生物技术通报 ›› 2022, Vol. 38 ›› Issue (12): 137-143.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0238
马芳芳1,3(), 康碧静1,3, 马春英1,3, 刘振斌1,2, 杨迪1,2, 乔自林1,2, 王明明1,3, 马忠仁1,2, 王家敏1,2()
收稿日期:
2022-02-26
出版日期:
2022-12-26
发布日期:
2022-12-29
作者简介:
马芳芳,硕士研究生,研究方向:动物细胞培养工程;E-mail:基金资助:
MA Fang-fang1,3(), KANG Bi-jing1,3, MA Chun-ying1,3, LIU Zhen-bin1,2, YANG Di1,2, QIAO Zi-lin1,2, WANG Ming-ming1,3, MA Zhong-ren1,2, WANG Jia-min1,2()
Received:
2022-02-26
Published:
2022-12-26
Online:
2022-12-29
摘要:
流感防控是人类至今面临的严峻挑战之一,流感疫苗接种是预防流感的关键。由于传统的流感疫苗生产工艺依赖鸡胚生产而存在局限性,规模化流感疫苗生产基质逐渐从鸡胚转为哺乳动物细胞,目前用于流感疫苗研发的常见细胞系有MDCK、Vero和PER.C6。其中Vero细胞低代次无成瘤性且已用于多种人用病毒性疫苗生产,是WHO推荐的广泛用于人和动物病毒性疫苗生产的首选细胞系,但Vero细胞基质流感疫苗在生产中仍面临挑战。现就流感疫苗研究、细胞基质流感疫苗的综合比较及Vero细胞在流感疫苗生产中所面临的困难予以综述,旨在为细胞基质流感疫苗研发提供参考。
马芳芳, 康碧静, 马春英, 刘振斌, 杨迪, 乔自林, 王明明, 马忠仁, 王家敏. Vero细胞基质流感疫苗研究进展[J]. 生物技术通报, 2022, 38(12): 137-143.
MA Fang-fang, KANG Bi-jing, MA Chun-ying, LIU Zhen-bin, YANG Di, QIAO Zi-lin, WANG Ming-ming, MA Zhong-ren, WANG Jia-min. Research Progress in Vero Cell-based Influenza Vaccine[J]. Biotechnology Bulletin, 2022, 38(12): 137-143.
商品名称 Name of product | 制造商 Manufacturer | 疫苗类型 Vaccine type | 佐剂 Adjuvant | 接种量Pre-sentation/mL | 适用人群 Applicable people | 每种疫苗每剂所含HA/病毒数HA or virus count for each vaccine virus(per dose) | 汞(硫柳汞)含量 Mercury(from thimerosal) |
---|---|---|---|---|---|---|---|
Afluria | Seqirus | 四价灭活疫苗 | 无 | 0.25 | 6-35 个月 | 7.5 μg/0.25 mL 15 μg/0.5 mL | - |
0.5 | ≥3 岁 | - | |||||
5.0 | ≥6 个月 (needle/syringe) 18-64 岁 (jet injector) | 24.5 μg/0.5 mL | |||||
Fluarix | GlaxoSmithKline | 四价灭活疫苗 | 无 | 0.5 | ≥6 个月 | 15 μg/0.5 mL | - |
FluLaval | GlaxoSmithKline | 四价灭活疫苗 | 无 | 0.5 | ≥6 个月 | 15 μg/0.5 mL | - |
Fluzone | Sanofi Pasteur | 四价灭活疫苗 | 无 | 0.5 | ≥6 个月 | 15 μg/0.5 mL | - |
0.5 | ≥6 个月 | ||||||
5.0 | ≥6 个月 | ||||||
Fluzone High-Dose | Sanofi Pasteur | 高剂量四价灭活疫苗 | 无 | 0.7 | ≥65 岁 | 60 μg/0.7 mL | - |
Fluad | Seqirus | 四价灭活疫苗 | MF59 | 0.5 | ≥65 岁 | 15 μg/0.5 mL | - |
Fluad | Seqirus | 三价灭活疫苗 | MF59 | 0.5 | ≥65 岁 | 15 μg/0.5 mL | - |
表1 2020-2021年美国FDA批准的季节性鸡胚基质流感疫苗
