生物技术通报 ›› 2022, Vol. 38 ›› Issue (11): 250-257.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0009
张俊锋1(), 李孟珂1, 吴志浩1, 崔晓龙2, 肖炜2(), 张仕颖1()
收稿日期:
2022-01-05
出版日期:
2022-11-26
发布日期:
2022-12-01
作者简介:
张俊锋,男,硕士研究生,研究方向:微生物生态;E-mail:基金资助:
ZHANG Jun-feng1(), LI Meng-ke1, WU Zhi-hao1, CUI Xiao-long2, XIAO wei2(), ZHANG Shi-ying1()
Received:
2022-01-05
Published:
2022-11-26
Online:
2022-12-01
摘要:
水华是全球关注的环境问题,而微囊藻是造成水华的主要藻类。微囊藻消长与水体理化因子和生物因子密切相关,但对感染溶藻菌的噬菌体对微囊藻的调控作用缺乏认识。本研究的目的在于理解微囊藻,溶藻菌及其噬菌体三者间的相互关系。本研究对分离自滇池的微小杆菌噬菌体DCEAV-31进行生物学特征研究,采用微囊藻-微小杆菌-噬菌体共培养体系研究三者间的相互关系。DCEAV-31属长尾噬菌体科,爆发量为28 PFU/cell,宿主域较窄,对温度、pH较敏感,对氯仿、乙醇、蛋白酶 K 和SDS 非常敏感,对Triton X-100 不敏感。微囊藻-微小杆菌-噬菌体共培养实验表明噬菌体降低了溶藻菌对微囊藻的溶藻作用,噬菌体也直接抑制了微囊藻的增殖。这些结果表明噬菌体通过裂解溶藻菌或藻际菌调控微囊藻的增殖,为我们理解微囊藻的消长提供了新的视角。
张俊锋, 李孟珂, 吴志浩, 崔晓龙, 肖炜, 张仕颖. 噬菌体DCEAV-31和DCEIV-9对溶藻菌溶藻特性的影响[J]. 生物技术通报, 2022, 38(11): 250-257.
ZHANG Jun-feng, LI Meng-ke, WU Zhi-hao, CUI Xiao-long, XIAO wei, ZHANG Shi-ying. Effects of Bacteriophages DCEAV-31 and DCEIV-9 on the Algicidal Characteristics of Algicidal Bacterium Against Microcystis[J]. Biotechnology Bulletin, 2022, 38(11): 250-257.
试验编号 Test No. | 藻 Algae | 菌 Bacterium | 噬菌体 Bacteriophage |
---|---|---|---|
试验A | M.aeruginosa 905 | ||
试验B | M.aeruginosa 905 | EA-31/EI-9 | |
试验C | M.aeruginosa 905 | DCEAV-31/DCEIV-9 | |
试验D | M.aeruginosa 905 | EA-31/EI-9 | DCEAV-31/DCEIV-9 |
表1 共培养体系试验组合
Table 1 Different assemblage setups for co-culture experi-ments
试验编号 Test No. | 藻 Algae | 菌 Bacterium | 噬菌体 Bacteriophage |
---|---|---|---|
试验A | M.aeruginosa 905 | ||
试验B | M.aeruginosa 905 | EA-31/EI-9 | |
试验C | M.aeruginosa 905 | DCEAV-31/DCEIV-9 | |
试验D | M.aeruginosa 905 | EA-31/EI-9 | DCEAV-31/DCEIV-9 |
图3 不同试验组中各细胞和病毒颗粒的浓度 A,B:铜绿微囊藻905的细胞浓度;C,D:微小杆菌EA-31、EI-9的细胞浓度;E,F:噬菌体DCEAV-31、DCEIV-9的滴度
Fig. 3 Concentration of cells and virus particles in different experimental groups A,B:Cells concentration of M. aeruginosa 905. C,D:Cells concentration of Exiguobacterium EA-31 and EI-9. E,F:Titer of phage DCEAV-31 and DCEIV-9
[1] | 张一卉, 赵以军, 程凯. 富营养化水体中微囊藻、菌、病毒数量关系初步研究[J]. 环境科学与技术, 2010, 33(4):20-23. |
Zhang YH, Zhao YJ, Cheng K. Quantitative relationship among Microcystis aeruginosa, bacteriaplankton and virioplankton in eutrophication water bodies[J]. Environ Sci &Technol, 2010, 33(4):20-23. | |
[2] |
Yang F, Wei HY, Li XQ, et al. Isolation and characterization of an algicidal bacterium indigenous to lake Taihu with a red pigment able to lyse Microcystis aeruginosa[J]. Biomed Environ Sci, 2013, 26(2):148-154.
