生物技术通报 ›› 2022, Vol. 38 ›› Issue (8): 167-178.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1386
江美彦(), 周杨, 刘仁浪, 姚菲, 杨云舒, 侯凯, 冯冬菊, 吴卫()
收稿日期:
2021-11-05
出版日期:
2022-08-26
发布日期:
2022-09-14
作者简介:
江美彦,女,硕士研究生,研究方向:药用植物微生物;E-mail: 基金资助:
JIANG Mei-yan(), ZHOU Yang, LIU Ren-lang, YAO Fei, YANG Yun-shu, HOU Kai, FENG Dong-ju, WU Wei()
Received:
2021-11-05
Published:
2022-08-26
Online:
2022-09-14
摘要:
发掘与利用白芷根际细菌促生潜力,为白芷高产优质提供新途径。使用功能性培养基分离筛选白芷根际中具有较强促生潜力的植物根际促生菌(plant growth promoting rhizobacteria,PGPR),通过形态特征及16S rDNA序列对菌株进行综合鉴定,采用盆栽试验验证所筛PGPR菌株对BZA001和BZB003两个白芷品种(系)的促生效果。分离出白芷根际细菌共77株,23株具有固氮能力,20株具有溶解无机磷能力,4株具有产铁载体能力,7株具有产IAA能力,所有菌株均无解钾能力;31株促生潜力较强的PGPR多属于芽孢杆菌属(Bacillus),占64.52%;所有菌株以Klebsiella属XI-1菌株综合促生能力最强,在不施肥条件下该菌株对BZA001和BZB003两个白芷品种(系)的生长及产量均有显著促进作用,增产率分别为31.85%和64.59%,在一定程度上缓解了缺肥对白芷生长的限制。白芷根际促生菌中芽孢杆菌数量最多;但所筛克雷伯氏菌株XI-1综合促生潜力最强,可显著提高白芷产量,具有发展为白芷微生物菌剂的潜质。
江美彦, 周杨, 刘仁浪, 姚菲, 杨云舒, 侯凯, 冯冬菊, 吴卫. 白芷根际促生菌的筛选及其促生效果研究[J]. 生物技术通报, 2022, 38(8): 167-178.
JIANG Mei-yan, ZHOU Yang, LIU Ren-lang, YAO Fei, YANG Yun-shu, HOU Kai, FENG Dong-ju, WU Wei. Screening and Plant Growth Promoting of Grow-promoting Bacteria in Rhizosphere Bacteria of Angelica dahurica var. formosana[J]. Biotechnology Bulletin, 2022, 38(8): 167-178.
菌株编号 Bacterial strain No. | 固氮能力 Nitrogen-fixing ability | 菌株编号 Bacterial strain No. | 固氮能力 Nitrogen-fixing ability | 菌株编号 Bacterial strain No. | 固氮能力 Nitrogen-fixing ability |
---|---|---|---|---|---|
XA-4 | + | XD-6 | + | XD-25 | + |
XB-8 | ++ | XD-9 | ++ | XD-27 | ++ |
XB-9 | ++ | XD-10 | ++ | XD-30 | + |
XB-11 | ++ | XD-13 | ++ | XD-34 | + |
XB-13 | ++ | XD-17 | + | XD-36 | + |
XB-14 | ++ | XD-20 | + | XI-1 | ++ |
XB-15 | ++ | XD-23 | ++ | XI-3 | ++ |
XD-2 | + | XD-24 | + |
表1 白芷根际菌株固氮活性筛选
Table 1 Screening of nitrogen-fixing activity of strains around the rhizosphere of A. dahurica var. formosana
菌株编号 Bacterial strain No. | 固氮能力 Nitrogen-fixing ability | 菌株编号 Bacterial strain No. | 固氮能力 Nitrogen-fixing ability | 菌株编号 Bacterial strain No. | 固氮能力 Nitrogen-fixing ability |
---|---|---|---|---|---|
XA-4 | + | XD-6 | + | XD-25 | + |
XB-8 | ++ | XD-9 | ++ | XD-27 | ++ |
XB-9 | ++ | XD-10 | ++ | XD-30 | + |
XB-11 | ++ | XD-13 | ++ | XD-34 | + |
XB-13 | ++ | XD-17 | + | XD-36 | + |
XB-14 | ++ | XD-20 | + | XI-1 | ++ |
XB-15 | ++ | XD-23 | ++ | XI-3 | ++ |
XD-2 | + | XD-24 | + |
图1 部分白芷根际细菌固氮效果图 左:长势一般;右:长势良好
Fig. 1 Nitrogen-fixing effect of rhizosphere bacteria of A. dahurica var. formosana Left:General growth. Right:Good growth
图2 白芷根际细菌溶解无机磷活性测定 不同字母代表差异显著(P<0.05),下同
Fig. 2 Determination of dissolving inorganic phosphorus activities of bacteria around the rhizosphere of A. dahurica var. formosana Different letters refer to significant differences(P<0.05),the same below
菌株Bacterial strain | 颜色Color | 形态Morphology | 隆起度Uplift | 边缘Edge | 光泽Glossy | 革兰氏染色Gram staining |
