生物技术通报 ›› 2021, Vol. 37 ›› Issue (8): 121-130.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1516
范亚朋(), 芮存, 张悦新, 陈修贵, 陆许可, 王帅, 张红, 徐楠, 王晶, 陈超, 叶武威()
收稿日期:
2020-12-15
出版日期:
2021-08-26
发布日期:
2021-09-10
作者简介:
范亚朋,男,硕士研究生,研究方向:作物种质资源;E-mail: 基金资助:
FAN Ya-peng(), RUI Cun, ZHANG Yue-xin, CHEN Xiu-gui, LU Xu-ke, WANG Shuai, ZHANG Hong, XU Nan, WANG Jing, CHEN Chao, YE Wu-wei()
Received:
2020-12-15
Published:
2021-08-26
Online:
2021-09-10
摘要:
一些锌指蛋白转录因子家族成员在调节植物生长、发育和非生物胁迫中发挥重要作用。本研究旨在了解棉花C2H2转录因子家族中的成员GhZAT12在应对抵御逆境胁迫方面的作用。生物信息学分析结果显示,GhZAT12基因的编码区序列全长为474 bp,编码157个氨基酸,蛋白质分子量为17.074 kD。GhZAT12蛋白不含跨膜结构域,是一种非分泌型亲水蛋白,有7个磷酸化位点,没有信号肽。GhZAT12包含两个C2H2型锌指结构域,在其N端含有保守的L-box,C末端含有一个EAR-Motif。系统发育树分析表明GhZAT12与可可(XP_017982131.1)中的锌指蛋白亲缘关系较近。从棉花中克隆获得GhZAT12基因CDS序列,并构建了亚细胞定位载体,利用烟草瞬时表达系统对GhZAT12-GFP融合蛋白进行了亚细胞定位,结果表明,GhZAT12蛋白定位于细胞核中。qRT-PCR分析结果表明,陆地棉中GhZAT12的相对表达量在根中最高,其次是叶,在茎中表达量最低。碱胁迫处理后不同时间内,GhZAT12基因的表达量先升高后下降,推测GhZAT12基因可能在碱胁迫中发挥着重要的作用。
范亚朋, 芮存, 张悦新, 陈修贵, 陆许可, 王帅, 张红, 徐楠, 王晶, 陈超, 叶武威. 陆地棉耐碱基因GHZAT12的克隆、表达及生物信息学分析[J]. 生物技术通报, 2021, 37(8): 121-130.
FAN Ya-peng, RUI Cun, ZHANG Yue-xin, CHEN Xiu-gui, LU Xu-ke, WANG Shuai, ZHANG Hong, XU Nan, WANG Jing, CHEN Chao, YE Wu-wei. Cloning,Expression and Preliminary Bioinformatics Analysis of the Alkaline Tolerant Gene GhZAT12 in Gossypium hirsutum[J]. Biotechnology Bulletin, 2021, 37(8): 121-130.
