生物技术通报 ›› 2022, Vol. 38 ›› Issue (9): 106-115.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0073
• 细菌耐药性专题(专题主编: 刘雅红 教授 孙坚 教授) • 上一篇 下一篇
李海利(), 郎利敏, 张青娴, 游一, 朱文豪, 王治方, 张立宪, 王克领
收稿日期:
2022-01-16
出版日期:
2022-09-26
发布日期:
2022-10-11
作者简介:
李海利,博士,副研究员,研究方向:动物疫病防控研究工作和细菌耐药研究;E-mail: 基金资助:
LI Hai-li(), LANG Li-min, ZHANG Qing-xian, YOU Yi, ZHU Wen-hao, WANG Zhi-fang, ZHANG Li-xian, WANG Ke-ling
Received:
2022-01-16
Published:
2022-09-26
Online:
2022-10-11
摘要:
为了解携带碳青霉烯酶NDM-1及其亚型在猪场的流行情况,对来自猪场产房仔猪腹泻病例分离鉴定的87株大肠杆菌进行了碳青霉烯酶NDM-1和NDM-5的耐药基因扩增及测序。从87株大肠杆菌中分离鉴定出一株同时携带碳青霉烯酶NDM-1和NDM-5的大肠埃希菌(Escherichia coli),并命名为HN2106。为深入了解HN2106全基因组及其携带的质粒和耐药基因情况,对NH2106进行了16S rRNA菌种鉴定,blaNDM耐药基因确认,全基因组测序,应用BLAST和MEGA软件对序列进行生物信息学分析、系统进化树分析。结果显示,该菌株含有7个质粒(plasmid A、plasmid B、plasmid C、plasmid D、plasmid E、plasmid F 和plasmid G),3种类型,分别为Col、IncFII、IncQ1。同时携带NDM-1和NDM-5基因,属B族β-内酰胺酶,其中blaNDM-1位于质粒pNDM-HN2106(plasmid C)上,blaNDM-5位于质粒pNDM5-HN2106(plasmid B)上,分别介导blaNDM-1和blaNDM-5耐药基因,是耐药菌传播的重要载体。全基因组耐药基因预测HN2106同时还携带21种类型的抗生素耐药基因。对HN2106菌株进行了85种抗菌药物敏感性测试,结果显示,HN2106菌株对亚胺培南、青霉素G等均耐药,对磺胺甲恶唑、头孢美唑等敏感。研究结果表明,养殖场NDM-1耐药质粒是NDM-1及其亚型耐药基因的重要载体,对养殖产业健康养殖和公共卫生安全带来较大隐患和威胁,应加强抗菌药物的合理应用和感染的防控措施,重视细菌耐药性的监测工作,以期为临床耐药菌株感染的防治提供理论参考。
李海利, 郎利敏, 张青娴, 游一, 朱文豪, 王治方, 张立宪, 王克领. 同时产碳青霉烯酶NDM-1和NDM-5的猪源大肠埃希氏菌的鉴定及耐药性研究[J]. 生物技术通报, 2022, 38(9): 106-115.
LI Hai-li, LANG Li-min, ZHANG Qing-xian, YOU Yi, ZHU Wen-hao, WANG Zhi-fang, ZHANG Li-xian, WANG Ke-ling. Identification and Drug Resistance of Escherichia coli Simultaneously Producing Carbapenemase NDM-1 and NDM-5[J]. Biotechnology Bulletin, 2022, 38(9): 106-115.