---|---|---|---|---|---|---|
XA-4 | 乳白色 | 圆形 | 扁平 | 裂叶状 | 无 | + |
XA-6 | 乳白色 | 点状 | 拱起 | 完整 | 有 | + |
XB-8 | 乳白色 | 圆形 | 拱起 | 波状 | 有 | - |
XB-9 | 乳白色 | 圆形 | 扁平 | 波状 | 有 | - |
XB-11 | 透明 | 圆形 | 扁平 | 波状 | 有 | - |
XB-13 | 乳白色 | 圆形 | 扁平 | 波状 | 有 | - |
XB-14 | 乳白色 | 圆形 | 扁平 | 波状 | 有 | - |
XB-15 | 白色 | 圆形 | 扁平 | 波状 | 有 | + |
XC-1 | 白色 | 圆形 | 扁平 | 波状 | 有 | + |
XC-2 | 白色 | 圆形 | 拱起 | 完整 | 无 | + |
XD-2 | 灰白色 | 圆形 | 扁平 | 波状 | 有 | + |
XD-3 | 白色 | 圆形 | 脐突状 | 裂叶状 | 无 | + |
XD-6 | 白色 | 圆形 | 拱起 | 裂叶状 | 无 | + |
XD-9 | 乳白色 | 圆形 | 扁平 | 波状 | 有 | + |
XD-10 | 灰白色 | 圆形 | 扁平 | 完整 | 有 | + |
XD-11 | 白色 | 圆形 | 拱起 | 完整 | 有 | + |
XD-13 | 灰白色 | 圆形 | 扁平 | 波状 | 有 | + |
XD-15 | 白色 | 圆形 | 拱起 | 裂叶状 | 无 | + |
XD-17 | 灰白色 | 圆形 | 扁平 | 完整 | 有 | + |
XD-20 | 白色 | 圆形 | 拱起 | 波状 | 有 | + |
XD-23 | 白色 | 圆形 | 脐凹状 | 波状 | 有 | + |
XD-24 | 白色 | 圆形 | 扁平 | 裂叶状 | 无 | + |
XD-25 | 灰白色 | 圆形 | 脐凹状 | 波状 | 有 | + |
XD-27 | 白色 | 圆形 | 脐凹状 | 完整 | 有 | + |
XD-29 | 乳白色 | 不规则 | 拱起 | 裂叶状 | 有 | + |
XD-30 | 灰白色 | 圆形 | 拱起 | 波状 | 有 | + |
XD-34 | 白色 | 圆形 | 脐凹状 | 波状 | 有 | + |
XD-36 | 灰白色 | 圆形 | 脐凹状 | 波状 | 有 | + |
XI-1 | 灰白色 | 圆形 | 拱起 | 波状 | 有 | - |
XI-3 | 灰白色 | 圆形 | 拱起 | 波状 | 有 | - |
XI-7 | 黄白色 | 圆形 | 扁平 | 波状 | 有 | + |
表2 白芷根际细菌的形态和革兰氏染色特征
Table 2 Morphology and Gram staining characteristics of bacteria around the rhizosphere of A. dahurica var. formosana
菌株Bacterial strain | 颜色Color | 形态Morphology | 隆起度Uplift | 边缘Edge | 光泽Glossy | 革兰氏染色Gram staining |
---|---|---|---|---|---|---|
XA-4 | 乳白色 | 圆形 | 扁平 | 裂叶状 | 无 | + |
XA-6 | 乳白色 | 点状 | 拱起 | 完整 | 有 | + |
XB-8 | 乳白色 | 圆形 | 拱起 | 波状 | 有 | - |
XB-9 | 乳白色 | 圆形 | 扁平 | 波状 | 有 | - |
XB-11 | 透明 | 圆形 | 扁平 | 波状 | 有 | - |
XB-13 | 乳白色 | 圆形 | 扁平 | 波状 | 有 | - |
XB-14 | 乳白色 | 圆形 | 扁平 | 波状 | 有 | - |
XB-15 | 白色 | 圆形 | 扁平 | 波状 | 有 | + |
XC-1 | 白色 | 圆形 | 扁平 | 波状 | 有 | + |
XC-2 | 白色 | 圆形 | 拱起 | 完整 | 无 | + |
XD-2 | 灰白色 | 圆形 | 扁平 | 波状 | 有 | + |
XD-3 | 白色 | 圆形 | 脐突状 | 裂叶状 | 无 | + |
XD-6 | 白色 | 圆形 | 拱起 | 裂叶状 | 无 | + |
XD-9 | 乳白色 | 圆形 | 扁平 | 波状 | 有 | + |
XD-10 | 灰白色 | 圆形 | 扁平 | 完整 | 有 | + |
XD-11 | 白色 | 圆形 | 拱起 | 完整 | 有 | + |
XD-13 | 灰白色 | 圆形 | 扁平 | 波状 | 有 | + |
XD-15 | 白色 | 圆形 | 拱起 | 裂叶状 | 无 | + |
XD-17 | 灰白色 | 圆形 | 扁平 | 完整 | 有 | + |
XD-20 | 白色 | 圆形 | 拱起 | 波状 | 有 | + |
XD-23 | 白色 | 圆形 | 脐凹状 | 波状 | 有 | + |
XD-24 | 白色 | 圆形 | 扁平 | 裂叶状 | 无 | + |
XD-25 | 灰白色 | 圆形 | 脐凹状 | 波状 | 有 | + |
XD-27 | 白色 | 圆形 | 脐凹状 | 完整 | 有 | + |
XD-29 | 乳白色 | 不规则 | 拱起 | 裂叶状 | 有 | + |
XD-30 | 灰白色 | 圆形 | 拱起 | 波状 | 有 | + |
XD-34 | 白色 | 圆形 | 脐凹状 | 波状 | 有 | + |
XD-36 | 灰白色 | 圆形 | 脐凹状 | 波状 | 有 | + |
XI-1 | 灰白色 | 圆形 | 拱起 | 波状 | 有 | - |
XI-3 | 灰白色 | 圆形 | 拱起 | 波状 | 有 | - |
XI-7 | 黄白色 | 圆形 | 扁平 | 波状 | 有 | + |
菌株Bacterial strain | 对比信息(登陆号)Comparison information(Accession) | 相似性Similarity /% | 系统类别 System class |
---|---|---|---|
XA-4 | Bacillus subtilis strain ge25(MW186208.1) | 99.93 | Bacillus |