引物名称Primer name | 引物序列Primers sequence(5'-3') | 描述Description |
---|---|---|
GhZAT12 | F:ATGAAGAGAGGCAGAGATATTGATG | GhZAT12基因引物 Primer pairs for GhZAT12 gene |
R:CTATATAAAACAATGAACAACCGGA | ||
GFP-GhZAT12 | F:AGAACACGGGGGACTCTAGAATGAAGAGAGGCAGAGATATTG | GhZAT12亚细胞定位载体引物 Primer pairs for subcellular localization vector |
R:TAGTCAGGCGCGCCGGTACCTATAAAACAATGAACAACCGG | ||
Actin(AY305733) | F:ATCCTCCGTCTTGACCTTG | 内参基因引物 Primer pairs for internal reference gene |
R:TGTCCGTCAGGCAACTCAT | ||
QGhZAT12 | F:CTGCTCTGAATGACGGGTTG | GhZAT12荧光定量引物 Primer pairs for qRT-PCR of GhZAT12 |
R:CCGGAGTTGGTGTCACTTTC |
表1 实验所用引物
Table 1 Primer pairs used in the experiments
引物名称Primer name | 引物序列Primers sequence(5'-3') | 描述Description |
---|---|---|
GhZAT12 | F:ATGAAGAGAGGCAGAGATATTGATG | GhZAT12基因引物 Primer pairs for GhZAT12 gene |
R:CTATATAAAACAATGAACAACCGGA | ||
GFP-GhZAT12 | F:AGAACACGGGGGACTCTAGAATGAAGAGAGGCAGAGATATTG | GhZAT12亚细胞定位载体引物 Primer pairs for subcellular localization vector |
R:TAGTCAGGCGCGCCGGTACCTATAAAACAATGAACAACCGG | ||
Actin(AY305733) | F:ATCCTCCGTCTTGACCTTG | 内参基因引物 Primer pairs for internal reference gene |
R:TGTCCGTCAGGCAACTCAT | ||
QGhZAT12 | F:CTGCTCTGAATGACGGGTTG | GhZAT12荧光定量引物 Primer pairs for qRT-PCR of GhZAT12 |
R:CCGGAGTTGGTGTCACTTTC |
图 1 GhZAT12的PCR扩增产物的琼脂糖凝胶电泳分析 M:DL2000 marker. 1-4:GhZAT12的PCR扩增产物
Fig.1 Agarose gel electrophoretic analysis of PCR product of GhZAT12 M:DL2000 marker. 1-4:PCR amplification products of GhZAT12
图2 GhZAT12蛋白同源氨基酸序列多重比对 XP_002314198.3杨树;XP_002284111.1 葡萄;XP_017982131.1可可;XP_008654280.1玉米;NP_200790.1拟南芥;NP_001237020.2大豆;XP_021628881.1木 薯;XP_002533110.1蓖麻;XP_021887642.1番木瓜;XP_004147699.1黄瓜;XP_006345939.1马铃薯;XP_012471399.1雷蒙德氏棉;XP_017618875.1亚洲棉;KAB2038530.1海岛棉;XP_016740578.1陆地棉
Fig.2 Multiple sequence alignment of homologous amino acids in GhZAT12 protein XP_002314198.3 Populus trichocarpa, XP_002284111.1 Vitis vinifera, XP_017982131.1 Theobroma cacao, XP_008654280.1 Zea mays, NP_200790.1 Arabidopsis thaliana, NP_001237020.2 Glycine max, XP_021628881.1 Manihot esculenta, XP_002533110.1 Ricinus communis, XP_021887642.1 Carica papaya, XP_004147699.1 Cucumis sativus, XP_006345939.1 Solanum tuberosum, XP_012471399.1 Gossypium raimondii, XP_017618875.1 Gossypium arboretum, KAB2038530.1 Gossypium barbadense, XP_016740578.1 Gossypium hirsutum
图3 不同物种中ZAT12同源蛋白的系统进化树 参数设为Neighbor-Joining,boostrap value=1 000。系统树各分支上数字为 Bootstrap1000 时循环检验的置信度
Fig.3 Phylogenetic tree of ZAT12 homologous proteins in different species Parameters are set to be neighbor-joining,boostrap value=1 000. The numbers on the tree branches represent bootstrap confidence values as “Bootstrap” is 1000
图10 GhZAT12在烟草叶片中的亚细胞定位 a、d:分别为GFP空载和GhZAT12-GFP荧光图;b、e:为明场图;c、f:为荧光和明场的叠加图;标尺为50 μm
Fig.10 Subcellular localization of GhZAT12 in tobacco leaves a,d:Confocal section of tobacco leave expressing GFP and GhZAT12-GFP,respectively. b,e:Bright field. c,f:Fluorescence and bright field merged image. Bar=50 μm
图11 棉花GhZAT12基因在不同组织不同碱胁迫时间的相对表达量
Fig.11 Relative expressions of GhZAT12 gene in different tissues and different times of alkaline stress in G. hirsutum L.