引物Primers name | 引物序列Primer sequence(5'-3') | 产物长度Amplicon size/bp | 退火温度PCR annealing temperature/℃ |
---|---|---|---|
NDM-5F | ATGGAATTGCCCAATATTATGCAC | 480 | 58 |
NDM-5R | TCAGCGCAGCTTGTCGGC | ||
NDM-1F | GGTTTGGCGATCTGGTTTTC | 593 | 57 |
NDM-1R | CGGAATGGCTCATCACGATC |
表1 NDM-5 耐药基因引物序列
Table 1 Primer sequence of NDM-5-resistant gene
引物Primers name | 引物序列Primer sequence(5'-3') | 产物长度Amplicon size/bp | 退火温度PCR annealing temperature/℃ |
---|---|---|---|
NDM-5F | ATGGAATTGCCCAATATTATGCAC | 480 | 58 |
NDM-5R | TCAGCGCAGCTTGTCGGC | ||
NDM-1F | GGTTTGGCGATCTGGTTTTC | 593 | 57 |
NDM-1R | CGGAATGGCTCATCACGATC |
抗生素Antibiotics | HN2106 | 抗生素Antibiotics | HN2106 | 抗生素Antibiotics | HN2106 | 抗生素Antibiotics | HN2106 | |||
---|---|---|---|---|---|---|---|---|---|---|
亚胺培南Imipenem | R | 头孢西丁Cefoxitin | R | 庆大霉素Gentamicin | R | 奈替米星Netilmicin | R | |||
氨苄西林Ampicillin | R | 头孢克洛Cefaclor | R | 卡那霉素Kanamycin | R | 诺氟沙星Norfloxacin | R | |||
海他西林Hetacillin | R | 头孢呋辛Cefuroxime | R | 阿米卡星Amikacin | R | 新霉素Neomycin | R | |||
阿莫西林 Amoxicillin | R | 头孢噻肟 Cefotaxime | R | 链霉素 Streptomycin | R | 羧苄西林 Carbenicillin | R | |||
苯唑西林Oxacillin | R | 头孢唑肟ceftizoxime | R | 多西环素Doxycycline | R | 哌拉西林Piperacillin | R | |||
氯唑西林 Cloxacillin | R | 头孢曲松 Ceftriaxone | R | 四环素 Tetracycline | R | 妥布霉素 Tobramycin | R | |||
美洛培南 Meropenem | R | 头孢哌酮 Cefoperazone | R | 氯霉素 Chloramphenicol | R | 氟罗沙星 Fleroxacin | R | |||
多黏菌素B Polymyxin B | R | 头孢他啶 Ceftazidime | R | 克林霉素 Clindamycin | R | 头孢他美 Cefetamet | R | |||
美洛西林/舒巴坦 Mezlocillin/Sulbactam | R | 头孢噻呋 Ceftiofur | R | 红霉素 Erythromycin | R | 万古霉素 Vancomycin | R | |||
阿莫西林/舒巴坦 Amoxicillin/sulbactam | R | 头孢比肟 Cefepime | R | 头孢羟氨苄 Cefadroxil | R | 利福平 Rifampicin | R | |||
阿莫西林/克拉维酸 Amoxicillin/clavulanic acid | R | 头孢喹肟 Cefquinome | R | 呋喃妥因 Nitrofurantoin | R | 头孢地嗪 Cefodizime | R | |||
磺胺甲异恶唑 Sulfamethoxazole | R | 左氧氟沙星 Levofloxacin | R | 头孢匹胺 Cefpiramide | R | 头孢噻吩 Cephalothin | R | |||
氨苄西林/舒巴坦 Ampicillin/Sulbactam | R | 司帕沙星 Sparfloxacin | R | 头孢克肟 Cefixime | R | 依替米星 Etimicin | R | |||
磺胺甲恶唑 Sulfamethoxazole | S | 美洛西林 Mezlocillin | R | 罗红霉素 Roxithromycin | R | 替考拉宁 Teicoplanin | R | |||
头孢美唑Cefmetazole | S | 庆大霉素Gentamicin | R | 加替沙星Gatifloxacin | R | 磷霉素Fosfomycin | R | |||
大观霉素 Spectinomycin | S | 杆菌肽 Bacitracin | R | 链霉素 Streptomycin | R | 头孢丙烯 Cefprozil | R | |||
哌拉西林/他唑巴坦 Piperacillin/tazobactam | S | 罗美沙星 Lomefloxacin | R | 新生霉素 Novobiocin | R | 替加环素 Tigecycline | R | |||
替卡西林/克拉维酸 Ticacillin/clavulanic acid | S | 阿奇霉素 Azithromycin | R | 阿洛西林 Azlocillin | R | 克拉霉素 Clarithromycin | R | |||