doi: 10.3967/0895-3988.2013.02.009 pmid: 23336138 |
[3] | 黄洪辉, 韩贝贝, 张书飞, 等. 海洋溶藻菌的研究进展[J]. 南方水产科学, 2019, 15(5):126-132. |
Huang HH, Han BB, Zhang SF, et al. Advance in marine algicidal bacteria research[J]. South China Fish Sci, 2019, 15(5):126-132. | |
[4] | 卢露, 马金玲, 牛晓君, 等. 铜绿微囊藻溶藻菌EA-1的分离鉴定及溶藻特性[J]. 中国环境科学, 2021, 41(11):5372-5381. |
Lu L, Ma JL, Niu XJ, et al. Isolation and identification of an algicidal bacteria strain of EA-1 and algicidal characteristics on Microcystis aeruginosa[J]. China Environ Sci, 2021, 41(11):5372-5381. | |
[5] | 张孝进, 戴正为, 戴煜, 等. 可同时控藻和除藻毒素的方法研究进展[J]. 生态环境学报, 2021, 30(7):1549-1554. |
Zhang XJ, Dai ZW, Dai Y, et al. Research progress on the methods of simultaneous algae control and microcystin removal[J]. Ecol Environ Sci, 2021, 30(7):1549-1554. | |
[6] |
Gallardo-Rodríguez JJ, Astuya-Villalón A, Llanos-Rivera A, et al. A critical review on control methods for harmful algal blooms[J]. Rev Aquac, 2019, 11(3):661-684.
doi: 10.1111/raq.12251 URL |
[7] |
李东, 李祎, 郑天凌. 海洋溶藻功能菌作用机理研究的若干进展[J]. 地球科学进展, 2013, 28(2):243-252.
doi: 10.11867/j.issn.1001-8166.2013.02.0243 |
Li D, Li Y, Zheng TL. Advance in the research of marine algicidal functional bacteria and their algicidal mechanism[J]. Adv Earth Sci, 2013, 28(2):243-252. | |
[8] | 张奕妍, 黄兰兰, 王夕予, 等. 噬藻体对蓝藻种群密度的调控及其对水体中物质循环的影响[J]. 湖泊科学, 2022, 34(2):376-390. |
Zhang YY, Huang LL, Wang XY, et al. Regulation of cyanobacteria population density by cyanophage and its effect on material circulation in water[J]. J Lake Sci, 2022, 34(2):376-390. | |
[9] | 王子艺, 成亚辉, 张仕颖, 等. 浮游藻类与噬藻体生态功能及其互作关系研究进展[J]. 贵州农业科学, 2020, 48(11):114-120. |
Wang ZY, Cheng YH, Zhang SY, et al. Research progress on ecological functions and interactions between phytoplankton and cyanophage[J]. Guizhou Agric Sci, 2020, 48(11):114-120. | |
[10] | 蔡一鸣, 刘玉珊, 王志龙, 等. 云南不同高原富营养化湖泊噬藻体g20基因遗传多样性研究[J]. 生态与农村环境学报, 2021, 37(6):786-793. |
Cai YM, Liu YS, Wang ZL, et al. Phylogenetic diversity of cyanophage g20 gene in different eutrophic plateau lakes in Yunnan Province[J]. J Ecol Rural Environ, 2021, 37(6):786-793. | |
[11] | 张奇亚. 噬藻体感染相关基因的研究进展[J]. 微生物学通报, 2020, 47(10):3277-3286. |
Zhang QY. Genes associated with cyanophage infection:a review[J]. Microbiol China, 2020, 47(10):3277-3286. | |
[12] | Naknaen A, Suttinun O, Surachat K, et al. A novel jumbo phage PhiMa05 inhibits harmful Microcystis sp[J]. Front Microbiol, 2021, 12:660351. |
[13] | 龚良玉, 李雁宾, 祝陈坚, 等. 生物法治理赤潮的研究进展[J]. 海洋环境科学, 2010, 29(1):152-158. |