[1] |
Rocha-Munive MG, Soberón M, Castañeda S, et al. Evaluation of the impact of genetically modified cotton after 20 years of cultivation in Mexico[J]. Frontiers in Bioengineering and Biotechnology, 2018, 6:82.
doi: 10.3389/fbioe.2018.00082 pmid: 29988354 |
[2] |
Jin S, Xu C, Li G, et al. Functional characterization of a type 2 metallothionein gene, SsMT2, from alkaline-tolerant Suaeda salsa[J]. Scientific Reports, 2017, 7(1)17914.
doi: 10.1038/s41598-017-18263-4 URL |
[3] |
Wang Y, Ma H, Liu G, et al. Analysis of gene expression profile of limonium bicolor under NaHCO3 stress using cDNA microarray[J]. Plant Molecular Biology Reporter, 2008, 26(3):241-254.
doi: 10.1007/s11105-008-0037-4 URL |
[4] |
Sun Z, Liu R, Guo B, et al. Ectopic expression of GmZAT4, a puta-tive C2H2-type zinc finger protein, enhances PEG and NaCl stress tolerances in Arabidopsis thaliana[J]. 3 Biotech, 2019, 9(5):166.
doi: 10.1007/s13205-019-1673-0 URL |
[5] |
Meissner R, Michael AJ. Isolation and characterisation of a diverse family of Arabidopsis two and three-fingered C2H2 zinc finger protein genes and cDNAs[J]. Plant Molecular Biology, 1997, 33(4):615-624.
pmid: 9132053 |
[6] |
Ciftci-Yilmaz S, Mittler R. The zinc finger network of plants[J]. Cell Mol Life Sci, 2008, 65(7-8):1150-1160.
doi: 10.1007/s00018-007-7473-4 pmid: 18193167 |
[7] |
Takatsuji H. Zinc-finger proteins:the classical zinc finger emerges in contemporary plant science[J]. Plant Molecular Biology, 1999, 39(6):1073-1078.
pmid: 10380795 |
[8] |
Zhang H, Liu Y, Wen F, et al. A novel rice C2H2-type zinc finger protein, ZFP36, is a key player involved in abscisic acid-induced antioxidant defence and oxidative stress tolerance in rice[J]. J Exp Bot, 2014, 65(20):5795-5809.
doi: 10.1093/jxb/eru313 pmid: 25071223 |
[9] |
Zhang H, Ni L, Liu Y, et al. The C2H2-type zinc finger protein ZFP182 is involved in abscisic acid-induced antioxidant defense in rice[J]. J Integr Plant Biol, 2012, 54(7):500-510.
doi: 10.1111/j.1744-7909.2012.01135.x |
[10] |
Huang F, Chi Y, Meng Q, et al. GmZFP1 encoding a single zinc finger protein is expressed with enhancement in reproductive organs and late seed development in soybean(Glycine max)[J]. Mol Biol Rep, 2006, 33(4):279-285.
pmid: 17077988 |
[11] |
Yu GH, Jiang LL, Ma XF, et al. A soybean C2H2-type zinc finger gene GmZF1 enhanced cold tolerance in transgenic Arabidopsis[J]. PLoS One, 2014, 9(10):e109399.
doi: 10.1371/journal.pone.0109399 URL |
[12] | Zhang D, Tong J, Xu Z, et al. Soybean C2H2-type zinc finger protein GmZFP3 with conserved QALGGH motif negatively regulates drought responses in transgenic Arabidopsis[J]. Frontiers in Plant Science, 2016, 7:325. |
[13] |
Sakamoto H, Maruyama K, Sakuma Y, et al. Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions[J]. Plant Physiology, 2004, 136(1):2734-2746.
