanoparticles:effective agricultural antibacterial agent against Ralstonia solanacearum[J]. Front Microbiol, 2018, 9:790.
doi: 10.3389/fmicb.2018.00790
URL
|
[27] |
Lin WP, Jiang NH, Peng L, et al. Silicon impacts on soil microflora under Ralstonia Solanacearum inoculation[J]. J Integr Agric, 2020, 19(1):251-264.
doi: 10.1016/S2095-3119(18)62122-7
URL
|
[28] |
Xue H, Lozano-Durán R, Macho AP. Insights into the root invasion by the plant pathogenic bacterium Ralstonia solanacearum[J]. Plants, 2020, 9(4):516.
doi: 10.3390/plants9040516
URL
|
[29] |
Voβ B, Kirschhöfer F, Brenner-Weiβ G, et al. Alternaria alternata uses two siderophore systems for iron acquisition[J]. Sci Rep, 2020, 10(1):3587.
doi: 10.1038/s41598-020-60468-7
URL
|
[30] |
Sellyei B, Wehmann E, Makrai L, et al. Evaluation of the Biolog system for the identification of certain closely related Pasteurella species[J]. Diagn Microbiol Infect Dis, 2011, 71(1):6-11.
doi: 10.1016/j.diagmicrobio.2011.04.016
URL
|
[31] |
Page MGP. The role of iron and siderophores in infection, and the development of siderophore antibiotics[J]. Clin Infect Dis, 2019, 69(suppl 7):S529-S537.
doi: 10.1093/cid/ciz825
URL
|
[32] |
Bruns H, Crüsemann M, Letzel AC, et al. Function-related replacement of bacterial siderophore pathways[J]. ISME J, 2018, 12(2):320-329.
doi: 10.1038/ismej.2017.137
URL
|
[33] |
Parmanand BA, Kellingray L, Le Gall G, et al. A decrease in iron availability to human gut microbiome reduces the growth of potentially pathogenic gut bacteria;an in vitro colonic fermentation study[J]. J Nutr Biochem, 2019, 67:20-27.
doi: S0955-2863(18)30606-5
pmid: 30831460
|