生物技术通报 ›› 2022, Vol. 38 ›› Issue (8): 32-40.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1267
张婵(), 吴友根(), 于靖, 杨东梅, 姚广龙, 杨华庚, 张军锋, 陈萍
收稿日期:
2021-10-09
出版日期:
2022-08-26
发布日期:
2022-09-14
作者简介:
张婵,女,博士研究生,研究方向:南药植物种质资源开发与利用;E-mail: 基金资助:
ZHANG Chan(), WU You-gen(), YU Jing, YANG Dong-mei, YAO Guang-long, YANG Hua-geng, ZHANG Jun-feng, CHEN Ping
Received:
2021-10-09
Published:
2022-08-26
Online:
2022-09-14
摘要:
萜类化合物在医药、农业、食品和日化等领域具有重要的应用价值,但其在药用植物中的天然含量普遍较低,限制其规模化发展。光和茉莉酸信号是调控植物萜类化合物合成中常用的诱导子。本文综述光与茉莉酸信号介导的药用植物萜类化合物合成的分子机制,提出了未来药用植物萜类化合物可重点研究的方向。
张婵, 吴友根, 于靖, 杨东梅, 姚广龙, 杨华庚, 张军锋, 陈萍. 光与茉莉酸信号介导的萜类化合物合成分子机制[J]. 生物技术通报, 2022, 38(8): 32-40.
ZHANG Chan, WU You-gen, YU Jing, YANG Dong-mei, YAO Guang-long, YANG Hua-geng, ZHANG Jun-feng, CHEN Ping. Molecular Mechanism of Terpenoids Synthesis Intermediated by Light and Jasmonates Signals[J]. Biotechnology Bulletin, 2022, 38(8): 32-40.
科Family | 物种Species | 萜类成分Terpenoids | 诱导信号Inductive signal | 参考文献Reference |
---|---|---|---|---|
唇形科 | 丹参 Salvia miltiorrhiza | 丹参酮类 | JA、Light、JA+Light | [ |
甘西鼠尾草Salvia przewalskii | 丹参酮类 | JA | [ | |
绒毛栗色鼠尾草Salvia castanea | 丹参酮类 | JA | [ | |
亚洲薄荷Mentha arvensis | 多种萜类 | Light | [ | |
菊科 | 黄花蒿Artemisia annua | 青蒿素 | JA、Light、JA+Light | [ |
兰科 | 铁皮石斛Dendrobium officinale | 芳樟醇 | JA | [ |
姜科 | 阳春砂Amomum villosum | 多种萜类 | JA | [ |
伞形科 | 雪积草Centella asiatica | 总三萜 | JA | [ |
大戟科 | 京大戟Euphorbia pekinensis | 总三萜 | JA | [ |
玄参科 | 胡黄连Picrorhiza kurrooa | 胡黄连苷 | Light | [ |
五加科 | 人参Panax ginseng | 人参皂苷 | JA、Light | [ |
葫芦科 | 绞股蓝Gynostemma pentaphyllum | 人参皂苷 | JA、Light | [ |
表1 光和JAs信号调控的药用植物萜类化合物
Table 1 Terpenoids in medicinal plants regulated by light and JA signals
科Family | 物种Species | 萜类成分Terpenoids | 诱导信号Inductive signal | 参考文献Reference |
---|---|---|---|---|
唇形科 | 丹参 Salvia miltiorrhiza | 丹参酮类 | JA、Light、JA+Light | [ |
甘西鼠尾草Salvia przewalskii | 丹参酮类 | JA | [ | |
绒毛栗色鼠尾草Salvia castanea | 丹参酮类 | JA | [ | |
亚洲薄荷Mentha arvensis | 多种萜类 | Light | [ | |
菊科 | 黄花蒿Artemisia annua | 青蒿素 | JA、Light、JA+Light | [ |
兰科 | 铁皮石斛Dendrobium officinale | 芳樟醇 | JA | [ |
姜科 | 阳春砂Amomum villosum | 多种萜类 | JA | [ |
伞形科 | 雪积草Centella asiatica | 总三萜 | JA | [ |
大戟科 | 京大戟Euphorbia pekinensis | 总三萜 | JA | [ |
玄参科 | 胡黄连Picrorhiza kurrooa | 胡黄连苷 | Light | [ |
五加科 | 人参Panax ginseng | 人参皂苷 | JA、Light | [ |
葫芦科 | 绞股蓝Gynostemma pentaphyllum | 人参皂苷 | JA、Light | [ |
[1] |
Lange BM, Rujan T, Martin W, et al. Isoprenoid biosynthesis:the evolution of two ancient and distinct pathways across genomes[J]. Proc Natl Acad Sci USA, 2000, 97(24):13172-13177.