pmid: 15333755 |
[14] |
Li G, Tai FJ, Zheng Y, et al. Two cotton Cys2/His2-type zinc-finger proteins, GhDi19-1 and GhDi19-2, are involved in plant response to salt/drought stress and abscisic acid signaling[J]. Plant Molecular Biology, 2010, 74(4-5):437-452.
doi: 10.1007/s11103-010-9684-6 URL |
[15] | An YM, Song LL, Liu YR, et al. De novo transcriptional analysis of alfalfa in response to saline-alkaline stress[J]. Frontiers in Plant science, 2016, 7:931. |
[16] |
Le CTT, Brumbarova T, Ivanov R, et al. Zinc finger of Arabidopsis thaliana12(ZAT12)interacts with FER-like iron deficiency-induced transcription factor(FIT)linking iron deficiency and oxidative stress responses[J]. Plant Physiology, 2016, 170(1):540-557.
doi: 10.1104/pp.15.01589 URL |
[17] |
Rizhsky L, Davletova S, Liang H, et al. The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis[J]. Journal of Biological Chemistry, 2004, 279(12):11736-11743.
doi: 10.1074/jbc.M313350200 URL |
[18] |
Davletova S, Schlauch K, Coutu J, et al. The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis[J]. Plant Physiology, 2005, 139(2):847-856.
pmid: 16183833 |
[19] |
Rai AC, Singh M, Shah K. Engineering drought tolerant tomato plants over-expressing BcZAT12 gene encoding a C2H2 zinc finger transcription factor[J]. Phytochemistry, 2013, 85:44-50.
doi: 10.1016/j.phytochem.2012.09.007 URL |
[20] |
Wang M, Yuan J, Qin L, et al. TaCYP81D5, one member in a wheat cytochrome P450 gene cluster, confers salinity tolerance via reactive oxygen species scavenging[J]. Plant Biotechnology Journal, 2020, 18(3):791-804.
doi: 10.1111/pbi.v18.3 URL |
[21] |
Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C T method[J]. Nature Protocols, 2008, 3(6):1101.
pmid: 18546601 |
[22] | 张新宇, 林书岱, 张涛, 等. 棉花C2H2类型锌指蛋白基因GhSIZ1的克隆及表达分析[J]. 棉花学报, 2015, 27(3):189-197. |
Zhang XY, lin SD, Zhang T, et al. Cloning and expression analysis of GhSIZ1, encoding a C2H2 zinc finger protein in cotton(Gossypium hirsutum)[J]. Cotton Science, 2015, 27(3):189-197. | |
[23] |
Li F, Fan G, Lu C, et al. Genome sequence of cultivated Upland cotton(Gossypium hirsutum TM-1)provides insights into genome evolution[J]. Nature Biotechnology, 2015, 33(5):524-530.
doi: 10.1038/nbt.3208 URL |
[24] |
Ullah A, Qamar MTU, Nisar M, et al. Characterization of a novel cotton MYB gene, GhMYB108-like responsive to abiotic stresses[J]. Molecular Biology Reports, 2020, 47(3):1573-1581.
doi: 10.1007/s11033-020-05244-6 pmid: 31933260 |
[25] |
Wang X, Lu X, Malik WA, et al. Differentially expressed bZIP transcription factors confer multi-tolerances in Gossypium hirsutum L.[J]. International Journal of Biological Macromolecules, 2020, 146:569-578.
doi: 10.1016/j.ijbiomac.2020.01.013 URL |
[26] |
Gu L, Wang H, Wei H, et al. Identification, expression, and functional analysis of the group IId WRKY subfamily in upland cotton(Gossypium hirsutum L. )[J]. Frontiers in Plant Science, 2018, 9:1684.
doi: 10.3389/fpls.2018.01684 URL |
[27] |
Gu L, Wei H, Wang H, et al. Characterization and functional analy-sis of GhWRKY42, a group IId WRKY gene, in upland cotton(Gos-sypium hirsutum L. )[J]. BMC Genetics, 2018, 19(1):48.