头孢他啶/克拉维酸 Ceftazidime/clavulanic acid | S | 米诺环 Minocycline | R | 痢特灵 Furazolidone | R | 头孢美唑 Cefmetazole | R | |||
头孢噻肟/克拉维酸 Cefotaxime/clavulanic acid | S | 氧氟沙星 Ofloxacin | R | 依诺沙星 Enoxacin | R | 环丙沙星 Ciprofloxacin | R | |||
头孢哌酮/舒巴坦 Cefoperazone/sulbactam | S | 青霉素G Penicillin | R | 头孢孟多 Cefamandole | R | 头孢氨苄 Cephalexin | R | |||
氨曲南Aztreonam | S |
表2 药敏试验结果
Table 2 Results of drug susceptibility testing
抗生素Antibiotics | HN2106 | 抗生素Antibiotics | HN2106 | 抗生素Antibiotics | HN2106 | 抗生素Antibiotics | HN2106 | |||
---|---|---|---|---|---|---|---|---|---|---|
亚胺培南Imipenem | R | 头孢西丁Cefoxitin | R | 庆大霉素Gentamicin | R | 奈替米星Netilmicin | R | |||
氨苄西林Ampicillin | R | 头孢克洛Cefaclor | R | 卡那霉素Kanamycin | R | 诺氟沙星Norfloxacin | R | |||
海他西林Hetacillin | R | 头孢呋辛Cefuroxime | R | 阿米卡星Amikacin | R | 新霉素Neomycin | R | |||
阿莫西林 Amoxicillin | R | 头孢噻肟 Cefotaxime | R | 链霉素 Streptomycin | R | 羧苄西林 Carbenicillin | R | |||
苯唑西林Oxacillin | R | 头孢唑肟ceftizoxime | R | 多西环素Doxycycline | R | 哌拉西林Piperacillin | R | |||
氯唑西林 Cloxacillin | R | 头孢曲松 Ceftriaxone | R | 四环素 Tetracycline | R | 妥布霉素 Tobramycin | R | |||
美洛培南 Meropenem | R | 头孢哌酮 Cefoperazone | R | 氯霉素 Chloramphenicol | R | 氟罗沙星 Fleroxacin | R | |||
多黏菌素B Polymyxin B | R | 头孢他啶 Ceftazidime | R | 克林霉素 Clindamycin | R | 头孢他美 Cefetamet | R | |||
美洛西林/舒巴坦 Mezlocillin/Sulbactam | R | 头孢噻呋 Ceftiofur | R | 红霉素 Erythromycin | R | 万古霉素 Vancomycin | R | |||
阿莫西林/舒巴坦 Amoxicillin/sulbactam | R | 头孢比肟 Cefepime | R | 头孢羟氨苄 Cefadroxil | R | 利福平 Rifampicin | R | |||
阿莫西林/克拉维酸 Amoxicillin/clavulanic acid | R | 头孢喹肟 Cefquinome | R | 呋喃妥因 Nitrofurantoin | R | 头孢地嗪 Cefodizime | R | |||
磺胺甲异恶唑 Sulfamethoxazole | R | 左氧氟沙星 Levofloxacin | R | 头孢匹胺 Cefpiramide | R | 头孢噻吩 Cephalothin | R | |||
氨苄西林/舒巴坦 Ampicillin/Sulbactam | R | 司帕沙星 Sparfloxacin | R | 头孢克肟 Cefixime | R | 依替米星 Etimicin | R | |||
磺胺甲恶唑 Sulfamethoxazole | S | 美洛西林 Mezlocillin | R | 罗红霉素 Roxithromycin | R | 替考拉宁 Teicoplanin | R | |||
头孢美唑Cefmetazole | S | 庆大霉素Gentamicin | R | 加替沙星Gatifloxacin | R | 磷霉素Fosfomycin | R | |||
大观霉素 Spectinomycin | S | 杆菌肽 Bacitracin | R | 链霉素 Streptomycin | R | 头孢丙烯 Cefprozil | R | |||
哌拉西林/他唑巴坦 Piperacillin/tazobactam | S | 罗美沙星 Lomefloxacin | R | 新生霉素 Novobiocin | R | 替加环素 Tigecycline | R | |||
替卡西林/克拉维酸 Ticacillin/clavulanic acid | S | 阿奇霉素 Azithromycin | R | 阿洛西林 Azlocillin | R | 克拉霉素 Clarithromycin | R | |||
头孢他啶/克拉维酸 Ceftazidime/clavulanic acid | S | 米诺环 Minocycline | R | 痢特灵 Furazolidone | R | 头孢美唑 Cefmetazole | R | |||