商品名称 Name of product | 制造商 Manufacturer | 疫苗类型 Vaccine type | 佐剂 Adjuvant | 接种量Pre-sentation/mL | 适用人群 Applicable people | 每种疫苗每剂所含HA/病毒数HA or virus count for each vaccine virus(per dose) | 汞(硫柳汞)含量 Mercury(from thimerosal) |
---|---|---|---|---|---|---|---|
Afluria | Seqirus | 四价灭活疫苗 | 无 | 0.25 | 6-35 个月 | 7.5 μg/0.25 mL 15 μg/0.5 mL | - |
0.5 | ≥3 岁 | - | |||||
5.0 | ≥6 个月 (needle/syringe) 18-64 岁 (jet injector) | 24.5 μg/0.5 mL | |||||
Fluarix | GlaxoSmithKline | 四价灭活疫苗 | 无 | 0.5 | ≥6 个月 | 15 μg/0.5 mL | - |
FluLaval | GlaxoSmithKline | 四价灭活疫苗 | 无 | 0.5 | ≥6 个月 | 15 μg/0.5 mL | - |
Fluzone | Sanofi Pasteur | 四价灭活疫苗 | 无 | 0.5 | ≥6 个月 | 15 μg/0.5 mL | - |
0.5 | ≥6 个月 | ||||||
5.0 | ≥6 个月 | ||||||
Fluzone High-Dose | Sanofi Pasteur | 高剂量四价灭活疫苗 | 无 | 0.7 | ≥65 岁 | 60 μg/0.7 mL | - |
Fluad | Seqirus | 四价灭活疫苗 | MF59 | 0.5 | ≥65 岁 | 15 μg/0.5 mL | - |
Fluad | Seqirus | 三价灭活疫苗 | MF59 | 0.5 | ≥65 岁 | 15 μg/0.5 mL | - |
生产厂家 Manufacturer | 疫苗类型 Vaccine type | 毒株 Strain | 细胞基质 Cell substrate | 培养方式 Cultivating way | 商品名称 Name of product |
---|---|---|---|---|---|
Solvay | 三价亚单位疫苗 | A/H1N1、A/H3N2、一种乙型毒株 | MDCK 细胞 | 无血清微载体贴壁培养 | Influvac |
Novartis | 单价灭活疫苗 | A/H1N1 | MDCK细胞 | - | Celtura |
Novartis | 三价亚单位疫苗 | A/H1N1、A/H3N2、一种乙型毒株 | MDCK细胞 | 无血清悬浮培养 | Flucelvax |
Seqirus | 四价流感疫苗 | A/H1N1,A/H3N2,B Yamagata,B Victoria | MDCK细胞 | - | Flucelvax |
Baxter | 单价灭活疫苗 | A/ H1N1或A/H5N1 | Vero 细胞 | 微载体无血清培养 | Celvapan |
Baxter | 三价灭活疫苗 | A/H1N1、A/H3N2、一种乙型毒株 | Vero 细胞 | 微载体无血清培养 | Preflucel |
Sanofi Pasteur | 单价灭活疫苗 | H7N1 | PER.C6细胞 | - | - |
表2 细胞基质流感疫苗
Table 2 Cell-based influenza vaccine
生产厂家 Manufacturer | 疫苗类型 Vaccine type | 毒株 Strain | 细胞基质 Cell substrate | 培养方式 Cultivating way | 商品名称 Name of product |
---|---|---|---|---|---|
Solvay | 三价亚单位疫苗 | A/H1N1、A/H3N2、一种乙型毒株 | MDCK 细胞 | 无血清微载体贴壁培养 | Influvac |
Novartis | 单价灭活疫苗 | A/H1N1 | MDCK细胞 | - | Celtura |
Novartis | 三价亚单位疫苗 | A/H1N1、A/H3N2、一种乙型毒株 | MDCK细胞 | 无血清悬浮培养 | Flucelvax |
Seqirus | 四价流感疫苗 | A/H1N1,A/H3N2,B Yamagata,B Victoria | MDCK细胞 | - | Flucelvax |
Baxter | 单价灭活疫苗 | A/ H1N1或A/H5N1 | Vero 细胞 | 微载体无血清培养 | Celvapan |
Baxter | 三价灭活疫苗 | A/H1N1、A/H3N2、一种乙型毒株 | Vero 细胞 | 微载体无血清培养 | Preflucel |
Sanofi Pasteur | 单价灭活疫苗 | H7N1 | PER.C6细胞 | - | - |
