生物技术通报 ›› 2022, Vol. 38 ›› Issue (6): 252-260.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1221
收稿日期:
2021-09-23
出版日期:
2022-06-26
发布日期:
2022-07-11
作者简介:
贾晨波,男,博士研究生,研究方向:微生物资源开发与利用;E-mail: 基金资助:
JIA Chen-bo(), SU Yi-huang, MA Xiu-mei, WANG Chun-li, XU Chun-yan()
Received:
2021-09-23
Published:
2022-06-26
Online:
2022-07-11
摘要:
菌株Acrophialophora sp. Z45是一株产漆酶的端梗霉属真菌,本文依据不同培养基中菌株Z45对愈创木酚的氧化圈大小探究了影响该菌株产漆酶的因素并设计正交试验优化其产漆酶培养基,进而比较了菌株Z45在土豆葡萄糖培养基和优化后的产漆酶培养基中的漆酶活力差异,最后基于漆酶与染料脱色的相关性评价了菌株Z45对8种合成染料的脱色能力。结果表明,单因素及正交试验确定了菌株Z45优化后的产漆酶培养基为:基础产酶培养基中以蔗糖为碳源、硝酸钠为氮源、C/N比为45∶1、pH为5.0;在优化后的产漆酶培养基中菌株Z45的漆酶活性显著提高;菌株Z45对溴酚蓝、中性红、亚甲基蓝、甲基蓝和结晶紫等5种染料均有一定的脱色能力,其中对三苯甲烷染料甲基蓝的脱色能力最强,菌株Z45的粗酶液能使甲基蓝快速脱色。在较低甲基蓝浓度的固体培养基上,甲基蓝完全脱色的时间不受染料浓度的影响;而较高甲基蓝浓度下,甲基蓝完全脱色的时间随染料浓度升高逐渐延长。
贾晨波, 苏一黄, 马秀梅, 王春利, 徐春燕. 端梗霉Z45产漆酶培养基的优化及其对染料的脱色[J]. 生物技术通报, 2022, 38(6): 252-260.
JIA Chen-bo, SU Yi-huang, MA Xiu-mei, WANG Chun-li, XU Chun-yan. Medium Optimization for Laccase Production by Acrophialophora sp. Z45 and Its Decolorization of Dyes[J]. Biotechnology Bulletin, 2022, 38(6): 252-260.
图1 G-PDA与PDA平板上菌株Z45不同培养时期的基本情况 1d-FS、2d-FS、4d-FS和6d-FS分别代表菌株培养1 d、2 d、4 d和6 d时正面的图片;1d-BS、2d-BS、4d-BS和6d-BS分别代表菌株培养1 d、2 d、4 d和6 d时背面的图片
Fig. 1 Basic performance of strain Z45 on the G-PDA and PDA medium 1d-FS,2d-FS,4d-FS and 6d-FS indicate the growth and discoloration circles on the front side of 1,2,4 and 6 d,respectively;1d-BS,2d-BS,4d-BS and 6d-BS indicate the growth and discoloration circles on the back side of 1,2,4 and 6 d,respectively
图2 不同条件下的变色圈直径 A中横坐标依次表示碳源为葡萄糖、蔗糖、乳糖、麦芽糖、淀粉、羧甲基纤维素钠;B中横坐标依次表示氮源为硝酸钠、硝酸铵、硫酸铵、蛋白胨、酵母粉、尿素;不同字母表示差异显著(P<0.05)
Fig.2 Diameter of discoloration circle under different condition A:horizontal ordinate indicates the carbon source is glucose,sucrose,lactose,maltose,starch,sodium carboxymethyl cellulose,respectively;B:horizontal ordinate indicates the nitrogen source is sodium nitrate,ammonium nitrate,ammonium sulfate,peptone,yeast powder,and urea from left to right,respectively. Different letters indicates significant difference(P<0.05)
编号 No. | A(碳源) A(Carbon source) | B(氮源) B(Nitrogen source) | C(碳氮比) C(C/N) | D(pH) D(pH) | 变色圈直径 Diameter of discoloration circle/mm |
---|---|---|---|---|---|
1 | 淀粉Starch | 硝酸钠Sodium nitrate | 35∶1 | 4.5 | 13.33 |
2 | 淀粉Starch | 硝酸铵Ammonium nitrate | 40∶1 | 5.0 | 10.00 |
3 | 淀粉Starch | 硫酸铵Ammonium sulfate | 45∶1 | 5.5 | 10.67 |