头孢噻肟/克拉维酸 Cefotaxime/clavulanic acid | S | 氧氟沙星 Ofloxacin | R | 依诺沙星 Enoxacin | R | 环丙沙星 Ciprofloxacin | R | |||
头孢哌酮/舒巴坦 Cefoperazone/sulbactam | S | 青霉素G Penicillin | R | 头孢孟多 Cefamandole | R | 头孢氨苄 Cephalexin | R | |||
氨曲南Aztreonam | S |
[1] |
Wang QX, Luo Y, Shang WJ, et al. Comprehensive interactome analysis of the spike protein of swine acute diarrhea syndrome coronavirus[J]. Biosaf Health, 2021, 3(3):156-163.
doi: 10.1016/j.bsheal.2021.05.002 URL |
[2] |
Shrestha S, Tada T, Sherchan JB, et al. Highly multidrug-resistant Morganella morganii clinical isolates from Nepal co-producing NDM-type metallo-β-lactamases and the 16S rRNA methylase ArmA[J]. J Med Microbiol, 2020, 69(4):572-575.
doi: 10.1099/jmm.0.001160 pmid: 32100711 |
[3] |
Huang C, Liu LZ, Kong HK, et al. A novel incompatibility group X3 plasmid carrying bla NDM-1 encodes a small RNA that regulates host fucose metabolism and biofilm formation[J]. RNA Biol, 2020, 17(12):1767-1776.
doi: 10.1080/15476286.2020.1780040 URL |
[4] |
Shi C, Dong FY, Zhao GL, et al. Applications of machine-learning methods for the discovery of NDM-1 inhibitors[J]. Chem Biol Drug Des, 2020, 96(5):1232-1243.
doi: 10.1111/cbdd.13708 URL |
[5] |
Tanriverdi Cayci Y, Biyik I, Korkmaz F, et al. Investigation of NDM, VIM, KPC and OXA-48 genes, blue-carba and CIM in carbapenem resistant Enterobacterales isolates[J]. J Infect Dev Ctries, 2021, 15(5):696-703.
doi: 10.3855/jidc.13345 URL |
[6] |
Aires-de-Sousa M, Ortiz de la Rosa JM, Goncalves ML, et al. Occurrence of NDM-1-producing Morganella morganii and Proteus mirabilis in a single patient in Portugal:probable in vivo transfer by conjugation[J]. J Antimicrob Chemother, 2020, 75(4):903-906.
doi: 10.1093/jac/dkz542 pmid: 31971235 |
[7] | Tehrani KHME, Fu HG, Brüchle NC, et al. Aminocarboxylic acids related to aspergillomarasmine A(AMA)and ethylenediamine-N, N'-disuccinic acid(EDDS)are strong zinc-binders and inhibitors of the metallo-beta-lactamase NDM-1[J]. Chem Commun(Camb), 2020, 56(20):3047-3049. |
[8] |
Izdebski R, Sitkiewicz M, Urbanowicz P, et al. Genomic background of the Klebsiella pneumoniae NDM-1 outbreak in Poland, 2012-18[J]. J Antimicrob Chemother, 2020, 75(11):3156-3162.
doi: 10.1093/jac/dkaa339 pmid: 32790858 |
[9] |
Erturk Sengel B, Altinkanat Gelmez G, Soyletir G, et al. In vitro synergistic activity of fosfomycin in combination with meropenem, amikacin and colistin against OXA-48 and/or NDM-producing Klebsiella pneumoniae[J]. J Chemother, 2020, 32(5):237-243.