细胞名称 Name of cell | 培养方式 Cultivating way | 有无血清 Presence of serum | 毒株 Strain | 最高增殖密度 Maximum proliferation density/(Cells·mL-1) | 血凝滴度 Degree of HA/ (lgHAU·100 μL-1) | 病毒感染性滴度 Titer of viral infectivity/ (lgHAU·100 μL-1) |
---|---|---|---|---|---|---|
MDCK细胞 | 微载体Cytodex 1悬浮培养 | 有 | H5N1(A /Vietnam /1194 /2004-NIB RG-14) | 0.8 × 107 | 2.9 | 8.64-9.22 |
Vero 细胞 | 微载体 Cytodex 1悬浮培养 | 有 | H1N1(A/PR/8 /34) | - | 2.6 | 7.83-7.88 |
Vero 细胞 | 微载体 Cytodex3 悬浮培养 | 无 | A/Vietnam/1203 /2004和 A/Indonesia /05 /2005 | 2.73 × 106 | 2.70-3.01 | 8.6-9.0 |
MDCK细胞 | 全悬浮培养 | 无 | H1N1 | 5.97×106 | 3.88 | 10.34 |
MDCK细胞 | 半灌注全悬浮培养 | - | H1N1(A/PR/8/34) | 6 × 107 | 4.5 | 10 |
表3 MDCK和Vero细胞培养的流感病毒不同工艺研究比较
Table 3 Comparison of different techniques of MDCK and Vero cell culture for influenza virus
细胞名称 Name of cell | 培养方式 Cultivating way | 有无血清 Presence of serum | 毒株 Strain | 最高增殖密度 Maximum proliferation density/(Cells·mL-1) | 血凝滴度 Degree of HA/ (lgHAU·100 μL-1) | 病毒感染性滴度 Titer of viral infectivity/ (lgHAU·100 μL-1) |
---|---|---|---|---|---|---|
MDCK细胞 | 微载体Cytodex 1悬浮培养 | 有 | H5N1(A /Vietnam /1194 /2004-NIB RG-14) | 0.8 × 107 | 2.9 | 8.64-9.22 |
Vero 细胞 | 微载体 Cytodex 1悬浮培养 | 有 | H1N1(A/PR/8 /34) | - | 2.6 | 7.83-7.88 |
Vero 细胞 | 微载体 Cytodex3 悬浮培养 | 无 | A/Vietnam/1203 /2004和 A/Indonesia /05 /2005 | 2.73 × 106 | 2.70-3.01 | 8.6-9.0 |
MDCK细胞 | 全悬浮培养 | 无 | H1N1 | 5.97×106 | 3.88 | 10.34 |
MDCK细胞 | 半灌注全悬浮培养 | - | H1N1(A/PR/8/34) | 6 × 107 | 4.5 | 10 |
[1] |
Long JS, Mistry B, Haslam SM, et al. Host and viral determinants of influenza A virus species specificity[J]. Nat Rev Microbiol, 2019, 17(2):67-81.
doi: 10.1038/s41579-018-0115-z pmid: 30487536 |
[2] | 叶淑英. 流感大流行带来的启示[J]. 科教文汇, 2012(7):131-146. |
Ye SY. The inspiration from pandemic influenza[J]. The Science Education Article Collects, 2012(7):131-146. | |
[3] |
Pushko P, Tretyakova I. Influenza virus like particles(VLPs):opportunities for H7N9 vaccine development[J]. Viruses, 2020, 12(5):518.
doi: 10.3390/v12050518 URL |
[4] |
Manini I, Trombetta CM, Lazzeri G, et al. Egg-independent influenza vaccines and vaccine candidates[J]. Vaccines, 2017, 5(3):18.