doi: 10.1073/pnas.240454797 URL |
[2] |
Nagegowda DA. Plant volatile terpenoid metabolism:biosynthetic genes, transcriptional regulation and subcellular compartmentation[J]. FEBS Lett, 2010, 584(14):2965-2973.
doi: 10.1016/j.febslet.2010.05.045 pmid: 20553718 |
[3] | 李军玲, 罗晓东, 赵沛基, 等. 植物萜类生物合成中的后修饰酶[J]. 云南植物研究, 2009, 31(5):461-468. |
Li JL, Luo XD, Zhao PJ, et al. Post-modification enzymes involved in the biosynthesis of plant terpenoids[J]. Acta Bot Yunnanica, 2009, 31(5):461-468. | |
[4] |
Degenhardt J, Köllner TG, Gershenzon J. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants[J]. Phytochemistry, 2009, 70(15/16):1621-1637.
doi: 10.1016/j.phytochem.2009.07.030 URL |
[5] |
Czechowski T, Larson TR, Catania TM, et al. Artemisia annua mutant impaired in artemisinin synthesis demonstrates importance of nonenzymatic conversion in terpenoid metabolism[J]. Proc Natl Acad Sci USA, 2016, 113(52):15150-15155.
doi: 10.1073/pnas.1611567113 URL |
[6] |
Deng CP, Hao XL, Shi M, et al. Tanshinone production could be increased by the expression of SmWRKY2 in Salvia miltiorrhiza hairy roots[J]. Plant Sci, 2019, 284:1-8.
doi: 10.1016/j.plantsci.2019.03.007 URL |
[7] |
Li JR, Chen XZ, Zhou XX, et al. Identification of trihelix transcription factors in Pogostemon cablin reveals PatGT-1 negatively regulates patchoulol biosynthesis[J]. Ind Crops Prod, 2021, 161:113182.
doi: 10.1016/j.indcrop.2020.113182 URL |
[8] |
Yu ZM, Zhao CH, Zhang GH, et al. Genome-wide identification and expression profile of TPS gene family in Dendrobium officinale and the role of DoTPS10 in linalool biosynthesis[J]. Int J Mol Sci, 2020, 21(15):5419.
doi: 10.3390/ijms21155419 URL |
[9] |
Fu XQ, Peng BW, Hassani D, et al. AaWRKY9 contributes to light- and jasmonate-mediated to regulate the biosynthesis of artemisinin in Artemisia annua[J]. New Phytol, 2021, 231(5):1858-1874.
doi: 10.1111/nph.17453 URL |
[10] |
Jang I, Do G, Suh S, et al. Physiological responses and ginsenoside production of Panax ginseng seedlings grown under various ratios of red to blue light-emitting diodes[J]. Hortic Environ Biotechnol, 2020, 61(4):663-672.
doi: 10.1007/s13580-020-00255-5 URL |
[11] |
Wang CH, et al. Synergistic effects of ultraviolet-B and methyl jasmonate on tanshinone biosynthesis in Salvia miltiorrhiza hairy roots[J]. J Photochem Photobiol B, 2016, 159:93-100.
doi: 10.1016/j.jphotobiol.2016.01.012 URL |
[12] |
Barsain BL, Purohit A, Kumar A, et al. PkGPPS. SSU interacts with two PkGGPPS to form heteromeric GPPS in Picrorhiza kurrooa:molecular insights into the picroside biosynthetic pathway[J]. Plant Physiol Biochem, 2020, 154:115-128.