doi: 10.1080/1120009X.2020.1745501 pmid: 32228228 |
[10] |
Tumskiy RS, Tumskaia AV, Pylaev TE, et al. Docking and antibacterial activity of novel nontoxic 5-arylidenepyrimidine-triones as inhibitors of NDM-1 and MetAP-1[J]. Future Med Chem, 2021, 13(12):1041-1055.
doi: 10.4155/fmc-2021-0020 URL |
[11] |
Jackson AC, Pinter TBJ, Talley DC, et al. Benzimidazole and benzoxazole zinc chelators as inhibitors of metallo-β-lactamase NDM-1[J]. ChemMedChem, 2021, 16(4):654-661.
doi: 10.1002/cmdc.202000607 pmid: 33211374 |
[12] |
Al-Bayssari C, Nawfal Dagher T, El Hamoui S, et al. Carbapenem and colistin-resistant bacteria in North Lebanon:Coexistence of mcr-1 and NDM-4 genes in Escherichia coli[J]. J Infect Dev Ctries, 2021, 15(7):934-342.
doi: 10.3855/jidc.14176 URL |
[13] |
Khashei R, Edalati Sarvestani F, Malekzadegan Y, et al. The first report of Enterobacter gergoviae carrying bla NDM-1 in Iran[J]. Iran J Basic Med Sci, 2020, 23(9):1184-1190.
doi: 10.22038/ijbms.2020.41225.9752 pmid: 32963740 |
[14] |
Farajzadeh Sheikh A, Shahin M, Shokoohizadeh L, et al. Emerge of NDM-1-producing multidrug-resistant Pseudomonas aeruginosa and co-harboring of carbapenemase genes in south of Iran[J]. Iran J Public Health, 2020, 49(5):959-967.
pmid: 32953684 |
[15] |
Vatansever C, Menekse S, Dogan O, et al. Co-existence of OXA-48 and NDM-1 in colistin resistant Pseudomonas aeruginosa ST235[J]. Emerg Microbes Infect, 2020, 9(1):152-154.
doi: 10.1080/22221751.2020.1713025 URL |
[16] |
Kumwenda GP, Sugawara Y, Akeda Y, et al. Genomic features of plasmids coding for KPC-2, NDM-5 or OXA-48 carbapenemases in Enterobacteriaceae from Malawi[J]. J Antimicrob Chemother, 2021, 76(1):267-270.
doi: 10.1093/jac/dkaa387 pmid: 32929493 |
[17] |
Wang H, Li XY, Liu BT. Occurrence and characterization of KPC-2-producing ST11 Klebsiella pneumoniae isolate and NDM-5-producing Escherichia coli isolate from the same horse of equestrian clubs in China[J]. Transbound Emerg Dis, 2021, 68(2):224-232.
doi: 10.1111/tbed.13614 URL |
[18] |
Amarsy R, Jacquier H, Munier AL, et al. Outbreak of NDM-1-producing Klebsiella pneumoniae in the intensive care unit during the COVID-19 pandemic:another nightmare[J]. Am J Infect Control, 2021, 49(10):1324-1326.
doi: 10.1016/j.ajic.2021.07.004 URL |
[19] |
Zalucki YM, Jen FEC, Pegg CL, et al. Evolution for improved secretion and fitness may be the selective pressures leading to the emergence of two NDM alleles[J]. Biochem Biophys Res Commun, 2020, 524(3):555-560.
doi: 10.1016/j.bbrc.2020.01.135 URL |
[20] |
Aishwarya KVL, Geetha PV, Shanthi M, et al. Co occurrence of two 16S rRNA methyltrasferases along with NDM and OXA 48 like carbapenamases on a single plasmid in Klebsiella pneumoniae[J]. J Lab Physicians, 2019, 11(4):305-311.