doi: 10.3390/vaccines5030018 URL |
[5] |
Grohskopf LA, Sokolow LZ, Broder KR, et al. Prevention and control of seasonal influenza with vaccines:recommendations of the advisory committee on immunization practices-United States, 2018-19 influenza season[J]. MMWR Recomm Rep, 2018, 67(3):1-20.
doi: 10.15585/mmwr.rr6703a1 pmid: 30141464 |
[6] |
Hegde NR. Cell culture-based influenza vaccines:a necessary and indispensable investment for the future[J]. Hum Vaccin Immunother, 2015, 11(5):1223-1234.
doi: 10.1080/21645515.2015.1016666 URL |
[7] | World Health Organization. Cell culture as a substrate for the production of influenza vaccines:memorandum from a WHO meeting[J]. Bull World Health Organ, 1995, 73(4):431-435. |
[8] |
Chen JD, Wang JH, Zhang JP, et al. Advances in development and application of influenza vaccines[J]. Front Immunol, 2021, 12:711997.
doi: 10.3389/fimmu.2021.711997 URL |
[9] |
Gresset-Bourgeois V, Leventhal PS, Pepin S, et al. Quadrivalent inactivated influenza vaccine(VaxigripTetraTM)[J]. Expert Rev Vaccines, 2018, 17(1):1-11.
doi: 10.1080/14760584.2018.1407650 pmid: 29157068 |
[10] |
Shin D, Park KJ, Lee H, et al. Comparison of immunogenicity of cell-and egg-passaged viruses for manufacturing MDCK cell culture-based influenza vaccines[J]. Virus Res, 2015, 204:40-46.
doi: 10.1016/j.virusres.2015.04.005 pmid: 25892718 |
[11] |
Pérez Rubio A, Eiros JM. Cell culture-derived flu vaccine:present and future[J]. Hum Vaccin Immunother, 2018, 14(8):1874-1882.
doi: 10.1080/21645515.2018.1460297 URL |
[12] |
Hein MD, Arora P, Marichal-Gallardo P, et al. Cell culture-based production and in vivo characterization of purely clonal defective interfering influenza virus particles[J]. BMC Biol, 2021, 19(1):91.
doi: 10.1186/s12915-021-01020-5 pmid: 33941189 |
[13] | Yasumura Y, Kawakita Y. Studies on SV40 in tissue culture - preliminary step for cancer research in vitro[J]. Nihon Rinsho, 1963, 21:1201-1215. |
[14] |
Ugiyadi M, Tan MI, Giri-Rachman EA, et al. The expression of essential components for human influenza virus internalisation in Vero and MDCK cells[J]. Cytotechnology, 2014, 66(3):515-523.
doi: 10.1007/s10616-013-9602-2 pmid: 23912187 |
[15] | 罗剑, 李秀玲. 基于细胞培养的流感疫苗研究进展[J]. 中国新药杂志, 2019, 28(21):2594-2599. |
Luo J, Li XL. Progress of cell culture-derived influenza vaccines[J]. Chin J New Drugs, 2019, 28(21):2594-2599. | |
[16] |
Huang D, Peng WJ, Ye Q, et al. Serum-free suspension culture of MDCK cells for production of influenza H1N1 vaccines[J]. PLoS One, 2015, 10(11):e0141686.
doi: 10.1371/journal.pone.0141686 URL |
[17] |
Barrett PN, Mundt W, Kistner O, et al. Vero cell platform in vaccine production:moving towards cell culture-based viral vaccines[J]. Expert Rev Vaccines, 2009, 8(5):607-618.
doi: 10.1586/erv.09.19 pmid: 19397417 |
[18] |
Ozaki H, Govorkova EA, Li CH, et al. Generation of high-yielding influenza A viruses in African green monkey kidney(Vero)cells by reverse genetics[J]. J Virol, 2004, 78(4):1851-1857.
doi: 10.1128/JVI.78.4.1851-1857.2004 URL |
[19] |
Legastelois I, Garcia-Sastre A, Palese P, et al. Preparation of genetically engineered A/H5N1 and A/H7N1 pandemic vaccine viruses by reverse genetics in a mixture of Vero and chicken embryo cells[J]. Influenza Other Respir Viruses, 2007, 1(3):95-104.