doi: 10.1016/j.plaphy.2020.05.029 URL |
[13] |
He XY, Wang H, Yang JF, et al. RNA sequencing on Amomum villosum Lour. induced by MeJA identifies the genes of WRKY and terpene synthases involved in terpene biosynthesis[J]. Genome, 2018, 61(2):91-102.
doi: 10.1139/gen-2017-0142 URL |
[14] |
Zhang Y, Ji AJ, Xu ZC, et al. The AP2/ERF transcription factor SmERF128 positively regulates diterpenoid biosynthesis in Salvia miltiorrhiza[J]. Plant Mol Biol, 2019, 100(1/2):83-93.
doi: 10.1007/s11103-019-00845-7 URL |
[15] |
Chen IGJ, Lee MS, Lin MK, et al. Blue light decreases tanshinone IIA content in Salvia miltiorrhiza hairy roots via genes regulation[J]. J Photochem Photobiol B, 2018, 183:164-171.
doi: 10.1016/j.jphotobiol.2018.04.013 URL |
[16] |
Li J, et al. Increased phenolic acid and tanshinone production and transcriptional responses of biosynthetic genes in hairy root cultures of Salvia przewalskii Maxim. treated with methyl jasmonate and salicylic acid[J]. Mol Biol Rep, 2020, 47(11):8565-8578.
doi: 10.1007/s11033-020-05899-1 URL |
[17] |
Li B, et al. Establishment of Salvia castanea Diels f. tomentosa Stib. hairy root cultures and the promotion of tanshinone accumulation and gene expression with Ag+, methyl jasmonate, and yeast extract elicitation[J]. Protoplasma, 2016, 253(1):87-100.
doi: 10.1007/s00709-015-0790-9 URL |
[18] | 吴怡. LED补光对亚洲薄荷生理性状、精油含量及自然香气的影响[D]. 上海: 上海交通大学, 2016. |
Wu Y. Effects of different light-emitting diede treatments on physiological characters, essential oil content and fresh aroma components of Mentha arvebsis[D]. Shanghai: Shanghai Jiao Tong University, 2016. | |
[19] |
Fu XQ, He YL, Li L, et al. Overexpression of blue light receptor AaCRY1 improves artemisinin content in Artemisia annua L[J]. Biotechnol Appl Biochem, 2021, 68(2):338-344.
doi: 10.1002/bab.1931 URL |
[20] |
Ma YN, Xu DB, Yan X, et al. Jasmonate- and abscisic acid-activated AaGSW1-AaTCP15/AaORA transcriptional cascade promotes artemisinin biosynthesis in Artemisia annua[J]. Plant Biotechnol J, 2021, 19(7):1412-1428.
doi: 10.1111/pbi.13561 pmid: 33539631 |
[21] |
Yu ZM, Zhang GH, et al. The methyl jasmonate-responsive transcription factor DobHLH4 promotes DoTPS10, which is involved in linalool biosynthesis in Dendrobium officinale during floral development[J]. Plant Sci, 2021, 309:110952.
doi: 10.1016/j.plantsci.2021.110952 URL |
[22] |
Nguyen KV, Pongkitwitoon B, Pathomwichaiwat T, et al. Effects of methyl jasmonate on the growth and triterpenoid production of diploid and tetraploid Centella asiatica(L. )Urb. hairy root cultures[J]. Sci Rep, 2019, 9(1):18665.
doi: 10.1038/s41598-019-54460-z pmid: 31822691 |
[23] | 张文娟, 等. 茉莉酸甲酯诱导大戟三萜类代谢的研究[J]. 广西植物, 2015, 35(4):590-596. |
Zhang WJ, et al. Triterpene biosynthesis in Euphorbia pekinensis induced by methyl jasmonate[J]. Guihaia, 2015, 35(4):590-596. | |
[24] |
Kawoosa T, Singh H, Kumar A, et al. Light and temperature regulated terpene biosynthesis:hepatoprotective monoterpene picroside accumulation in Picrorhiza kurrooa[J]. Funct Integr Genomics, 2010, 10(3):393-404.
doi: 10.1007/s10142-009-0152-9 URL |
[25] |
Um Y, Lee Y, Kim SC, et al. Expression analysis of ginsenoside biosynthesis-related genes in methyl jasmonate-treated adventitious roots of Panax ginseng via DNA microarray analysis[J]. Hortic Environ Biotechnol, 2017, 58(4):376-383.
