生物技术通报 ›› 2022, Vol. 38 ›› Issue (10): 262-272.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1556
郑青波1,2(), 叶娜1,2, 张哓兰2, 包鹏甲2, 王福彬1,2, 任稳稳1,2, 廖月姣1, 阎萍2, 潘和平1()
收稿日期:
2021-12-16
出版日期:
2022-10-26
发布日期:
2022-11-11
作者简介:
郑青波,男,硕士研究生,研究方向:动物遗传育种;E-mail:基金资助:
ZHENG Qing-bo1,2(), YE Na1,2, ZHANG Xiao-lan2, BAO Peng-jia2, WANG Fu-bin1,2, REN Wen-wen1,2, LIAO Yue-jiao1, YAN Ping2, PAN He-ping1()
Received:
2021-12-16
Published:
2022-10-26
Online:
2022-11-11
摘要:
从单细胞水平解析天祝白牦牛退行期毛囊发育过程主要细胞类型,旨在对主要细胞类群特异表达基因进行生物功能预测与生物信息学分析,探索退行期毛囊发育调控机制。采用单细胞转录组测序对退行期毛囊进行异质性分析,利用已知标记分子对细胞类群进行筛选鉴定,并对鉴定得到的主要细胞类群进行GO和KEGG分析,同时对毛囊形态发生过程中涉及的关键分子进行免疫组织分析。结果表明,天祝白牦牛退行期涉及IFE-DC细胞、表皮细胞系、黑色素细胞、INFU细胞等细胞类群。其特征基因主要参与表皮发育、上皮细胞分化、超纤维组织发育、组织形态发生以及细胞形态学发生等生物过程。KEGG富集分析发现,特征基因主要富集在黏附连接、细胞周期、RNA转运等与毛囊发育相关的通路中。涉及的不同细胞类型拥有GJA1、FKBP4、KRT1、KRT80、FGFR2等28个共同基因。该研究成功鉴定出天祝白牦牛退行期主要细胞类群,获得了特征基因富集通路,揭示了退行期毛囊发育机制。
郑青波, 叶娜, 张哓兰, 包鹏甲, 王福彬, 任稳稳, 廖月姣, 阎萍, 潘和平. 天祝白牦牛退行期毛囊细胞亚群鉴定以及特征基因生物信息学分析[J]. 生物技术通报, 2022, 38(10): 262-272.
ZHENG Qing-bo, YE Na, ZHANG Xiao-lan, BAO Peng-jia, WANG Fu-bin, REN Wen-wen, LIAO Yue-jiao, YAN Ping, PAN He-ping. Identification of Hair Follicle Cell Subsets and Bioinformatics Analysis of Characteristic Genes in Tianzhu White Yak During Catagen[J]. Biotechnology Bulletin, 2022, 38(10): 262-272.
亚群Cluster ID | 标记基因 Marker gene | 类型Cell type | 参考文献Reference |
---|---|---|---|
0,3,8,9 | KRT14,KRT15,KRT5 | 表皮细胞Epidermal | [ |
1,4,10 | KRT1,KRT10,KRTDAP,SBSN | 滤泡间上皮分化细胞 Interfollicular epidermis differentiated cell | [ |
2,6 | SPARC,LHX2 | 毛干细胞 Hair shaft | [ |
5 | KRT28,KRT27,KRT71 | 内根鞘细胞 Inner root sheath | [ |
7 | TOP2A,UBE2C | 漏斗细胞 Infundibulum | [ |
13 | PMEL,TYRP1 | 黑素细胞Melanocyte | [ |
表1 细胞类型标记分子
Table 1 Cell type marker molecules
亚群Cluster ID | 标记基因 Marker gene | 类型Cell type | 参考文献Reference |
---|---|---|---|
0,3,8,9 | KRT14,KRT15,KRT5 | 表皮细胞Epidermal | [ |
1,4,10 | KRT1,KRT10,KRTDAP,SBSN | 滤泡间上皮分化细胞 Interfollicular epidermis differentiated cell | [ |
2,6 | SPARC,LHX2 | 毛干细胞 Hair shaft | [ |
5 | KRT28,KRT27,KRT71 | 内根鞘细胞 Inner root sheath | [ |
7 | TOP2A,UBE2C | 漏斗细胞 Infundibulum | [ |
13 | PMEL,TYRP1 | 黑素细胞Melanocyte | [ |
图1 天祝白牦牛皮肤组织结构图 ORS:外根鞘;IRS:内根鞘;PF:初级毛囊;SF:次级毛囊;HS:毛干
Fig. 1 Skin tissue structure of Tianzhu white yak ORS:Outer root sheath. IRS:Inner root sheath. PF:Primary follicles. SF:Secondary follicles. HS:Hair shaft
图2 检测到的细胞中基因数与UMI总数统计以及相关性分析 A:细胞基因数与UMI总数统计;B:基因数与UMI总数相关性分析。每个点表示一个细胞,nFeature_RNA 纵坐标表示每个细胞中表达的基因数,nCount_RNA 纵坐标表示每个细胞中总 UMI 数,percent.mt 纵坐标表示每个细胞中线粒体基因的 UMI 占该细胞总 UMI 的比例,横坐标则表示细胞在每个纵坐标值上的丰度
Fig. 2 Statistics and correlation analysis of gene number and total UMI in detected cells A:Number of cell genes and total UMI statistics. B:Correlation analysis between gene number and total UMI. Each point represents a cell,the nFeature _ RNA ordinate represents the number of genes expressed in each cell,nCount _ RNA ordinate represents the total UMI number in each cell,percent.mt ordinate represents the ratio of mitochondrial gene UMI to total UMI in each cell,and the abscissa indicates the abundance of cells in each ordinate value