doi: 10.1111/j.1750-2659.2007.00015.x URL |
[20] | 沈娟, 孙明波, 马磊, 等. 遗传重配获得H5N1流感病毒Vero细胞适应株[J]. 中华实验和临床病毒学杂志, 2010, 24(2):119-121. |
Shen J, Sun MB, Ma L, et al. Preparation of vero cell-adapted influenza H5N1 virus strain by genetic reassortment[J]. Chin J Exp Clin Virol, 2010, 24(2):119-121. | |
[21] |
Hu WB, Zhang H, Han QL, et al. A Vero-cell-adapted vaccine donor strain of influenza A virus generated by serial passages[J]. Vaccine, 2015, 33(2):374-381.
doi: 10.1016/j.vaccine.2014.11.007 pmid: 25448099 |
[22] | 王嘉琪, 董育红, 姜菊玲, 等. 基于PK15细胞的猪圆环病毒2型全悬浮培养工艺[J]. 中国农业科学, 2021, 54(6):1280-1287. |
Wang JQ, Dong YH, Jiang JL, et al. Based on PK15 cell line for PCV2 fully suspension culture process[J]. Sci Agric Sin, 2021, 54(6):1280-1287. | |
[23] | Litwin J. The growth of vero cells as suspended aggregates in serum-free medium[M]//Spier RE, Griffiths JB, MacDonald C. Animal Cell Technology. Amsterdam:Elsevier, 1992:414-417. |
[24] | Paillet C, Forno G, Kratje R, et al. Suspension-Vero cell cultures as a platform for viral vaccine production[J]. Vaccine, 2009, 27(46):6464-6467. |
[25] |
Rourou S, Ben Zakkour M, Kallel H. Adaptation of Vero cells to suspension growth for rabies virus production in different serum free media[J]. Vaccine, 2019, 37(47):6987-6995.
doi: S0264-410X(19)30749-2 pmid: 31201054 |
[26] |
Shen CF, Guilbault C, Li XL, et al. Development of suspension adapted Vero cell culture process technology for production of viral vaccines[J]. Vaccine, 2019, 37(47):6996-7002.
doi: S0264-410X(19)30881-3 pmid: 31288997 |
[27] |
Lee DK, Park J, Seo DW. Suspension culture of Vero cells for the production of adenovirus type 5[J]. Clin Exp Vaccine Res, 2020, 9(1):48-55.
doi: 10.7774/cevr.2020.9.1.48 URL |
[28] | 刘鹏, 钏鸿云, 阮朝列, 等. 悬浮驯化Vero细胞制备及其在大流行流感病毒株培养的初步应用[J]. 中国病毒病杂志, 2021, 11(3):182-186. |
Liu P, Chuan HY, Ruan CL, et al. Preparation of suspension-adapted Vero cells and its preliminary application in culture of pandemic influenza virus strains[J]. Chin J Viral Dis, 2021, 11(3):182-186. | |
[29] |
Huang D, Peng WJ, Ye Q, et al. Serum-free suspension culture of MDCK cells for production of influenza H1N1 vaccines[J]. PLoS One, 2015, 10(11):e0141686.
doi: 10.1371/journal.pone.0141686 URL |
[30] |
Tossolini I, López-Díaz FJ, Kratje R, et al. Characterization of cellular states of CHO-K1 suspension cell culture through cell cycle and RNA-sequencing profiling[J]. J Biotechnol, 2018, 286:56-67.
doi: S0168-1656(18)30642-4 pmid: 30243609 |
[31] |
Grieger JC, Soltys SM, Samulski RJ. Production of recombinant adeno-associated virus vectors using suspension HEK293 cells and continuous harvest of vector from the culture media for GMP FIX and FLT1 clinical vector[J]. Mol Ther, 2016, 24(2):287-297.
doi: S1525-0016(16)30334-3 pmid: 26437810 |
[32] |
Montomoli E, Khadang B, Piccirella S, et al. Cell culture-derived influenza vaccines from Vero cells:a new horizon for vaccine production[J]. Expert Rev Vaccines, 2012, 11(5):587-594.