doi: 10.1007/s13580-017-0041-4 URL |
[26] | 李茹芳, 刘世彪, 赵娜, 等. 绞股蓝鲨烯合成酶基因GpSS1的克隆、序列与表达分析及MeJA对其表达的影响[J]. 中草药, 2016, 47(15):2713-2720. |
Li RF, Liu SB, Zhao N, et al. Gene cloning, sequence, and expression analysis of GpSS1 and its regulation by MeJA in Gynostemma pentaphyllum[J]. Chin Tradit Herb Drugs, 2016, 47(15):2713-2720. | |
[27] | Wang T, et al. Effect of light quality on total gypenosides accumulation and related key enzyme gene expression in Gynostemma pentaphyllum[J]. Chin Herb Med, 2018, 10(1):34-39. |
[28] |
Yu ZX, Li JX, Yang CQ, et al. The jasmonate-responsive AP2/ERF transcription factors AaERF1 and AaERF2 positively regulate artemisinin biosynthesis in Artemisia annua L[J]. Mol Plant, 2012, 5(2):353-365.
doi: 10.1093/mp/ssr087 URL |
[29] |
Lu X, Zhang L, Zhang FY, et al. AaORA, a trichome-specific AP2/ERF transcription factor of Artemisia annua, is a positive regulator in the artemisinin biosynthetic pathway and in disease resistance to Botrytis cinerea[J]. New Phytol, 2013, 198(4):1191-1202.
doi: 10.1111/nph.12207 URL |
[30] |
Tan HX, Xiao L, Gao SH, et al. Trichome and artemisinin regulator 1 is required for trichome development and artemisinin biosynthesis in Artemisia annua[J]. Mol Plant, 2015, 8(9):1396-1411.
doi: 10.1016/j.molp.2015.04.002 URL |
[31] |
Shen Q, Lu X, Yan TX, et al. The jasmonate-responsive AaMYC2 transcription factor positively regulates artemisinin biosynthesis in Artemisia annua[J]. New Phytol, 2016, 210(4):1269-1281.
doi: 10.1111/nph.13874 URL |
[32] |
Ji YP, Xiao JW, Shen YL, et al. Cloning and characterization of AabHLH1, a bHLH transcription factor that positively regulates artemisinin biosynthesis in Artemisia annua[J]. Plant Cell Physiol, 2014, 55(9):1592-1604.
doi: 10.1093/pcp/pcu090 URL |
[33] |
Zhang FY, et al. A basic leucine zipper transcription factor, AabZIP1, connects abscisic acid signaling with artemisinin biosynthesis in Artemisia annua[J]. Mol Plant, 2015, 8(1):163-175.
doi: 10.1016/j.molp.2014.12.004 URL |
[34] |
Hao XL, Zhong YJ, et al. Light-induced artemisinin biosynthesis is regulated by the bZIP transcription factor AaHY5 in Artemisia annua[J]. Plant Cell Physiol, 2019, 60(8):1747-1760.
doi: 10.1093/pcp/pcz084 URL |
[35] |
Yan TX, Chen MH, Shen Q, et al. HOMEODOMAIN PROTEIN 1 is required for jasmonate-mediated glandular trichome initiation in Artemisia annua[J]. New Phytol, 2017, 213(3):1145-1155.
doi: 10.1111/nph.14205 URL |
[36] |
Chen MH, Yan TX, Shen Q, et al. GLANDULAR TRICHOME-SPECIFIC WRKY 1 promotes artemisinin biosynthesis in Artemisia annua[J]. New Phytol, 2017, 214(1):304-316.
doi: 10.1111/nph.14373 URL |
[37] |
Lv ZY, Wang S, Zhang FY, et al. Overexpression of a novel NAC domain-containing transcription factor gene(AaNAC1)enhances the content of artemisinin and increases tolerance to drought and Botrytis cinerea in Artemisia annua[J]. Plant Cell Physiol, 2016, 57(9):1961-1971.