图4 主成分分析 A:PCA降维;B:部分基因PCA分析;C:确定数据集分群个数
Fig. 4 Principal component analysis A:PCA dimension reduction. B:Partial gene PCA analysis. C:Determine the number of data set clusters
图5 UMAP聚类与主要类型细胞鉴定 A:UMAP聚类结果中细胞分群信息;B:UMAP聚类结果中主要细胞类型鉴定;C:特异性标记基因在不同细胞中的表达水平;D:特异性标记分子在部分cluster中的表达情况
Fig.5 UMAP clustering and identification of major cell types A:Cell clustering information in the UMAP plot. B:Identification of major cell types in UMAP plot. C:The expressions of specific marker genes in different cells. D:Expression of specific markers in some clusters
图7 表皮细胞系与IFE-DC细胞不同cluster特征基因富集分析 A:表皮细胞谱系不同cluster特征基因富集分析;B:IFE-DC细胞不同cluster特征基因富集分析
Fig. 7 Enrichment analysis of different clusters characteristic genes in epidermal cell lineage and IFE-DC A:Enrichment analysis of different clusters characteristic genes in epidermal cell lineage. B:Enrichment analysis of different clusters characteristic genes in IFE-DC
图8 HS与黑色素细胞特征基因富集分析 A:HS特征基因富集分析;B:黑色素细胞特征基因富集分析
Fig.8 Enrichment analysis of HS and melanocytes characteristic genes A:Enrichment analysis of HS characteristic genes. B:Enrichment analysis of melanocyte characteristic genes
图9 INFU细胞与IRS细胞特征基因的GO富集分析 A:INFU细胞特征基因的GO富集分析;B:IRS细胞特征基因的GO富集分析
Fig.9 GO enrichment analysis of characteristic genes in INFU and IRS cells A:GO enrichment analysis of INFU characteristic genes. B:GO enrichment analysis of IRS characteristic genes
图10 不同细胞类群特征基因KEGG富集分析 A:不同细胞KEGG富集图;B:特征基因互作网络图
Fig. 10 KEGG Enrichment analysis of characteristic gene in different cell clusters A:KEGG enrichment map of different cells. B:Characteristic gene interaction network diagram
[1] | 郭华. 中西医结合对牦牛犊牛腹泻病的诊疗[J]. 中兽医学杂志, 2016(3):49-50. |
Guo H. Diagnosis and treatment of yak calf diarrhea by integrated traditional Chinese and western medicine[J]. Chin J Tradit Vet Sci, 2016(3):49-50. | |
[2] | 董巧霞, 石斌刚, 左志, 等. 天祝白牦牛绒毛品质分析[J]. 中国畜牧杂志, 2021, 57(12):110-114. |
Dong QX, Shi BG, Zuo Z, et al. Cashmere quality analysis of Tianzhu white yak[J]. Chin J Animal Sci, 2021, 57(12):110-114. | |
[3] |
Han XP, Wang RY, Zhou YC, et al. Mapping the mouse cell atlas by microwell-seq[J]. Cell, 2018, 172(5):1091-1107. e17.
doi: S0092-8674(18)30116-8 pmid: 29474909 |
[4] |
Tang FC, et al. mRNA-Seq whole-transcriptome analysis of a single cell[J]. Nat Methods, 2009, 6(5):377-382.
doi: 10.1038/nmeth.1315 pmid: 19349980 |
[5] |
He WY, Ye JG, Xu HY, et al. Differential expression of α6 and β1 integrins reveals epidermal heterogeneity at single-cell resolution[J]. J Cell Biochem, 2020, 121(3):2664-2676.
doi: 10.1002/jcb.29487 pmid: 31680320 |
[6] |
Yang H, et al. Epithelial-mesenchymal micro-niches govern stem cell lineage choices[J]. Cell, 2017, 169(3):483-496. e13.