doi: 10.1186/s12863-018-0653-4 URL |
[28] |
Xiong XP, Sun SC, Zhang XY, et al. GhWRKY70D13 regulates resistance to verticillium dahliae in cotton through the ethylene and jasmonic acid signaling pathways[J]. Frontiers in Plant Science, 2020, 11:69.
doi: 10.3389/fpls.2020.00069 URL |
[29] |
Kundu A, Das S, Basu S, et al. GhSTOP1, a C2H2 type zinc finger transcription factor is essential for Aluminum and proton stress tolerance and lateral root initiation in cotton[J]. Plant Biology, 2019, 21(1):35-44.
doi: 10.1111/plb.12895 pmid: 30098101 |
[30] |
周垚均, 任艳萍, 代培红, 等. 棉花四个C2H2锌指蛋白基因的克隆与表达分析[J]. 分子植物育种, 2020. DOI: http://kns.chki.net/kcms/detail/46.1068.S.20200522.1131.002.html.
doi: http://kns.chki.net/kcms/detail/46.1068.S.20200522.1131.002.html |
Zhou JY, Ren YP, Dai PH, et al. Cloning and Expression Analysis of Four C2H2 Zinc Protein Gene in Cotton(Gossypium hirsutum L.)[J]. Molecular Plant Breeding, 2020. DOI: http://kns.chki.net/kcms/detail/46.1068.S.20200522.1131.002.html.
doi: http://kns.chki.net/kcms/detail/46.1068.S.20200522.1131.002.html |
|
[31] |
Kubo K, Sakamoto A, Kobayashi A, et al. Cys2/His2 zinc-finger protein family of petunia:evolution and general mechanism of target-sequence recognition[J]. Nucleic Acids Research, 1998, 26(2):608-615.
pmid: 9421523 |
[32] |
Ohta M, Matsui K, Hiratsu K, et al. Repression domains of class II ERF transcriptional repressors share an essential motif for active repression[J]. The Plant Cell, 2001, 13(8):1959-1968.
doi: 10.1105/TPC.010127 URL |
[33] |
Yamaji N, Huang CF, Nagao S, et al. A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice[J]. The Plant Cell, 2009, 21(10):3339-3349.
doi: 10.1105/tpc.109.070771 pmid: 19880795 |
[34] |
Xu SM, Wang XC, Chen J. Zinc finger protein 1(ThZF1)from salt cress(Thellungiella halophila)is a Cys-2/His-2-type transcription factor involved in drought and salt stress[J]. Plant Cell Reports, 2007, 26(4):497-506.
doi: 10.1007/s00299-006-0248-9 URL |
[35] |
Zhang H, Gao X, Zhi Y, et al. A non-tandem CCCH-type zinc-finger protein, IbC3H18, functions as a nuclear transcriptional activator and enhances abiotic stress tolerance in sweet potato[J]. New Phytologist, 2019, 223(4):1918-1936.
doi: 10.1111/nph.15925 pmid: 31091337 |
[36] | An Y, Yang XX, Zhang L, et al. Alfalfa MsCBL4 enhances calcium metabolism but not sodium transport in transgenic tobacco under salt and saline-alkali stress[J]. Plant Cell Reports, 2020:1-15. |
[37] |
Yang Y, Wu Y, Ma L, et al. The Ca2+ sensor SCaBP3/CBL7 modulates plasma membrane H+-ATPase activity and promotes alkali tolerance in Arabidopsis[J]. The Plant Cell, 2019, 31(6):1367-1384.