XA-6 | Paenibacillus alvei isolate Paenibacillus B-LR1(LS992241.1) | 99.93 | Paenibacillus |
XB-8 | Enterobacter cloacae strain NaCd1(KT336353.1) | 99.79 | Enterobacter |
XB-9 | Enterobacter cloacae strain NaCd1(KT336353.1) | 99.79 | Enterobacter |
XB-11 | Pseudomonas lalkuanensis strain PE08(CP043311.1) | 99.93 | Pseudomonas |
XB-13 | Enterobacter cloacae strain TPL2(KJ470636.1) | 99.79 | Enterobacter |
XB-14 | Enterobacter cloacae strain TPL2(KJ470636.1) | 99.79 | Enterobacter |
XB-15 | Pseudomonas lalkuanensis strain PE08(CP043311.1) | 99.72 | Pseudomonas |
XC-1 | Paenibacillus dendritiformis strain PV3-16(MH472941.1) | 99.65 | Paenibacillus |
XC-2 | Bacillus subtilis strain kp6(MH200633.1) | 99.65 | Bacillus |
XD-2 | Bacillus megaterium strain S21(MT925631.1) | 100 | Bacillus |
XD-3 | Bacillus subtilis strain ge25(MW186208.1) | 99.86 | Bacillus |
XD-6 | Bacillus subtilis strain ge25(MW186208.1) | 99.58 | Bacillus |
XD-9 | Bacillus aryabhattai strain ZJJH-2(MT605509.1) | 99.79 | Bacillus |
XD-10 | Bacillus megaterium strain HX-2(MH930825.1) | 99.65 | Bacillus |
XD-11 | Fictibacillus barbaricus strain N7(KJ831620.1) | 100 | Fictibacillus |
XD-13 | Bacillus megaterium strain HX-2(MH930825.1) | 99.72 | Bacillus |
XD-15 | Bacillus subtilis strain T0-8(MN330082.1) | 99.86 | Bacillus |
XD-17 | Bacillus megaterium strain HX-2(MH930825.1) | 99.79 | Bacillus |
XD-20 | Bacillus aryabhattai strain fwz34(KF208484.1) | 99.86 | Bacillus |
XD-23 | Bacillus aryabhattai strain ZDX(MN473280.1) | 99.86 | Bacillus |
XD-24 | Bacillus subtilis strain MJP1(EU024822.1) | 99.86 | Bacillus |
XD-25 | Bacillus megaterium strain S1(MT453994.1) | 100 | Bacillus |
XD-27 | Priestia aryabhattai strain DT(MW673658.1) | 99.93 | Bacillus |
XD-29 | Bacillus pseudomycoides strain L59(KU179350.1) | 99.79 | Bacillus |
XD-30 | Bacillus megaterium strain HX-2(MH930825.1) | 99.79 | Bacillus |
XD-34 | Bacillus aryabhattai strain QH16-25(MT078622.1) | 99.79 | Bacillus |
XD-36 | Bacillus megaterium strain CS9(MG430216.1) | 99.72 | Bacillus |
XI-1 | Klebsiella grimontii strain RHBSTW-00853(CP056150.1) | 99.79 | Klebsiella |
XI-3 | Klebsiella grimontii strain RHBSTW-00854(CP056150.1) | 99.64 | Klebsiella |
XI-7 | Bacillus licheniformis strain HN-1(MH373532.1) | 99.93 | Bacillus |
表3 菌株的16S rDNA序列同源性分析
Table 3 Homology analysis of 16S rDNA sequences of all strains
菌株Bacterial strain | 对比信息(登陆号)Comparison information(Accession) | 相似性Similarity /% | 系统类别 System class |
---|---|---|---|
XA-4 | Bacillus subtilis strain ge25(MW186208.1) | 99.93 | Bacillus |
XA-6 | Paenibacillus alvei isolate Paenibacillus B-LR1(LS992241.1) | 99.93 | Paenibacillus |
XB-8 | Enterobacter cloacae strain NaCd1(KT336353.1) | 99.79 | Enterobacter |
XB-9 | Enterobacter cloacae strain NaCd1(KT336353.1) | 99.79 | Enterobacter |
XB-11 | Pseudomonas lalkuanensis strain PE08(CP043311.1) | 99.93 | Pseudomonas |