doi: S0092-8674(17)30367-7 pmid: 28413068 |
[7] |
Joost S, et al. The molecular anatomy of mouse skin during hair growth and rest[J]. Cell Stem Cell, 2020, 26(3):441-457. e7.
doi: S1934-5909(20)30012-6 pmid: 32109378 |
[8] |
Colombo S, et al. Transcriptomic analysis of mouse embryonic skin cells reveals previously unreported genes expressed in melanoblasts[J]. J Invest Dermatol, 2012, 132(1):170-178.
doi: 10.1038/jid.2011.252 pmid: 21850021 |
[9] | 胡帅帅, 张珉, 肖叶懿, 等. 不同毛色獭兔皮肤中黑色素沉积及毛囊发育规律[J]. 西北农业学报, 2019, 28(9):1387-1393. |
Hu SS, Zhang M, Xiao YY, et al. Melanin deposition and hair follicle development in skins of rex rabbit with different coat colors[J]. Acta Agric Boreali Occidentalis Sin, 2019, 28(9):1387-1393. | |
[10] |
Hardy MH. The secret life of the hair follicle[J]. Trends Genet, 1992, 8(2):55-61.
pmid: 1566372 |
[11] | 谷聪敏. 胎鼠真皮细胞诱导毛发形成的研究[D]. 北京: 北京协和医学院, 2013. |
Gu CM. Study on hair formation induced by fetal rat dermal cells[D]. Beijing: Peking Union Medical College, 2013. | |
[12] |
Lindner G, Botchkarev VA, Botchkareva NV, et al. Analysis of apoptosis during hair follicle regression(catagen)[J]. Am J Pathol, 1997, 151(6):1601-1617.
pmid: 9403711 |
[13] | 韩勇. 不同培养基、药物对体外人游离毛囊生长的影响[D]. 扬州: 扬州大学, 2007. |
Han Y. The study of cultured human hair follicle growth about different cultured conditions and medicines[D]. Yangzhou: Yangzhou University, 2007. | |
[14] | 赵桂儒. 较大规模数据应用PCA降维的一种方法[J]. 电脑知识与技术, 2014(8):1835-1837. |
Zhao GR. A method of dimensionality reduction for large scale data using PCA[J]. Comput Knowl Technol, 2014(8):1835-1837. | |
[15] | Hwang B, Lee JH, Bang D. Single-cell RNA sequencing technologies and bioinformatics pipelines[J]. Exp Mol Med, 2018, 50(8):1-14. |
[16] | Maaten LVD, Hinton G. Viualizing data using t-SNE[J]. J Mach Learn Res, 2008, 9(2605):2579-2605. |
[17] |
Satpathy AT, et al. Massively parallel single-cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustion[J]. Nat Biotechnol, 2019, 37(8):925-936.
doi: 10.1038/s41587-019-0206-z pmid: 31375813 |
[18] |
Ryan KR, Lock FE, Heath JK, et al. Plakoglobin-dependent regulation of keratinocyte apoptosis by Rnd3[J]. J Cell Sci, 2012, 125(Pt 13):3202-3209.
doi: 10.1242/jcs.101931 pmid: 22454524 |
[19] |
Fuchs E. Scratching the surface of skin development[J]. Nature, 2007, 445(7130):834-842.
doi: 10.1038/nature05659 URL |
[20] |
Müller EJ, Williamson L, Kolly C, et al. Outside-in signaling through integrins and cadherins:a central mechanism to control epidermal growth and differentiation?[J]. J Invest Dermatol, 2008, 128(3):501-516.
doi: 10.1038/sj.jid.5701248 URL |
[21] | 葛伟. 单细胞分辨率解析绒山羊及小鼠毛囊发生的转录调控机制[D]. 杨凌: 西北农林科技大学, 2019. |
Ge W. Dissecting the transcriptional regulatory mechanism underlying cashmere goat and murine hair follicle morphogenesis at single-cell resolution[D]. Yangling: Northwest A & F University, 2019. | |
[22] | 叶娜. 基于单细胞转录组测序对天祝白牦牛生长期毛囊转录图谱的构建[D]. 兰州: 西北民族大学, 2021. |
Ye N. Construction of transcription map of hair follicles in growing period of Tianzhu white yak based on single cell transcriptome sequencing[D]. Lanzhou: Northwest University for Nationalities, 2021. | |
[23] |
Badamchian M, et al. Thymosin β(4)reduces lethality and down-regulates inflammatory mediators in endotoxin-induced septic shock[J]. Int Immunopharmacol, 2003, 3(8):1225-1233.