doi: 10.1093/pcp/pcw118 URL |
[38] |
Ma YN, Xu DB, Li L, et al. Jasmonate promotes artemisinin biosynthesis by activating the TCP14-ORA complex in Artemisia annua[J]. Sci Adv, 2018, 4(11):eaas9357.
doi: 10.1126/sciadv.aas9357 URL |
[39] |
Wu Z, Li L, Liu H, et al. AaMYB15, an R2R3-MYB TF in Artemisia annua, acts as a negative regulator of artemisinin biosynthesis[J]. Plant Sci, 2021, 308:110920.
doi: 10.1016/j.plantsci.2021.110920 URL |
[40] |
Li L, Hao XL, Liu H, et al. Jasmonic acid-responsive AabHLH1 positively regulates artemisinin biosynthesis in Artemisia annua[J]. Biotechnol Appl Biochem, 2019, 66(3):369-375.
doi: 10.1002/bab.1733 URL |
[41] |
Lopes EM, Guimarães-Dias F, Gama TDSS, et al. Artemisia annua L. and photoresponse:from artemisinin accumulation, volatile profile and anatomical modifications to gene expression[J]. Plant Cell Rep, 2020, 39(1):101-117.
doi: 10.1007/s00299-019-02476-0 URL |
[42] |
Ma TY, Gao H, Zhang D, et al. Transcriptome analyses revealed the ultraviolet B irradiation and phytohormone gibberellins coordinately promoted the accumulation of artemisinin in Artemisia annua L[J]. Chin Med, 2020, 15:67.
doi: 10.1186/s13020-020-00344-8 URL |
[43] |
Zhang D, Sun W, Shi YH, et al. Red and blue light promote the accumulation of artemisinin in Artemisia annua L[J]. Molecules, 2018, 23(6):1329.
doi: 10.3390/molecules23061329 URL |
[44] |
Hao XL, et al. Transcriptome analysis of genes associated with the artemisinin biosynthesis by jasmonic acid treatment under the light in Artemisia annua[J]. Front Plant Sci, 2017, 8:971.
doi: 10.3389/fpls.2017.00971 URL |
[45] |
Zhou YY, Sun W, Chen JF, et al. SmMYC2a and SmMYC2b played similar but irreplaceable roles in regulating the biosynthesis of tanshinones and phenolic acids in Salvia miltiorrhiza[J]. Sci Rep, 2016, 6:22852.
doi: 10.1038/srep22852 URL |
[46] | 王宇. 丹参EIL类转录因子EIN3基因的克隆与功能分析[D]. 上海: 上海师范大学, 2018. |
Wang Y. Cloning and functional analysis of EIL transcription factor gene EIN3 from Salvia miltiorrhiza[D]. Shanghai: Shanghai Normal University, 2018. | |
[47] | 张建红. SmAP2/ERF82调控丹参酮生物合成及丹参生长发育的功能研究[D]. 北京: 北京协和医学院, 2020. |
Zhang JH. Functional characterization of SmAP2/ERF82 in regulating the biosynthesis of tanshinones and the growth and development of Salvia miltiorrhiza[D]. Beijing: Peking Union Medical College Hospital, 2020. | |
[48] |
Huang Q, et al. The AP2/ERF transcription factor SmERF1L1 regulates the biosynthesis of tanshinones and phenolic acids in Salvia miltiorrhiza[J]. Food Chem, 2019, 274:368-375.
doi: 10.1016/j.foodchem.2018.08.119 URL |
[49] |
Xing BC, Yang DF, Yu HZ, et al. Overexpression of SmbHLH10 enhances tanshinones biosynthesis in Salvia miltiorrhiza hairy roots[J]. Plant Sci, 2018, 276:229-238.
doi: 10.1016/j.plantsci.2018.07.016 URL |
[50] | 张蕊. 丹参转录因子SmbHLH74调控丹参酮生物合成的分子机制[D]. 沈阳: 沈阳农业大学, 2019. |
Zhang R. Molecular mechanism of SmbHLH74 in regulation of tanshinone biosynthesis in Salvia miltiorrhiza bunge[D]. Shenyang: Shenyang Agricultural University, 2019. | |
[51] | Zhang JH, et al. bHLH transcription factor SmbHLH92 negatively regulates biosynthesis of phenolic acids and tanshinones in Salvia miltiorrhiza[J]. Chin Herb Med, 2020, 12(3):237-246. |
[52] |
Xing BC, et al. Overexpression of SmbHLH148 induced biosynthesis of tanshinones as well as phenolic acids in Salvia miltiorrhiza hairy roots[J]. Plant Cell Rep, 2018, 37(12):1681-1692.