doi: 10.1586/erv.12.24 pmid: 22827244 |
[33] |
Sparrow E, Wood JG, Chadwick C, et al. Global production capacity of seasonal and pandemic influenza vaccines in 2019[J]. Vaccine, 2021, 39(3):512-520.
doi: 10.1016/j.vaccine.2020.12.018 pmid: 33341308 |
[1] | 王祥锟, 宋学宏, 刘金龙, 郭培红, 庄晓峰, 韦良孟, 周凡, 张树宇, 高攀攀, 魏凯. 新型冠状病毒亚单位疫苗研制及其高效免疫增强剂的筛选[J]. 生物技术通报, 2023, 39(1): 305-314. |
[2] | 温亚亚, 宋丽, 汪巧菊, 潘志明, 焦新安. 新冠肺炎疫苗的研究现状及面临的挑战[J]. 生物技术通报, 2022, 38(7): 136-145. |
[3] | 张爱莲, 巴雪丽, 王丹阳, 赵兵. 新疆荒漠肉苁蓉粗多糖对口蹄疫疫苗抗体和T细胞亚群的影响[J]. 生物技术通报, 2021, 37(9): 212-218. |
[4] | 殷俊磊, 张艳芳, 邹凡雨, 潘鹏涛, 段艳红, 仇书兴. 鸡白痢沙门菌sptP基因缺失株的构建及其免疫保护效力评价[J]. 生物技术通报, 2021, 37(2): 122-128. |
[5] | 梁旺旺, 李成龙, 陈文智, 丰志华, 蔡少丽, 陈骐. 表达非洲猪瘟病毒CD2v与P12蛋白的重组伪狂犬病毒的构建[J]. 生物技术通报, 2021, 37(12): 132-140. |
[6] | 陈斯谦, 吴边, 柳陈坚, 李晓然. 肠道微生物对疫苗免疫效果影响的研究进展[J]. 生物技术通报, 2021, 37(12): 220-226. |
[7] | 乌吉斯古楞, 李晓曼, 张学福. 我国禽流感病毒防控研究态势及热点分析——基于OIE禽流感参考实验室影响力视角[J]. 生物技术通报, 2020, 36(7): 139-147. |
[8] | 王彩霞, 杜方原, 林祥梅, GrzegorzWozniakowski, 王勤, 冯春燕, 吴绍强. 稳定表达非洲猪瘟病毒P54蛋白的Vero细胞系的建立[J]. 生物技术通报, 2020, 36(5): 139-144. |
[9] | 胡峰, 王庆, 李莹莹, 曾伟伟, 王高学, 朱斌, 王英英, 尹纪元. 单壁碳纳米管载锦鲤疱疹病毒ORF149核酸疫苗的构建[J]. 生物技术通报, 2020, 36(2): 206-213. |
[10] | 白春丽, 叶倩, 姬阿美, 刘旭平, 张旭, 刘志亮, 朱明龙, 赵亮, 谭文松. 生产禽流感病毒的悬浮MDCK细胞稳定性的研究[J]. 生物技术通报, 2020, 36(10): 72-79. |
[11] | 吴熠潇, Thomas Bissinger, Yvonne Genzel, 刘旭平, Udo Reichl, 谭文松. 基于MDCK悬浮细胞灌注培养的流感病毒生产过程开发[J]. 生物技术通报, 2020, 36(10): 247-255. |
[12] | 谢盼, 叶倩, 刘旭平, 谭文松. 流感病毒生产的维持培养基开发及细胞代谢特征分析[J]. 生物技术通报, 2019, 35(5): 133-139. |
[13] | 方珞, 吴小芹. 抗松针褐斑病湿地松体细胞的悬浮培养[J]. 生物技术通报, 2019, 35(3): 13-18. |
[14] | 仇书兴, 殷星, 苏淑娟, 殷俊磊, 张家友, 刘雪贺, 贾坤义, 杨晓明. 新型H7N9禽流感病毒NA蛋白胞外区片段的生物信息学分析及其多克隆抗体制备[J]. 生物技术通报, 2019, 35(12): 85-93. |
[15] | 王玲, 李琰, 代伟娜, 严静, 张朝红. 葡萄细胞悬浮培养体系的建立和优化[J]. 生物技术通报, 2018, 34(8): 80-86. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||