Gong LY, Li YB, Zhu CJ, et al. Research progress on biological control of HABs[J]. Mar Environ Sci, 2010, 29(1):152-158. | |
[14] |
王灵, 向文洲, 卫华宁, 等. 一株微杆菌CBA01对球形棕囊藻的溶藻特性与生理响应研究[J]. 生物技术通报, 2021, 37(10):91-99.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-0161 |
Wang L, Xiang WZ, Wei HN, et al. Study on the algicidal characteristics and physiological response of Microbacterium sp. CBA01 to Phaeocystis globosa[J]. Biotechnol Bull, 2021, 37(10):91-99. | |
[15] | 范德朋, 胡亚冬, 杨敏志, 等. 鱼腥藻藻华水体一株溶藻菌BWFA55的鉴定及溶藻特性[J]. 广东海洋大学学报, 2021, 41(6):9-17. |
Fan DP, Hu YD, Yang MZ, et al. Identification and algicidal characteristics of an algicidal bacterium BWFA55 in Anabaena bloom water[J]. J Guangdong Ocean Univ, 2021, 41(6):9-17. | |
[16] |
Zhang CC, Massey IY, Liu Y, et al. Identification and characterization of a novel indigenous algicidal bacterium Chryseobacterium species against Microcystis aeruginosa[J]. J Toxicol Environ Health A, 2019, 82(15):845-853.
doi: 10.1080/15287394.2019.1660466 URL |
[17] | 叶姜瑜, 钟以蓉, 俞岚, 等. 一株水华鱼腥藻溶藻菌的分离鉴定及菌藻关系初探[J]. 安徽农业科学, 2011, 39(29):18121-18124. |
Ye JY, Zhong YR, Yu L, et al. Identification of an algae-lysing bacterium of Anabaena flosaquae and primary research on their relationship[J]. J Anhui Agric Sci, 2011, 39(29):18121-18124. | |
[18] |
Yoshida-Takashima Y, Yoshida M, Ogata H, et al. Cyanophage infection in the bloom-forming cyanobacteria Microcystis aeruginosa in surface freshwater[J]. Microbes Environ, 2012, 27(4):350-355.
pmid: 23047146 |
[19] | 杨芸兰. 海洋酸化对病毒生态特性的影响[D]. 厦门: 厦门大学, 2018. |
Yang YL. Effects of ocean acidification on viral ecological characteristics[D]. Xiamen: Xiamen University, 2018. | |
[20] |
Yau S, Lauro FM, DeMaere MZ, et al. Virophage control of Antarctic algal host-virus dynamics[J]. Proc Natl Acad Sci USA, 2011, 108(15):6163-6168.
doi: 10.1073/pnas.1018221108 URL |
[21] |
Brussaard CPD. Viral control of phytoplankton populations—a review[J]. J Eukaryot Microbiol, 2004, 51(2):125-138.
pmid: 15134247 |
[22] |
Cai WW, Wang H, et al. Influence of a bacteriophage on the population dynamics of toxic dinoflagellates by lysis of algicidal bacteria[J]. Appl Environ Microbiol, 2011, 77(21):7837-7840.
doi: 10.1128/AEM.05783-11 URL |
[23] |
Zhang SY, Fan C, et al. Characterization of a novel bacteriophage specific to Exiguobacterium indicum isolated from a plateau eutrophic lake[J]. J Basic Microbiol, 2019, 59(2):206-214.