doi: 10.1016/S1567-5769(03)00024-9 pmid: 12860178 |
[24] |
Slominski A, Tobin DJ, Shibahara S, et al. Melanin pigmentation in mammalian skin and its hormonal regulation[J]. Physiol Rev, 2004, 84(4):1155-1228.
pmid: 15383650 |
[25] | 高泽成. 牦牛毛色候选基因的筛选及MC1R基因功能验证[D]. 兰州: 甘肃农业大学, 2017. |
Gao ZC. The selection about yak hair color candidate genes and MC1R gene functional verification[D]. Lanzhou: Gansu Agricultural University, 2017. | |
[26] |
Botchkareva NV, Botchkarev VA, Gilchrest BA. Fate of melanocytes during development of the hair follicle pigmentary unit[J]. J Investig Dermatol Symp Proc, 2003, 8(1):76-79.
doi: 10.1046/j.1523-1747.2003.12176.x URL |
[1] | 赵金玲, 安磊, 任晓亮. 单细胞转录组测序技术及其在秀丽隐杆线虫中的应用[J]. 生物技术通报, 2023, 39(6): 158-170. |
[2] | 王艺清, 王涛, 韦朝领, 戴浩民, 曹士先, 孙威江, 曾雯. 茶树SMAS基因家族的鉴定及互作分析[J]. 生物技术通报, 2023, 39(4): 246-258. |
[3] | 平怀磊, 郭雪, 余潇, 宋静, 杜春, 王娟, 张怀璧. 滇牡丹PdANS的克隆、表达及与花青素含量的相关性[J]. 生物技术通报, 2023, 39(3): 206-217. |
[4] | 郭志浩, 金泽鑫, 刘琦, 高利. 小麦矮腥黑粉菌效应蛋白g11335的生物信息学分析、亚细胞定位及毒性验证[J]. 生物技术通报, 2022, 38(8): 110-117. |
[5] | 于秋琳, 马婧怡, 赵盼, 孙鹏芳, 何玉美, 刘世彪, 郭惠红. 绞股蓝GpMIR156a和GpMIR166b的克隆与功能分析[J]. 生物技术通报, 2022, 38(7): 186-193. |
[6] | 陈佳敏, 刘永杰, 马锦绣, 李丹, 公杰, 赵昌平, 耿洪伟, 高世庆. 小麦组蛋白甲基化酶在杂交种中干旱胁迫表达模式分析[J]. 生物技术通报, 2022, 38(7): 51-61. |
[7] | 王楠, 张瑞, 潘阳阳, 何翃宏, 王靖雷, 崔燕, 余四九. 牦牛TGF-β1基因克隆及在雌性生殖系统主要器官中的表达定位[J]. 生物技术通报, 2022, 38(6): 279-290. |
[8] | 李宇航, 王兴平, 杨箭, 罗仍卓么, 任倩倩, 魏大为, 马云. miR-665在奶牛乳腺上皮细胞炎症中的表达及功能分析[J]. 生物技术通报, 2022, 38(5): 159-168. |
[9] | 李洋, 张晓天, 朴静子, 周如军, 李自博, 关海雯. 花生疮痂病菌蓝光受体EaWC 1基因克隆及生物信息学分析[J]. 生物技术通报, 2022, 38(5): 93-99. |
[10] | 熊和丽, 沙茜, 刘韶娜, 相德才, 张斌, 赵智勇. 单细胞转录组测序技术在动物上的应用研究[J]. 生物技术通报, 2022, 38(3): 226-233. |
[11] | 张琳, 魏祯祯, 宋程威, 郭丽丽, 郭琪, 侯小改, 王华芳. ‘凤丹’牡丹PoFD基因克隆及表达分析[J]. 生物技术通报, 2022, 38(11): 104-111. |
[12] | 寇佳怡, 王玉玲, 曾睿琳, 兰道亮. 单细胞转录组测序技术及在哺乳动物上的应用[J]. 生物技术通报, 2022, 38(11): 41-48. |
[13] | 范亚朋, 芮存, 张悦新, 陈修贵, 陆许可, 王帅, 张红, 徐楠, 王晶, 陈超, 叶武威. 陆地棉耐碱基因GHZAT12的克隆、表达及生物信息学分析[J]. 生物技术通报, 2021, 37(8): 121-130. |
[14] | 杜振伟, 朱帅鹏, 马向飞, 李东华, 孙桂荣. 鸡CEBPA基因CDS区克隆、表达及生物信息学分析[J]. 生物技术通报, 2021, 37(8): 203-212. |
[15] | 郝向阳, 刘范, 武欢, 王斌, 孙雪丽, 项蕾蕾, 王天池, 赖钟雄, 程春振. 非洲菊GjPAL的克隆及表达分析[J]. 生物技术通报, 2021, 37(6): 13-23. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||