doi: 10.1007/s00299-018-2339-9 URL |
[53] |
Zhang JX, Zhou LB, Zheng XY, et al. Overexpression of SmMYB9b enhances tanshinone concentration in Salvia miltiorrhiza hairy roots[J]. Plant Cell Rep, 2017, 36(8):1297-1309.
doi: 10.1007/s00299-017-2154-8 URL |
[54] |
Ding K, Pei TL, Bai ZQ, et al. SmMYB36, a novel R2R3-MYB transcription factor, enhances tanshinone accumulation and decreases phenolic acid content in Salvia miltiorrhiza hairy roots[J]. Sci Rep, 2017, 7(1):5104.
doi: 10.1038/s41598-017-04909-w pmid: 28698552 |
[55] |
Hao XL, Pu ZQ, Cao G, et al. Tanshinone and salvianolic acid biosynthesis are regulated by SmMYB98 in Salvia miltiorrhiza hairy roots[J]. J Adv Res, 2020, 23:1-12.
doi: 10.1016/j.jare.2020.01.012 URL |
[56] |
Cao WZ, Wang Y, Shi M, et al. Transcription factor SmWRKY1 positively promotes the biosynthesis of tanshinones in Salvia miltiorrhiza[J]. Front Plant Sci, 2018, 9:554.
doi: 10.3389/fpls.2018.00554 URL |
[57] | 吴可薇. 丹参转录因子SmWRKY40抑制丹参酮生物合成的分子机制[D]. 沈阳: 沈阳农业大学, 2020. |
Wu KW. Molecular mechnism of SmWRKY40 inhibits the biosynthesis of tanshinone in Salvia miltiorrhiza[D]. Shenyang: Shenyang Agricultural University, 2020. | |
[58] | 殷学翠. 丹参转录因子SmWRKY44促进丹参酮生物合成的分子机制[D]. 沈阳: 沈阳农业大学, 2020. |
Yin XC. Molecular mechanism of SmWRKY44 promotes tanshinone biosynthesis in Salvia miltiorrhiza bunge[D]. Shenyang: Shenyang Agricultural University, 2020. | |
[59] |
Kai GY, Liao P, Xu H, et al. Molecular mechanism of elicitor-induced tanshinone accumulation in Salvia miltiorrhiza hairy root cultures[J]. Acta Physiol Plant, 2012, 34(4):1421-1433.
doi: 10.1007/s11738-012-0940-z URL |
[60] | Xing BC, Yang DF, Liu L, et al. Phenolic acid production is more effectively enhanced than tanshinone production by methyl jasmonate in Salvia miltiorrhiza hairy roots[J]. Plant Cell Tissue Organ Cult PCTOC, 2018, 134(1):119-129. |
[61] | 裴天林. SmJAZ基因在调控丹参酮类和酚酸类物质合成中的功能研究[D]. 杨凌: 西北农林科技大学, 2019. |
Pei TL. The function of SmJAZ in regulating the biosynthesis of salvianolic acids and tanshinones in Salvia miltiorrhiza[D]. Yangling: Northwest A & F University, 2019. | |
[62] |
Shi M, Zhou W, Zhang JL, et al. Methyl jasmonate induction of tanshinone biosynthesis in Salvia miltiorrhiza hairy roots is mediated by JASMONATE ZIM-DOMAIN repressor proteins[J]. Sci Rep, 2016, 6:20919.