4 | 乳糖Lactose | 硝酸钠Sodium nitrate | 40∶1 | 5.5 | 14.00 |
5 | 乳糖Lactose | 硝酸铵Ammonium nitrate | 45∶1 | 4.5 | 12.00 |
6 | 乳糖Lactose | 硫酸铵Ammonium sulfate | 35∶1 | 5.0 | 9.33 |
7 | 蔗糖Sucrose | 硝酸钠Sodium nitrate | 45∶1 | 5.0 | 23.33 |
8 | 蔗糖Sucrose | 硝酸铵Ammonium nitrate | 35∶1 | 5.5 | 14.67 |
9 | 蔗糖Sucrose | 硫酸铵Ammonium sulfate | 40∶1 | 4.5 | 12.00 |
k1 | 11.33 | 16.89 | 12.44 | 12.44 | |
k2 | 11.78 | 12.22 | 12.00 | 14.22 | |
k3 | 16.67 | 10.67 | 15.33 | 13.11 | |
MAX | 16.67 | 16.89 | 15.33 | 14.22 | |
极差R | 5.34 | 6.22 | 3.33 | 1.78 |
表1 正交试验的结果与直观分析
Table 1 Results of orthogonal test and the visual analysis
编号 No. | A(碳源) A(Carbon source) | B(氮源) B(Nitrogen source) | C(碳氮比) C(C/N) | D(pH) D(pH) | 变色圈直径 Diameter of discoloration circle/mm |
---|---|---|---|---|---|
1 | 淀粉Starch | 硝酸钠Sodium nitrate | 35∶1 | 4.5 | 13.33 |
2 | 淀粉Starch | 硝酸铵Ammonium nitrate | 40∶1 | 5.0 | 10.00 |
3 | 淀粉Starch | 硫酸铵Ammonium sulfate | 45∶1 | 5.5 | 10.67 |
4 | 乳糖Lactose | 硝酸钠Sodium nitrate | 40∶1 | 5.5 | 14.00 |
5 | 乳糖Lactose | 硝酸铵Ammonium nitrate | 45∶1 | 4.5 | 12.00 |
6 | 乳糖Lactose | 硫酸铵Ammonium sulfate | 35∶1 | 5.0 | 9.33 |
7 | 蔗糖Sucrose | 硝酸钠Sodium nitrate | 45∶1 | 5.0 | 23.33 |
8 | 蔗糖Sucrose | 硝酸铵Ammonium nitrate | 35∶1 | 5.5 | 14.67 |
9 | 蔗糖Sucrose | 硫酸铵Ammonium sulfate | 40∶1 | 4.5 | 12.00 |
k1 | 11.33 | 16.89 | 12.44 | 12.44 | |
k2 | 11.78 | 12.22 | 12.00 | 14.22 | |
k3 | 16.67 | 10.67 | 15.33 | 13.11 | |
MAX | 16.67 | 16.89 | 15.33 | 14.22 | |
极差R | 5.34 | 6.22 | 3.33 | 1.78 |
方差来源 Source of variance | III 型平方和 Type III sum of squares | 自由度 Degree of freedom | 均方 Mean square | F值 F value | 显著性 Significance |
---|---|---|---|---|---|
A | 144.296 | 2 | 72.148 | 20.292 | ** |
B | 199.407 | 2 | 99.704 | 28.042 | ** |
C | 64.296 | 2 | 32.148 | 9.042 | ** |
D | 18.074 | 2 | 9.037 | 2.542 | |
误差Error | 64.000 | 18 | 3.556 |
表2 正交试验的方差分析
Table 2 ANOVA of the orthogonal test
方差来源 Source of variance | III 型平方和 Type III sum of squares | 自由度 Degree of freedom | 均方 Mean square | F值 F value | 显著性 Significance |
---|---|---|---|---|---|
A | 144.296 | 2 | 72.148 | 20.292 | ** |
B | 199.407 | 2 | 99.704 | 28.042 | ** |
C | 64.296 | 2 | 32.148 | 9.042 | ** |
D | 18.074 | 2 | 9.037 | 2.542 | |
误差Error | 64.000 | 18 | 3.556 |
[1] | 吴永利. 孔雀石绿降解菌株的分离鉴定、降解特性及其降解机制研究[D]. 合肥: 安徽建筑大学, 2017. |