XB-13 | Enterobacter cloacae strain TPL2(KJ470636.1) | 99.79 | Enterobacter |
XB-14 | Enterobacter cloacae strain TPL2(KJ470636.1) | 99.79 | Enterobacter |
XB-15 | Pseudomonas lalkuanensis strain PE08(CP043311.1) | 99.72 | Pseudomonas |
XC-1 | Paenibacillus dendritiformis strain PV3-16(MH472941.1) | 99.65 | Paenibacillus |
XC-2 | Bacillus subtilis strain kp6(MH200633.1) | 99.65 | Bacillus |
XD-2 | Bacillus megaterium strain S21(MT925631.1) | 100 | Bacillus |
XD-3 | Bacillus subtilis strain ge25(MW186208.1) | 99.86 | Bacillus |
XD-6 | Bacillus subtilis strain ge25(MW186208.1) | 99.58 | Bacillus |
XD-9 | Bacillus aryabhattai strain ZJJH-2(MT605509.1) | 99.79 | Bacillus |
XD-10 | Bacillus megaterium strain HX-2(MH930825.1) | 99.65 | Bacillus |
XD-11 | Fictibacillus barbaricus strain N7(KJ831620.1) | 100 | Fictibacillus |
XD-13 | Bacillus megaterium strain HX-2(MH930825.1) | 99.72 | Bacillus |
XD-15 | Bacillus subtilis strain T0-8(MN330082.1) | 99.86 | Bacillus |
XD-17 | Bacillus megaterium strain HX-2(MH930825.1) | 99.79 | Bacillus |
XD-20 | Bacillus aryabhattai strain fwz34(KF208484.1) | 99.86 | Bacillus |
XD-23 | Bacillus aryabhattai strain ZDX(MN473280.1) | 99.86 | Bacillus |
XD-24 | Bacillus subtilis strain MJP1(EU024822.1) | 99.86 | Bacillus |
XD-25 | Bacillus megaterium strain S1(MT453994.1) | 100 | Bacillus |
XD-27 | Priestia aryabhattai strain DT(MW673658.1) | 99.93 | Bacillus |
XD-29 | Bacillus pseudomycoides strain L59(KU179350.1) | 99.79 | Bacillus |
XD-30 | Bacillus megaterium strain HX-2(MH930825.1) | 99.79 | Bacillus |
XD-34 | Bacillus aryabhattai strain QH16-25(MT078622.1) | 99.79 | Bacillus |
XD-36 | Bacillus megaterium strain CS9(MG430216.1) | 99.72 | Bacillus |
XI-1 | Klebsiella grimontii strain RHBSTW-00853(CP056150.1) | 99.79 | Klebsiella |
XI-3 | Klebsiella grimontii strain RHBSTW-00854(CP056150.1) | 99.64 | Klebsiella |
XI-7 | Bacillus licheniformis strain HN-1(MH373532.1) | 99.93 | Bacillus |
[1] | 王梦月, 贾敏如, 马逾英, 等. 白芷中四种线型呋喃香豆素类成分药理作用研究[J]. 天然产物研究与开发, 2010, 22(3):485-489. |
Wang MY, Jia MR, Ma YY, et al. Pharmacological effect of four linear furocoumarins in Radix angelicae dahuricae[J]. Nat Prod Res Dev, 2010, 22(3):485-489. | |
[2] | 李晓强, 谭余庆, 李慧杰, 等. 欧前胡素药理作用及机制研究进展[J]. 中国实验方剂学杂志, 2020, 26(18):196-201. |
Li XQ, Tan YQ, Li HJ, et al. Research progress on pharmacological effect and mechanism of imperatorin[J]. Chin J Exp Tradit Med Formulae, 2020, 26(18):196-201. | |
[3] | 李宏宇, 戴跃进, 张海波, 等. 不同商品白芷的药理研究[J]. 中国中药杂志, 1991, 16(9):560-562, 576. |
Li HY, Dai YJ, Zhang HB, et al. Pharmacological studies on the Chinese drug Radix angelicae dahuricae[J]. China J Chin Mater Med, 1991, 16(9):560-562, 576. | |
[4] | 赵东岳, 郝庆秀, 康利平, 等. 伞形科药用植物早期抽薹研究进展[J]. 中国中药杂志, 2016, 41(1):20-23. |