doi: 10.1038/srep20919 URL |
[63] | 冯思念, 等. 不同强度的红蓝光质对丹参根系形态和有效成分积累的影响[J]. 中草药, 2019, 50(21):5313-5318. |
Feng SN, et al. Effects of red light and blue light on root morphology and accumulation of bioactive compounds in Salvia miltiorrhiza[J]. Chin Tradit Herb Drugs, 2019, 50(21):5313-5318. | |
[64] |
Wang XB, Chen XZ, Zhong LT, et al. PatJAZ6 acts as a repressor regulating JA-induced biosynthesis of patchouli alcohol in Pogostemon cablin[J]. Int J Mol Sci, 2019, 20(23):6038.
doi: 10.3390/ijms20236038 URL |
[65] |
Chen XZ, Li JR, Liu YT, et al. PatSWC4, a methyl jasmonate-responsive MYB(v-myb avian myeloblastosis viral oncogene homolog)-related transcription factor, positively regulates patchoulol biosynthesis in Pogostemon cablin[J]. Ind Crops Prod, 2020, 154:112672.
doi: 10.1016/j.indcrop.2020.112672 URL |
[1] | 郑敏敏, 柳洁, 赵清. 药用植物黄芩的生物学研究进展及展望[J]. 生物技术通报, 2023, 39(2): 10-23. |
[2] | 安昌, 陆琳, 沈梦千, 陈盛圳, 叶康卓, 秦源, 郑平. 植物bHLH基因家族研究进展及在药用植物中的应用前景[J]. 生物技术通报, 2023, 39(10): 1-16. |
[3] | 张昊, 刘苗苗, 刘晓娜, 李宗谕, 赵丽丽, 杨清香. 内生菌影响药用植物产生药理活性化合物的研究进展[J]. 生物技术通报, 2022, 38(8): 41-51. |
[4] | 雷君, 陈勤, 邓兵, 张金渝, 刘迪秋, 崔秀明, 葛锋. R2R3-MYB转录因子PnMYB1调控三七皂苷生物合成[J]. 生物技术通报, 2022, 38(5): 74-83. |
[5] | 钱静洁, 林苏梦, 张冬平, 高勇. 光敏色素互作因子参与生长素调控的植物生长发育[J]. 生物技术通报, 2022, 38(10): 29-33. |
[6] | 叶敏, 高教琪, 周雍进. 非常规酵母细胞工厂合成天然产物[J]. 生物技术通报, 2021, 37(8): 12-24. |
[7] | 周正, 李卿, 陈万生, 张磊. 药用植物天然产物生物合成途径及关键催化酶的研究策略[J]. 生物技术通报, 2021, 37(8): 25-34. |
[8] | 李治文, 刘培燕, 陈建松, 廖金铃, 林柏荣, 卓侃. 线虫效应子MgMO237及互作蛋白OsCRRSP55在水稻中的共响应基因鉴定[J]. 生物技术通报, 2021, 37(7): 88-97. |
[9] | 王丹, 李圣彦, 刘进平, 郎志宏. 玉米萜类合成酶基因tps2的功能及其启动子功能区段鉴定[J]. 生物技术通报, 2020, 36(12): 1-11. |
[10] | 李佳秀, 蔡倩茹, 吴杰群. 萜类化合物在酿酒酵母中的合成生物学研究进展[J]. 生物技术通报, 2020, 36(12): 199-207. |
[11] | 严武平, 吴友根, 于靖, 杨东梅, 张军锋. 药用植物microRNA研究现状与展望[J]. 生物技术通报, 2019, 35(8): 178-185. |
[12] | 郭亚飞, 王君雅, 郭飞, 倪德江. 茶树1-脱氧-D-木酮糖-5-磷酸合成酶基因CsDXS1的克隆与表达分析[J]. 生物技术通报, 2018, 34(1): 144-152. |
[13] | 崔红利, 陈军, 侯义龙, 吴海歌, 秦松. 真核微藻蓝光受体及其功能研究进展[J]. 生物技术通报, 2017, 33(4): 51-62. |
[14] | 任梦云, 陈彦君, 张盾, 杜乐山, 刘方, 关潇, 张银东. ISSR标记技术在药用植物资源中的研究进展及应用[J]. 生物技术通报, 2017, 33(4): 63-69. |
[15] | 曾美娟, 钟永嘉, 刁勇. 药用植物根际促生菌促生机理研究进展[J]. 生物技术通报, 2017, 33(11): 13-18. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||