Wu YL. Isolation and identification of a strain degrading malachite green, the characteristics of degrading and the research of degrading mechanism[D]. Hefei: Anhui Jianzhu University, 2017. | |
[2] | 罗鑫, 覃育贤, 于存. 白囊耙齿菌产锰过氧化物酶条件优化及其对染料的脱色[J]. 菌物学报, 2018, 37(9):1233-1242. |
Luo X, Qin YX, Yu C. Optimization of Irpex lacteus culture conditions for manganese peroxidase production and dye decolorization ability of the enzyme[J]. Mycosystema, 2018, 37(9):1233-1242. | |
[3] | 邹玉春, 杜超, 杨志朋, 等. 白腐真菌处理甲基蓝染料的研究[J]. 江西科技师范大学学报, 2015(6):49-52. |
Zou YC, Du C, Yang ZP, et al. Treatment of methyl blue by white rot fungi[J]. J Jiangxi Sci Technol Norm Univ, 2015(6):49-52. | |
[4] | 马倩倩, 赵丽红, 陈威. 漆酶在环境保护中的应用研究进展[J]. 工业安全与环保, 2019, 45(8):100-103. |
Ma QQ, Zhao LH, Chen W. Application research progress of laccase in environmental protection[J]. Ind Saf Environ Prot, 2019, 45(8):100-103. | |
[5] |
Zofair SFF, Arsalan A, Khan MA, et al. Immobilization of laccase on Sepharose-linked antibody support for decolourization of phenol red[J]. Int J Biol Macromol, 2020, 161:78-87.
doi: 10.1016/j.ijbiomac.2020.06.009 URL |
[6] |
Rajput MS, Mishra BN. Biodegradation of pyridine raffinate using bacterial laccase isolated from garden soil[J]. Biocatal Agric Biotechnol, 2019, 17:32-35.
doi: 10.1016/j.bcab.2018.10.020 URL |
[7] | 刘建祥. 漆酶改性抑制植物纤维造纸性能衰变的机理研究[D]. 广州: 华南理工大学, 2017. |
Liu JX. The mechanism of inhibiting plantfiber performance decay by laccase modification[D]. Guangzhou: South China University of Technology, 2017. | |
[8] |
Champagne PP, Ramsay JA. Dye decolorization and detoxification by laccase immobilized on porous glass beads[J]. Bioresour Technol, 2010, 101(7):2230-2235.
doi: 10.1016/j.biortech.2009.11.066 URL |
[9] |
Fan XZ, Zhou Y, Xiao Y, et al. Cloning, expression and phylogenetic analysis of a divergent laccase multigene family in Auricularia auricula-judae[J]. Microbiol Res, 2014, 169(5/6):453-462.
doi: 10.1016/j.micres.2013.08.004 URL |
[10] | Góralczyk-Bińkowska A, Jasińska A, Długoński A, et al. Laccase activity of the ascomycete fungus Nectriella pironii and innovative strategies for its production on leaf litter of an urban park[J]. PLoS One, 2020, 15(4):e0231453. |
[11] |
Halaburgi VM, Sharma S, Sinha M, et al. Purification and characterization of a thermostable laccase from the ascomycetes Cladosporium cladosporioides and its applications[J]. Process Biochem, 2011, 46(5):1146-1152.