doi: 10.1105/tpc.18.00568 URL |
[38] | Zhang B, Chen X, Lu X, et al. Transcriptome analysis of Gossypium hirsutum L. reveals different mechanisms among NaCl, NaOH and Na2CO3 stress tolerance[J]. Scientific Reports, 2018, 8(1):1-14. |
[39] | 陈宗新, 陈俊飞, 王亚琴. 水稻C2H2型锌指蛋白OsZAT12转化拟南芥功能的初步研究[J]. 华南师范大学学报:自然科学版, 2019, 51(1):63-69. |
Chen ZX, Chen JF, Wang YQ. A Preliminary study of OsZAT12 with C2H2-type zinc finger transforming Arabidopsis[J]. Journal of South China Normal University:Natural Science Edition, 2019, 51(1):63-69. |
[1] | 娄慧, 朱金成, 杨洋, 张薇. 抗、感品种棉花根系分泌物对尖孢镰刀菌生长及基因表达的影响[J]. 生物技术通报, 2023, 39(9): 156-167. |
[2] | 韩浩章, 张丽华, 李素华, 赵荣, 王芳, 王晓立. 盐碱胁迫诱导的猴樟酵母cDNA文库构建及CbP5CS上游调控因子筛选[J]. 生物技术通报, 2023, 39(9): 236-245. |
[3] | 吕秋谕, 孙培媛, 冉彬, 王佳蕊, 陈庆富, 李洪有. 苦荞转录因子基因FtbHLH3的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 194-203. |
[4] | 李博, 刘合霞, 陈宇玲, 周兴文, 朱宇林. 金花茶CnbHLH79转录因子的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 241-250. |
[5] | 孔德真, 段震宇, 王刚, 张鑫, 席琳乔. 盐、碱胁迫下高丹草苗期生理特征及转录组学分析[J]. 生物技术通报, 2023, 39(6): 199-207. |
[6] | 杨洋, 朱金成, 娄慧, 韩泽刚, 张薇. 海岛棉与枯萎病菌的互作转录组分析[J]. 生物技术通报, 2023, 39(6): 259-273. |
[7] | 王艺清, 王涛, 韦朝领, 戴浩民, 曹士先, 孙威江, 曾雯. 茶树SMAS基因家族的鉴定及互作分析[J]. 生物技术通报, 2023, 39(4): 246-258. |
[8] | 平怀磊, 郭雪, 余潇, 宋静, 杜春, 王娟, 张怀璧. 滇牡丹PdANS的克隆、表达及与花青素含量的相关性[J]. 生物技术通报, 2023, 39(3): 206-217. |
[9] | 杨旭妍, 赵爽, 马天意, 白玉, 王玉书. 三个甘蓝WRKY基因的克隆及其对非生物胁迫的表达[J]. 生物技术通报, 2023, 39(11): 261-269. |
[10] | 邓嘉辉, 雷建峰, 赵燚, 刘敏, 胡子曜, 尤扬子, 邵武奎, 柳建飞, 刘晓东. 基于Csy4与MCP的新型迷你基因组编辑系统的构建[J]. 生物技术通报, 2023, 39(10): 68-79. |
[11] | 阮航, 多浩源, 范文艳, 吕清晗, 姜述君, 朱生伟. AtERF49在拟南芥应答盐碱胁迫中的作用[J]. 生物技术通报, 2023, 39(1): 150-156. |
[12] | 朱金成, 杨洋, 娄慧, 张薇. 外源褪黑素调控棉花枯萎病抗性研究[J]. 生物技术通报, 2023, 39(1): 243-252. |
[13] | 郭志浩, 金泽鑫, 刘琦, 高利. 小麦矮腥黑粉菌效应蛋白g11335的生物信息学分析、亚细胞定位及毒性验证[J]. 生物技术通报, 2022, 38(8): 110-117. |
[14] | 李秀青, 胡子曜, 雷建峰, 代培红, 刘超, 邓嘉辉, 刘敏, 孙玲, 刘晓东, 李月. 棉花黄萎病抗性相关基因GhTIFY9的克隆与功能分析[J]. 生物技术通报, 2022, 38(8): 127-134. |
[15] | 于秋琳, 马婧怡, 赵盼, 孙鹏芳, 何玉美, 刘世彪, 郭惠红. 绞股蓝GpMIR156a和GpMIR166b的克隆与功能分析[J]. 生物技术通报, 2022, 38(7): 186-193. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||