doi: 10.4103/JLP.JLP_59_19 pmid: 31929695 |
[21] |
Zhao B, Zhang XH, Yu TT, et al. Discovery of thiosemicarbazone derivatives as effective New Delhi metallo-β-lactamase-1(NDM-1)inhibitors against NDM-1 producing clinical isolates[J]. Acta Pharm Sin B, 2021, 11(1):203-221.
doi: 10.1016/j.apsb.2020.07.005 URL |
[22] |
Flores C, Bianco K, de Filippis I, et al. Genetic relatedness of NDM-producing Klebsiella pneumoniae co-occurring VIM, KPC, and OXA-48 enzymes from surveillance cultures from an intensive care unit[J]. Microb Drug Resist, 2020, 26(10):1219-1226.
doi: 10.1089/mdr.2019.0483 URL |
[23] |
Liu HY, Moran RA, Chen Y, et al. Transferable Acinetobacter baumannii plasmid pDETAB2 encodes OXA-58 and NDM-1 and represents a new class of antibiotic resistance plasmids[J]. J Antimicrob Chemother, 2021, 76(5):1130-1134.
doi: 10.1093/jac/dkab005 URL |
[24] |
Zhao JK, Zhang YL, Fan YY, et al. Characterization of an NDM-5-producing hypervirulent Klebsiella pneumoniae sequence type 65 clone from a lung transplant recipient[J]. Emerg Microbes Infect, 2021, 10(1):396-399.
doi: 10.1080/22221751.2021.1889932 URL |
[25] |
Ayfan AKS, MacDonald J, Harris PNA, et al. Rapid detection of NDM and VIM carbapenemase encoding genes by recombinase polymerase amplification and lateral flow-based detection[J]. Eur J Clin Microbiol Infect Dis, 2021, 40(11):2447-2453.
doi: 10.1007/s10096-021-04267-6 URL |
[26] |
Lodise TP, Smith NM, O'Donnell N, et al. Determining the optimal dosing of a novel combination regimen of ceftazidime/avibactam with aztreonam against NDM-1-producing Enterobacteriaceae using a hollow-fibre infection model[J]. J Antimicrob Chemother, 2020, 75(9):2622-2632.
doi: 10.1093/jac/dkaa197 pmid: 32464664 |
[27] |
Fullington S, Cheng ZS, Thomas C, et al. An integrated biophysical approach to discovering mechanisms of NDM-1 inhibition for several thiol-containing drugs[J]. J Biol Inorg Chem, 2020, 25(5):717-727.
doi: 10.1007/s00775-020-01794-z pmid: 32500360 |
[28] |
Marí-Almirall M, Cosgaya C, Pitart C, et al. Dissemination of NDM-producing Klebsiella pneumoniae and Escherichia coli high-risk clones in Catalan healthcare institutions[J]. J Antimicrob Chemother, 2021, 76(2):345-354.
doi: 10.1093/jac/dkaa459 pmid: 33200193 |
[29] |
Biedrzycka M, Urbanowicz P, Guzek A, et al. Dissemination of Klebsiella pneumoniae ST147 NDM-1 in Poland, 2015-19[J]. J Antimicrob Chemother, 2021, 76(10):2538-2545.
doi: 10.1093/jac/dkab207 pmid: 34164678 |
[30] |
Muggeo A, Maiga A, Maiga I, et al. First description of IncX3 NDM-5-producing plasmid within Escherichia coli ST448 in Mali[J]. J Med Microbiol, 2020, 69(5):685-688.
doi: 10.1099/jmm.0.001182 URL |
[31] |
Gajdács M, Ábrók M, Lázár A, et al. Detection of VIM, NDM and OXA-48 producing carbapenem resistant Enterobacterales among clinical isolates in Southern Hungary[J]. Acta Microbiol Immunol Hung, 2020, 67(4):209-215.
doi: 10.1556/030.2020.01181 URL |
[32] |
Nosheen S, Irfan Bukhari N, Junaid K, et al. Phylogenetic diversity and mutational analysis of New Delhi Metallo-β-lactamase(NDM)producing E. coli strains from pediatric patients in Pakistan[J]. Saudi J Biol Sci, 2021, 28(10):5875-5883.