doi: 10.1016/j.procbio.2011.02.002 URL |
[12] | Elshafei AM, Hassan MM, Haroun BM, et al. Optimization of laccase production from Penicillium martensii NRC 345[J]. Adv Life Sci, 2012, 2(1):31-37. |
[13] |
Feng XY, Chen HY, Xue DS, et al. Enhancement of laccase activity by marine-derived deuteromycete Pestalotiopsis sp. J63 with agricultural residues and inducers[J]. Chin J Chem Eng, 2013, 21(10):1182-1189.
doi: 10.1016/S1004-9541(13)60567-4 URL |
[14] | 徐春燕, 贾晨波, 郭洋, 等. 干旱土壤中产漆酶真菌的分离、鉴定与生长特性分析[J]. 基因组学与应用生物学, 2021, 40(3):1163-1170. |
Xu CY, Jia CB, Guo Y, et al. Isolation, identification and growth characteristics analysis of a laccase producing fungus from the arid soil[J]. Genom Appl Biol, 2021, 40(3):1163-1170. | |
[15] | 徐春燕, 高迎荣, 王晓瑜, 等. 胶质射脉革菌漆酶的复合诱导及其脱色性能[J]. 生物技术, 2015, 25(2):196-200, 195. |
Xu CY, Gao YR, Wang XY, et al. Effect of co-induction on laccase production by Phlebia tremellosa and its potential in dye decolorization[J]. Biotechnology, 2015, 25(2):196-200, 195. | |
[16] |
Teng C, Wu SM, Gong GY. Bio-removal of phenanthrene, 9-fluorenone and anthracene-9, 10-Dione by laccase from Aspergillus niger in waste cooking oils[J]. Food Control, 2019, 105:219-225.
doi: 10.1016/j.foodcont.2019.06.015 URL |
[17] |
Wang HY, Guo SY, Huang MR, et al. Ascomycota has a faster evolutionary rate and higher species diversity than Basidiomycota[J]. Sci China Life Sci, 2010, 53(10):1163-1169.
doi: 10.1007/s11427-010-4063-8 URL |
[18] | 王怡琴, 谢学辉, 郑秀林, 等. 激活剂促进微生物降解偶氮、蒽醌和三苯甲烷类染料研究进展[J]. 化工进展, 2019, 38(6):2968-2976. |
Wang YQ, Xie XH, Zheng XL, et al. Advances in research on activators promoting microbial degradation of dyes[J]. Chem Ind Eng Prog, 2019, 38(6):2968-2976. | |
[19] |
Aiswarya C, Nayana P, Nambisan P. Data of optimization of laccase production by Marasmiellus palmivorus LA1 under solid state fermentation using one factor at a time method[J]. Data Brief, 2018, 17:1276-1282.
doi: 10.1016/j.dib.2018.02.011 pmid: 29845098 |
[20] |
Rosales E, Rodríguez Couto S, Sanromán MA. Increased laccase production by Trametes hirsuta grown on ground orange peelings[J]. Enzyme Microb Technol, 2007, 40(5):1286-1290.
doi: 10.1016/j.enzmictec.2006.09.015 URL |
[21] |
Rodrigues EM, Karp SG, Malucelli LC, et al. Evaluation of laccase production by Ganoderma lucidum in submerged and solid-state fermentation using different inducers[J]. J Basic Microbiol, 2019, 59(8):784-791.
doi: 10.1002/jobm.201900084 URL |
[22] | 祝嫦巍, 鲍广稳, 黄顺. 利用酵母粉和硫酸铜提高杏鲍菇漆酶活性[J]. 中国食品学报, 2017, 17(6):110-116. |
Zhu CW, Bao GW, Huang S. Enhancing laccase production in Pleurotus eryngii induced by yeast extract and copper[J]. J Chin Inst Food Sci Technol, 2017, 17(6):110-116. | |
[23] | 罗青, 冯宏昌, 孙淑静. 不同条件对香灰菌菌丝生长及黑色素产生的影响[J]. 北方园艺, 2019(16):130-135. |
Luo Q, Feng HC, Sun SJ. Effect of different conditions on mycelial growth and melanin formation of Hypoxylon sp[J]. North Hortic, 2019(16):130-135. | |
[24] |
Alvarado-Ramírez L, Rostro-Alanis M, Rodríguez-Rodríguez J, et al. Exploring current tendencies in techniques and materials for immobilization of laccases-A review[J]. Int J Biol Macromol, 2021, 181:683-696.