doi: 10.1002/jobm.201800184 URL |
[24] |
Fu CQ, Zhao Q, Li ZY, et al. A novel Halomonas ventosae-specific virulent halovirus isolated from the Qiaohou salt mine in Yunnan, Southwest China[J]. Extremophiles, 2016, 20(1):101-110.
doi: 10.1007/s00792-015-0802-x URL |
[25] |
Cheng YH, Gao DY, Xia YS, et al. Characterization of novel bacteriophage AhyVDH1 and its lytic activity against Aeromonas hydrophila[J]. Curr Microbiol, 2021, 78(1):329-337.
doi: 10.1007/s00284-020-02279-7 URL |
[26] |
Yoshida T, Kamiji R, Nakamura G, et al. Membrane-like protein involved in phage adsorption associated with phage-sensitivity in the bloom-forming cyanobacterium Microcystis aeruginosa[J]. Harmful Algae, 2014, 34:69-75.
doi: 10.1016/j.hal.2014.03.001 URL |
[27] |
Middelboe M, HagströM A, Blackburn N, et al. Effects of bacteriophages on the population dynamics of four strains of pelagic marine bacteria[J]. Microb Ecol, 2001, 42(3):395-406.
pmid: 12024264 |
[28] |
Nagasaki K, Tomaru Y, Katanozaka N, et al. Isolation and characterization of a novel single-stranded RNA virus infecting the bloom-forming diatom Rhizosolenia setigera[J]. Appl Environ Microbiol, 2004, 70(2):704-711.
doi: 10.1128/AEM.70.2.704-711.2004 URL |
[29] |
Wang K, Chen F. Genetic diversity and population dynamics of cyanophage communities in the Chesapeake Bay[J]. Aquat Microb Ecol, 2004, 34:105-116.
doi: 10.3354/ame034105 URL |
[30] |
Kasana RC, Pandey CB. Exiguobacterium:an overview of a versatile genus with potential in industry and agriculture[J]. Crit Rev Biotechnol, 2018, 38(1):141-156.
doi: 10.1080/07388551.2017.1312273 URL |
[31] |
Akins L, Ortiz J, Leff LG. Strain-specific responses of toxic and non-toxic Microcystis aeruginosa to exudates of heterotrophic bacteria[J]. Hydrobiologia, 2020, 847(1):75-89.
doi: 10.1007/s10750-019-04073-4 URL |
[32] | 陈莉婷, 左俊, 宋立荣, 等. 溶藻细菌筛选及溶藻活性物质对铜绿微囊藻生理活性的影响[J]. 水生生物学报, 2020, 44(3):638-646. |
Chen LT, Zuo J, Song LR, et al. Screening of algae-lysing bacteria and the effects of algaelysing active substances on the physiological activities of Microcystis aeruginosa[J]. Acta Hydrobiol Sin, 2020, 44(3):638-646. | |
[33] |
Hou SL, Shu WJ, Tan S, et al. Exploration of the antioxidant system and photosynthetic system of a marine algicidal Bacillus and its effect on four harmful algal bloom species[J]. Can J Microbiol, 2016, 62(1):49-59.
doi: 10.1139/cjm-2015-0425 URL |
[34] |
Zhou S, Yin H, Tang SY, et al. Physiological responses of Microcystis aeruginosa against the algicidal bacterium Pseudomonas aeruginosa[J]. Ecotoxicol Environ Saf, 2016, 127:214-221.
doi: 10.1016/j.ecoenv.2016.02.001 URL |
[35] | 李孟珂, 夏运生, 单壮壮, 等. 三株蓝藻附着细菌多样性及其对铜绿微囊藻增殖的影响[J]. 云南大学学报:自然科学版, 2019, 41(6):1238-1245. |
Li MK, Xia YS, Shan ZZ, et al. Diversity of bacteria associated with three strains of cyanobacteria and their effects on the proliferation of Microcystis aeruginosa[J]. J Yunnan Univ Nat Sci Ed, 2019, 41(6):1238-1245. | |
[36] |
Al-Shayeb B, Sachdeva R, et al. Clades of huge phages from across earth’s ecosystems[J]. Nature, 2020, 578(7795):425-431.