Zhao DY, Hao QX, Kang LP, et al. Advance in studying early bolting of Umbelliferae medicinal plant[J]. China J Chin Mater Med, 2016, 41(1):20-23. | |
[5] | 郑利, 邓聪, 冯亮, 等. 遂宁川白芷产业发展现状与分析[J]. 农村经济与科技, 2020, 31(20):181-182. |
Zheng L, Deng C, Feng L, et al. Development status and analysis of Angelica dahurica industry in Suining[J]. Rural Econ Sci Technol, 2020, 31(20):181-182. | |
[6] | 徐博, 吴翠, 徐靓, 等. 白芷药材采后各环节影响质量的因素调研与对策建议[J]. 中国实验方剂学杂志, 2021, 27(3):149-155. |
Xu B, Wu C, Xu L, et al. Investigation and suggestions on factors affecting quality of Angelicae dahuricae radix(Baizhi)in some post-harvest processes[J]. Chin J Exp Tradit Med Formulae, 2021, 27(3):149-155. | |
[7] | 张亚琴, 雷飞益, 陈雨, 等. 锌硼钼配施对川白芷药材农艺性状与产量的影响[J]. 植物营养与肥料学报, 2018, 24(3):769-778. |
Zhang YQ, Lei FY, Chen Y, et al. Effect of combined fertilization of zinc, boron and molybdenum on agronomic traits and yield of Angelica dahurica[J]. J Plant Nutr Fertil, 2018, 24(3):769-778. | |
[8] |
张亚琴, 杨正明, 石峰, 等. 叶面喷施微肥对川白芷主要有效成分含量的影响[J]. 应用生态学报, 2017, 28(11):3505-3514.
doi: 10.13287/j.1001-9332.201711.001 |
Zhang YQ, Yang ZM, Shi F, et al. Effects of micro-fertilizers foliar spray on the content of main effective components of Angelica dahurica[J]. Chin J Appl Ecol, 2017, 28(11):3505-3514.
doi: 10.13287/j.1001-9332.201711.001 |
|
[9] |
Basu A, Prasad P, Das SN, et al. Plant growth promoting rhizobacteria(PGPR)as green bioinoculants:recent developments, constraints, and prospects[J]. Sustainability, 2021, 13(3):1140.
doi: 10.3390/su13031140 URL |
[10] | AlAli HA, Khalifa A, Almalki M. Plant growth-promoting rhizobacteria from Ocimum basilicum improve growth of Phaseolus vulgaris and Abelmoschus esculentus[J]. S Afr N J Bot, 2021, 139:200-209. |
[11] | 刘东昀, 袁永强, 仇荣亮, 等. 根际促生菌Enterobacter sp. EG16对小白菜生长及硒吸收的影响[J]. 农业环境科学学报, 2021, 40(7):1420-1431. |
Liu DY, Yuan YQ, Qiu RL, et al. Effect of plant growth promoting rhizobacteria Enterobacter sp. EG16 on the growth and Selenium uptake of Brassica chinensis L[J]. J Agro Environ Sci, 2021, 40(7):1420-1431. | |
[12] |
潘晶, 黄翠华, 彭飞, 等. 植物根际促生菌诱导植物耐盐促生作用机制[J]. 生物技术通报, 2020, 36(9):75-87.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0511 |
Pan J, Huang CH, Peng F, et al. Mechanisms of salt tolerance and growth promotion in plant induced by plant growth-promoting rhizobacteria[J]. Biotechnol Bull, 2020, 36(9):75-87. | |
[13] | 刘方春, 邢尚军, 马海林, 等. 干旱生境中接种根际促生细菌对核桃根际土壤生物学特征的影响[J]. 应用生态学报, 2014, 25(5):1475-1482. |
Liu FC, Xing SJ, Ma HL, et al. Effects of inoculating plant growth-promoting rhizobacteria on the biological characteristics of walnut(Juglans regia)rhizosphere soil under drought condition[J]. Chin J Appl Ecol, 2014, 25(5):1475-1482. | |
[14] |
Keswani C, Prakash O, Bharti N, et al. re-addressing the biosafety issues of plant growth promoting rhizobacteria[J]. Sci Total Environ, 2019, 690:841-852.