doi: 10.1016/j.ijbiomac.2021.03.175 pmid: 33798577 |
[1] | 黄海辰, 李晓敏, 薛帆正, 吴小平, 张君丽, 傅俊生. 一株高产黑色素香灰菌菌株的鉴定、筛选及培养条件的优化[J]. 生物技术通报, 2023, 39(1): 284-294. |
[2] | 王雨辰, 丁尊丹, 关菲菲, 田健, 刘国安, 伍宁丰. 耐热漆酶ba4基因鉴定与酶学性质分析[J]. 生物技术通报, 2022, 38(8): 252-260. |
[3] | 毛国涛, 王杰, 王凯, 王方园, 曹乐言, 张宏森, 宋安东. 水生栖热菌漆酶TaLac的性质分析及对孔雀石绿染料的脱除[J]. 生物技术通报, 2022, 38(4): 261-268. |
[4] | 田嘉慧, 封佳丽, 卢俊桦, 毛林静, 胡著然, 王莹, 楚杰. 一色齿毛菌漆酶LacT-1的分离纯化与性质研究[J]. 生物技术通报, 2021, 37(8): 186-194. |
[5] | 陈明雨, 倪烜, 司友斌, 孙凯. 固定化真菌漆酶在环境有机污染修复中的应用研究进展[J]. 生物技术通报, 2021, 37(6): 244-258. |
[6] | 熊雪, 李鹏, 张贵合, 向准, 陶文广, 周光燕, 和耀威. 不同栽培基质诱导对香菇液体发酵产漆酶活性的影响[J]. 生物技术通报, 2021, 37(12): 50-59. |
[7] | 王豪, 唐禄鑫, 马鸿飞, 钱坤, 司静, 崔宝凯. 东方栓孔菌漆酶的固定化及其对不同类型染料的脱色作用[J]. 生物技术通报, 2021, 37(11): 142-157. |
[8] | 刘谦谦, 唐梓静, 李天真, 李宝库, 朱蕾蕾. 醌氧化还原酶的异源表达及其在偶氮染料脱色方面的研究[J]. 生物技术通报, 2021, 37(10): 128-136. |
[9] | 陈慧玲, 张青云, 孙凯. 漆酶介导生物体内酚类氧化偶联的基本原理及其在绿色合成中的应用[J]. 生物技术通报, 2020, 36(5): 193-204. |
[10] | 孙凯, 陈正杰, 汪登洋, 束茹玉, 吴吉, 韦凡. 固定化漆酶去除废水中双酚A[J]. 生物技术通报, 2020, 36(12): 188-198. |
[11] | 吴怡, 马鸿飞, 曹永佳, 司静, 崔宝凯. 白腐真菌落叶松锈迷孔菌产漆酶液体培养基的优化及其对染料的脱色作用[J]. 生物技术通报, 2020, 36(1): 45-59. |
[12] | 吴怡, 马鸿飞, 曹永佳, 司静, 崔宝凯. 真菌漆酶的性质、生产、纯化及固定化研究进展[J]. 生物技术通报, 2019, 35(9): 1-10. |
[13] | 胡楚霄, 雷善钰, 秦艳平, 赵奕锦, 向泉桔. 蒽对3株灵芝菌株漆酶活性及其转录表达水平的影响[J]. 生物技术通报, 2019, 35(9): 112-117. |
[14] | 李丽, 严月根, 吴华明. 解淀粉芽孢杆菌M1摇瓶发酵条件优化及脱氮性能评价[J]. 生物技术通报, 2019, 35(5): 102-108. |
[15] | 韩姝然, 卢磊. 交联酶聚集体的制备及在漆酶固定化中的应用进展[J]. 生物技术通报, 2019, 35(3): 164-170. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||