doi: 10.1038/s41586-020-2007-4 URL |
[1] | 李托, 李陇平, 屈雷. 有尾噬菌体的结构及其受体研究进展[J]. 生物技术通报, 2023, 39(6): 88-101. |
[2] | 胡雪莹, 张越, 郭雅杰, 仇天雷, 高敏, 孙兴滨, 王旭明. 不同施肥处理农田土壤中噬菌体与细菌携带抗生素抗性基因的比较[J]. 生物技术通报, 2022, 38(9): 116-126. |
[3] | 文畅, 刘晨, 卢诗韵, 许忠兵, 艾超凡, 廖汉鹏, 周顺桂. 一株新的多重耐药福氏志贺菌噬菌体生物学特性及基因组分析[J]. 生物技术通报, 2022, 38(9): 127-135. |
[4] | 徐重新, 张霄, 刘媛, 仲建锋, 谢雅晶, 卢莉娜, 高美静, 刘贤金. 靶向模拟Bt Cry1C蛋白抗虫功能的人源化基因工程抗体筛选及鉴定[J]. 生物技术通报, 2022, 38(5): 191-200. |
[5] | 王加利, 和似琦, 康子茜, 王建勋. 噬菌体抗体展示技术及其在抗新冠病毒抗体发现中的应用[J]. 生物技术通报, 2022, 38(5): 248-256. |
[6] | 黄景晓, 尚俊康, 陈慧敏, 沈嘉旻, 黎圆圆, 喻玉立, 倪进东, 林伯坤. 一株烈性沙门氏菌噬菌体的生物学特性及基因组分析[J]. 生物技术通报, 2021, 37(6): 136-146. |
[7] | 钱凯荣, 马增岭, 李仁辉, 陈斌斌, 王敏, 朱淑楠, 荣梦薇, 秦文莉. 植物化感作用研究进展——以抑制铜绿微囊藻生长为例[J]. 生物技术通报, 2021, 37(4): 177-193. |
[8] | 王孝芳, 侯玉刚, 杨可铭, 王佳宁, 韦中, 徐阳春, 沈其荣. 一株青枯菌专性噬菌体的分离及应用效果研究[J]. 生物技术通报, 2020, 36(9): 194-201. |
[9] | 杨冰洁, 向文洲, 金雪洁, 陈子硕, 王灵, 吴后波. 一株溶藻菌CBA02的分离、鉴定及溶藻特性研究[J]. 生物技术通报, 2020, 36(11): 55-62. |
[10] | 戚家明, 杨娜, 孙杉杉, 明艳超, 郭亮, 张东旭, 徐志文. 一株具有噬菌体抗性的芽孢杆菌BS-2的鉴定及葡萄糖流加工艺优化[J]. 生物技术通报, 2019, 35(3): 210-216. |
[11] | 耿慧君, 邹伟, 崔惠敬, 李晓宇, 王丽丽, 徐永平. 基于转录组学的金黄色葡萄球菌噬菌体安全性评估[J]. 生物技术通报, 2019, 35(12): 64-75. |
[12] | 刘秀侠, 徐海燕, 辛国芹, 穆熙军, 孙学森, 谷巍. 一株枯草芽孢杆菌噬菌体的生物学特性分析及抗性菌株的诱变筛选[J]. 生物技术通报, 2017, 33(2): 143-148. |
[13] | 李想, 孙岩, 王新珍, 刘俊杰, 王光华. 一种新的噬菌体基因多样性分子标记基因phoH研究进展[J]. 生物技术通报, 2017, 33(10): 40-45. |
[14] | 江文静, 张军毅, 杜阳, 孙丽伟. 以核糖体蛋白质鉴别铜绿微囊藻的应用分析[J]. 生物技术通报, 2017, 33(10): 117-124. |
[15] | 李明源, 王继莲, 任羽, 季秀玲, 古丽巴哈尔·萨吾提. 三株假单胞菌低温噬菌体生物学特性比较研究[J]. 生物技术通报, 2016, 32(9): 123-130. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||