doi: 10.1016/j.scitotenv.2019.07.046 |
[15] | 蒲盛才, 张兴翠, 丁德蓉, 等. 氮、磷、钾施用量及其配比对白芷产量的影响[J]. 中国生态农业学报, 2006, 14(1):136-138. |
Pu SC, Zhang XC, Ding DR, et al. The influence of the application amount of N, P, K and its provision on the yield of Angelical dahurica var. formosasa[J]. Chin J Eco Agric, 2006, 14(1):136-138. | |
[16] | 蒲盛才, 申明亮, 邓才富, 等. 氮磷钾施用量及其配比对白芷早期抽苔的影响[J]. 西南大学学报:自然科学版, 2011, 33(11):168-172. |
Pu SC, Shen ML, Deng CF, et al. Effects of N, P and K rates and their proportions on curtail earlier bolting of Angelica dahurica var. formosana[J]. J Southwest Univ Nat Sci Ed, 2011, 33(11):168-172. | |
[17] | 翟娟园, 吴卫, 廖凯, 等. 土壤环境对川白芷产量和品质的影响研究[J]. 中草药, 2010, 41(6):984-988. |
Zhai JY, Wu W, Liao K, et al. Effects of soil factors on yield and quality of Angelica dahurica var. Formosana[J]. Chin Tradit Herb Drugs, 2010, 41(6):984-988. | |
[18] |
杨茉, 高婷, 李滟璟, 等. 辣椒根际促生菌的分离筛选及抗病促生特性研究[J]. 生物技术通报, 2020, 36(5):104-109.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0840 |
Yang M, Gao T, Li YJ, et al. Isolation and screening of plant growth-promoting rhizobacteria in pepper and their disease-resistant growth-promoting characteristics[J]. Biotechnol Bull, 2020, 36(5):104-109. | |
[19] | 王明欢, 张小娜, 林冰, 等. 中药药渣中固氮菌、解磷菌、解钾菌的筛选[J]. 中成药, 2020, 42(2):531-533. |
Wang MH, Zhang XN, Lin B, et al. Screening of nitrogen-fixing bacteria, phosphate-solubilizing bacteria and potassium-solubilizing bacteria from traditional Chinese medicine residues[J]. Chin Tradit Pat Med, 2020, 42(2):531-533. | |
[20] | 程诚. 溶铁细菌生物学特性及其溶铁效果的研究[D]. 南京: 南京农业大学, 2014. |
Cheng C. Biological characterizations of bacterial strains with the ability of biological iron removal and their effect on iron dissolution[D]. Nanjing: Nanjing Agricultural University, 2014. | |
[21] |
刘晔, 刘晓丹, 张林利, 等. 花生根际多功能高效促生菌的筛选鉴定及其效应研究[J]. 生物技术通报, 2017, 33(10):125-134.
doi: 10.13560/j.cnki.biotech.bull.1985.2017-0233 |
Liu Y, Liu XD, Zhang LL, et al. Screening, identification of multifunctional peanut root-promoting rhizobacteria and its promoting effects on peanuts(Arachis hypogaea L. )[J]. Biotechnol Bull, 2017, 33(10):125-134. | |
[22] | 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001. |
Dong XZ, Cai MY. Manual of common system identification[M]. Beijing: Science Press, 2001. | |
[23] | 国家药典委员会. 中华人民共和国药典[M]. 四部. 北京: 中国医药科技出版社, 2020. |
Chinese Pharmacopoeia Commission. The Chinese pharmacopoeia[M]. part 4. Beijing: China Medical And Technology Press, 2020. | |
[24] | 冉聪. 川芎内生细菌的分离鉴定及其促生研究[D]. 雅安: 四川农业大学, 2019. |
Ran C. Study on the growth-promoting and taxonomy of endophytic bacteria isolated from Ligusticum Chuanxiong hort[D]. Yaan: Sichuan Agricultural University, 2019. | |
[25] | 黄钦, 尉广飞, 常瑞雪, 等. 微生物肥料发展现状及其在中药材种植中的应用[J]. 中国现代中药, 2022, 24(1): 153-159. |
Huang Q, Yu GF, Chang RX, et al. Developmental situation of microbial feitilizer and its application in Chinese medicinal herbs cultivation[J]. Mod Chin Med, 2022, 24(1): 153-159. | |
[26] | 张万通, 李超群, 于露, 等. 植物根际促生菌菌肥在高寒草甸替代化肥效应研究[J]. 草地学报, 2021, 29(7):1423-1429. |
Zhang WT, Li CQ, Yu L, et al. Study on the effect of the plant growth-promoting rhizobacteria bio-fertilizer instead of chemical fertilizer in alpine meadow[J]. Acta Agrestia Sin, 2021, 29(7):1423-1429. | |
[27] |
Scagliola M, Valentinuzzi F, Mimmo T, et al. Bioinoculants as promising complement of chemical fertilizers for a more sustainable agricultural practice[J]. Front Sustain Food Syst, 2021, 4:622169.