doi: 10.1016/j.sjbs.2021.06.037 pmid: 34588903 |
[33] |
Hornsey M, Phee L, Wareham DW. A novel variant, NDM-5, of the New Delhi metallo-β-lactamase in a multidrug-resistant Escherichia coli ST648 isolate recovered from a patient in the United Kingdom[J]. Antimicrob Agents Chemother, 2011, 55(12):5952-5954.
doi: 10.1128/AAC.05108-11 URL |
[34] |
Pokhrel RH, Thapa B, Kafle R, et al. Co-existence of beta-lactamases in clinical isolates of Escherichia coli from kathmandu, Nepal[J]. BMC Res Notes, 2014, 7:694.
doi: 10.1186/1756-0500-7-694 pmid: 25287013 |
[35] |
Chaalal N, Touati A, Bakour S, et al. Spread of OXA-48 and NDM-1-producing Klebsiella pneumoniae ST48 and ST101 in chicken meat in western Algeria[J]. Microb Drug Resist, 2021, 27(4):492-500.
doi: 10.1089/mdr.2019.0419 URL |
[36] | Nucleo E, Marchetti VM, Mercato A, et al. OXA-48 and NDM-1 Klebsiella pneumoniae of Sequence Type 101 from blood in a patient with travel history abroad, Italy[J]. New Microbiol, 2020, 43(1):41-43. |
[37] | Ge Y, Kang PW, Li JQ, et al. Thiosemicarbazones exhibit inhibitory efficacy against New Delhi metallo-β-lactamase-1(NDM-1)[J]. J Antibiot(Tokyo), 2021, 74(9):574-579. |
[38] | Ogbolu DO, Alli O, Oluremi AS, et al. Contribution of NDM and OXA-type carbapenemases to carbapenem resistance in clinical Acinetobacter baumannii from Nigeria[J]. Infect Dis(Lond), 2020, 52(9):644-650. |
[39] |
Davies DT, Leiris S, Sprynski N, et al. ANT2681:SAR studies leading to the identification of a metallo-β-lactamase inhibitor with potential for clinical use in combination with meropenem for the treatment of infections caused by NDM-producing Enterobacteriaceae[J]. ACS Infect Dis, 2020, 6(9):2419-2430.
doi: 10.1021/acsinfecdis.0c00207 pmid: 32786279 |
[40] |
Ramakrishnan V, Marialouis XA, Sankarasubramanian J, et al. Whole Genomic analysis of a clinical isolate of Uropathogenic Escherichia coli strain of Sequence Type - 101 carrying the drug resistance NDM-7 in IncX3 plasmid[J]. Bioinformation, 2021, 17(1):126-131.
doi: 10.6026/97320630017126 pmid: 34393427 |
[41] |
Hoard A, Montaña S, Moriano A, et al. Genomic analysis of two NDM-1 Providencia stuartii strains recovered from a single patient[J]. Curr Microbiol, 2020, 77(12):4029-4036.
doi: 10.1007/s00284-020-02242-6 URL |
[42] |
Ranjan R, Thatikonda S. Β-lactam resistance gene NDM-1 in the aquatic environment:a review[J]. Curr Microbiol, 2021, 78(10):3634-3643.
doi: 10.1007/s00284-021-02630-6 URL |
[43] |
Demirci-Duarte S, Unalan-Altintop T, Gulay Z, et al. In vitro susceptibility of OXA-48, NDM, VIM and IMP enzyme- producing Klebsiella spp. and Escherichia coli to fosfomycin[J]. J Infect Dev Ctries, 2020, 14(4):394-397.
doi: 10.3855/jidc.12456 URL |
[44] |
Hong JS, Song W, Jeong SH. Molecular characteristics of NDM-5-producing Escherichia coli from a cat and a dog in south Korea[J]. Microb Drug Resist, 2020, 26(8):1005-1008.
doi: 10.1089/mdr.2019.0382 URL |
[45] |
Remya P, Shanthi M, Sekar U. Prevalence and clonal relatedness of NDM and OXA-48-producing Klebsiella pneumoniae in a tertiary care hospital in South India[J]. J Lab Physicians, 2019, 11(4):312-316.