doi: 10.3389/fsufs.2020.622169 URL |
[28] |
Pérez-Rodriguez MM, Piccoli P, Anzuay MS, et al. Native bacteria isolated from roots and rhizosphere of Solanum lycopersicum L. increase tomato seedling growth under a reduced fertilization regime[J]. Sci Rep, 2020, 10(1):15642.
doi: 10.1038/s41598-020-72507-4 pmid: 32973225 |
[29] | 荣良燕, 姚拓, 黄高宝, 等. 植物根际优良促生菌(PGPR)筛选及其接种剂部分替代化肥对玉米生长影响研究[J]. 干旱地区农业研究, 2013, 31(2):59-65. |
Rong LY, Yao T, Huang GB, et al. Screening of plant growth promoting rhizobacteria strains and effects of inoculant on growth of maize by replacing part of chemical fertilizers[J]. Agric Res Arid Areas, 2013, 31(2):59-65. | |
[30] | 李永斌, 李云龙, 关国华, 等. 植物根际促生菌的筛选、鉴定及其对小麦的减肥增产效果[J]. 农业生物技术学报, 2020, 28(8):1471-1476. |
Li YB, Li YL, Guan GH, et al. Screening, identification of plant growth promoting rhizobacteria and its effect on reducing fertilization while increasing efficiency in wheat(Triticum aestivum)[J]. J Agric Biotechnol, 2020, 28(8):1471-1476. | |
[31] |
Vasseur-Coronado M, du Boulois HD, Pertot I, et al. Selection of plant growth promoting rhizobacteria sharing suitable features to be commercially developed as biostimulant products[J]. Microbiol Res, 2021, 245:126672.
doi: 10.1016/j.micres.2020.126672 URL |
[32] |
雷海英, 赵青松, 杨潇, 等. 苦参根际高效固氮菌的分离及复合菌肥对幼苗的促生效应[J]. 生物技术通报, 2020, 36(9):157-166.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0379 |
Lei HY, Zhao QS, Yang X, et al. Isolation of efficient nitrogen-fixing bacteria from the rhizosphere of Sophora flavescens and the growth-promoting effect of compound microbial fertilizer on seedlings[J]. Biotechnol Bull, 2020, 36(9):157-166. | |
[33] | 王丹丹, 殷志秋, 孙丽, 等. 缓解花生连作障碍的根际促生菌分离及功能鉴定[J]. 微生物学报, 2021, 61(12):4086-4096. |
Wang DD, Yin ZQ, Sun L, et al. Isolation and identification of peanut plant-growth promoting rhizobacteria with the potential to alleviate continuous cropping obstacle[J]. Acta Microbiol Sin, 2021, 61(12):4086-4096. | |
[34] | 路晓培. 植物根际促生细菌的分离鉴定及对马铃薯快繁苗生长的影响[D]. 呼和浩特: 内蒙古农业大学, 2020. |
Lu XP. Isolation and identification of growth-promoting rhizobacteria and the growth promotion to potato rapid propagation plantlet[D]. Hohhot: Inner Mongolia Agricultural University, 2020. | |
[35] | 邵美琪, 赵卫松, 苏振贺, 等. 盐胁迫下枯草芽孢杆菌NCD-2对番茄促生作用及对土壤微生物群落结构的影响[J]. 中国农业科学, 2021, 54(21):4573-4584. |
Shao MQ, Zhao WS, Su ZH, et al. Effect of Bacillus subtilis NCD-2 on the growth of tomato and the microbial community structure of rhizosphere soil under salt stress[J]. Sci Agric Sin, 2021, 54(21):4573-4584. | |
[36] | 杨丽娟, 王玉凤, 张翼飞, 等. 产酸克雷伯氏菌提高玉米幼苗耐盐碱胁迫的机理[J]. 植物营养与肥料学报, 2021, 27(6):1044-1054. |
Yang LJ, Wang YF, Zhang YF, et al. Klebsiella oxytoca improves resistance of maize seedling to saline-alkali stress[J]. J Plant Nutr Fertil, 2021, 27(6):1044-1054. | |
[37] | 林杨, 潘泽群, 张金鹏, 等. 吉林克雷伯氏菌2N3对噻吩磺隆的降解特性及其土壤修复作用[J]. 西北农林科技大学学报:自然科学版, 2021, 49(1):102-107. |
Lin Y, Pan ZQ, Zhang JP, et al. Characteristics of Klebsiella jilinsis 2N3 in thifensulfuron-methyl degradation and soil remediation[J]. J Northwest A F Univ Nat Sci Ed, 2021, 49(1):102-107. | |
[38] | 谢澳文, 樊磊, 韩一鸣, 等. 降解AFB1的克雷伯氏菌分离、鉴定及降解机理初步研究[J]. 河南工业大学学报:自然科学版, 2021, 42(2):64-70. |
Xie AW, Fan L, Han YM, et al. Isolation, identification of Klebsiella and its degradation mechanism of AFB1[J]. J Henan Univ Technol Nat Sci Ed, 2021, 42(2):64-70. | |
[39] |
Passet V, Brisse S. Description of Klebsiella grimontii sp. nov[J]. Int J Syst Evol Microbiol, 2018, 68(1):377-381.