doi: 10.4103/JLP.JLP_111_19 URL |
[46] |
Devi LS, Broor S, Rautela RS, et al. Increasing prevalence of Escherichia coli and Klebsiella pneumoniae producing CTX-M-type extended-spectrum beta-lactamase, carbapenemase, and NDM-1 in patients from a rural community with community acquired infections:a 3-year study[J]. Int J Appl Basic Med Res, 2020, 10(3):156-163.
doi: 10.4103/ijabmr.IJABMR_360_19 URL |
[47] |
Dayana RS, Ysvette VC, Alexander GT, et al. Phenotypic and genotypic detection of the production of carbapenemases type NDM-1 and KPC in isolated Enterobacteriaceae in a clinical laboratory in Maracay, Venezuela[J]. Rev Chilena Infectol, 2021, 38(2):197-203.
doi: 10.4067/S0716-10182021000200197 URL |
[48] |
Hong JS, Song W, Park MJ, et al. Molecular characterization of the first emerged NDM-1-producing Pseudomonas aeruginosa isolates in south Korea[J]. Microb Drug Resist, 2021, 27(8):1063-1070.
doi: 10.1089/mdr.2020.0374 URL |
[49] |
Ripabelli G, Sammarco ML, Salzo A, et al. New Delhi metallo-β-lactamase(NDM-1)-producing Klebsiella pneumoniae of sequence type ST11:first identification in a hospital of central Italy[J]. Lett Appl Microbiol, 2020, 71(6):652-659.
doi: 10.1111/lam.13384 URL |
[50] | Duman Y, Ersoy Y, Gursoy NC, et al. A silent outbreak due to Klebsiella pneumoniae that co-produced NDM-1 and OXA-48 carbapenemases, and infection control measures[J]. Iran J Basic Med Sci, 2020, 23(1):46-50. |
[51] | Shahandeh Z, Kalantrai N, Sadighian F. Comparison of ertapenem non-susceptibility with 2-mercaptopropionic acid phenotypic tests in predicting NDM-1 and IMP-1 production in clinical isolates of Escherichia coli[J]. Casp J Intern Med, 2020, 11(4):426-431. |
[52] |
Hu YM, Coates A. Zidovudine enhances activity of carbapenems against NDM-1-producing Enterobacteriaceae[J]. J Antimicrob Chemother, 2021, 76(9):2302-2305.
doi: 10.1093/jac/dkab184 pmid: 34120178 |
[53] |
Sharma S, Sharma S, Singh PP, et al. Potential inhibitors against NDM-1 type metallo-β-lactamases:an overview[J]. Microb Drug Resist, 2020, 26(12):1568-1588.
doi: 10.1089/mdr.2019.0315 URL |
[1] | 程深伟, 张克强, 梁军锋, 刘福元, 郜兴亮, 杜连柱. 畜禽养殖粪污中典型致病菌的三重微滴式数字PCR定量检测方法的建立[J]. 生物技术通报, 2022, 38(9): 271-280. |
[2] | 刘成程, 胡小芳, 冯友军. 细菌耐药:生化机制与应对策略[J]. 生物技术通报, 2022, 38(9): 4-16. |
[3] | 赵海晴, 李耘, 梁严内, 刘哲, 任亚林, 李金娟. 联合用药对嗜水气单胞菌耐药性影响研究进展[J]. 生物技术通报, 2022, 38(6): 53-65. |
[4] | 余姝侨, 官昭瑛, 陈红. 利用大肠埃希氏菌光控基因表达系统降解多菌灵农残[J]. 生物技术通报, 2019, 35(2): 218-224. |
[5] | 秦春圃;. N9N2亚型禽流感病毒ns1基因的融合表达[J]. , 2007, 0(02): 123-123. |
[6] | . 食品上的应用[J]. , 1989, 0(07): 113-118. |
[7] | . 食品上的应用[J]. , 1988, 0(12): 90-95. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||