doi: 10.1099/ijsem.0.002517 URL |
[40] | 袁媛, 周骏辉, 黄璐琦. 黄芩道地性形成“逆境效应”的实验验证与展望[J]. 中国中药杂志, 2016, 41(1):139-143. |
Yuan Y, Zhou JH, Huang LQ. Experimental verification and prospect on stress effect of Dao-di herbs Scutellaria baicalensis[J]. China J Chin Mater Med, 2016, 41(1):139-143. |
[1] | 张道磊, 甘雨军, 乐亮, 普莉. 玉米产量性状的表观遗传调控机制和育种应用[J]. 生物技术通报, 2023, 39(8): 31-42. |
[2] | 张昊鑫, 王中华, 牛兵, 郭慷, 刘璐, 姜瑛, 张仕祥. 产IAA兼具溶磷解钾高效促生菌的筛选、鉴定及其广谱性应用[J]. 生物技术通报, 2022, 38(5): 100-111. |
[3] | 李毅丹, 单晓辉. 赤霉素代谢调控与绿色革命[J]. 生物技术通报, 2022, 38(2): 195-204. |
[4] | 山琦, 贾惠舒, 姚文博, 刘伟灿, 李海燕. 植物miR396-GRF模块的生物学功能及其潜在应用价值[J]. 生物技术通报, 2022, 38(10): 34-44. |
[5] | 徐进益, 那彬彬, 刘顺, 陈超, 孙红, 郑玉龙. 青贮饲料的优良乳酸菌及其应用[J]. 生物技术通报, 2021, 37(9): 39-47. |
[6] | 李和平, 李积铭, 李爱国, 武军艳, 宋聪敏, 申彦平, 杨莉. 播期对河北省超采水区白菜型冬油菜越冬率及产量的影响[J]. 生物技术通报, 2021, 37(4): 35-46. |
[7] | 付严松, 李宇聪, 徐志辉, 邵佳慧, 刘云鹏, 宣伟, 张瑞福. 根际促生菌调控植物根系发育的信号与分子机制研究进展[J]. 生物技术通报, 2020, 36(9): 42-48. |
[8] | 潘晶, 黄翠华, 彭飞, 尤全刚, 刘斐耀, 薛娴. 植物根际促生菌诱导植物耐盐促生作用机制[J]. 生物技术通报, 2020, 36(9): 75-87. |
[9] | 宫伟, 余健源, 张曦, 单晓昳. 硝酸根调控植物开花和产量分子机制的研究进展[J]. 生物技术通报, 2020, 36(8): 162-172. |
[10] | 万水霞, 王静, 李帆, 蒋光月, 徐文静, 刘祚军. 玉米根际高效溶磷菌的筛选、鉴定及促生效应研究[J]. 生物技术通报, 2020, 36(5): 98-103. |
[11] | 杨茉, 高婷, 李滟璟, 魏崇瑶, 高淼, 马莲菊. 辣椒根际促生菌的分离筛选及抗病促生特性研究[J]. 生物技术通报, 2020, 36(5): 104-109. |
[12] | 郭宇泽, 丁雪敏, 姚岚, 许德敏, 赵雨洁, 冯福应, 孟建宇. 马西利亚菌B260的分离鉴定及促进育苗的效果[J]. 生物技术通报, 2019, 35(9): 144-149. |
[13] | 孙培, 王罡, 张亚楠, 李倩, 季静, 杨丹, 袁东, 王畅, 王昱蓉, 王萍. 一种耐盐促生菌筛选、鉴定及对玉米幼苗生长的影响[J]. 生物技术通报, 2019, 35(8): 27-33. |
[14] | 姜焕焕, 王通, 陈娜, 禹山林, 迟晓元, 王冕, 祁佩时. 根际促生菌提高植物抗盐碱性的研究进展[J]. 生物技术通报, 2019, 35(10): 189-197. |
[15] | 田露, 薛仁政, 张志敏, 薛春仙, 沈兰芳, 龚国利. 抗癌药物埃博霉素的生产及工艺发展[J]. 生物技术通报, 2019, 35(10): 198-204. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||