生物技术通报 ›› 2021, Vol. 37 ›› Issue (12): 220-226.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0162
收稿日期:
2021-02-06
出版日期:
2021-12-26
发布日期:
2022-01-19
作者简介:
陈斯谦,男,硕士,研究方向:肠道微生物;E-mail: 基金资助:
CHEN Si-qian1(), WU Bian2, LIU Chen-jian1, LI Xiao-ran1()
Received:
2021-02-06
Published:
2021-12-26
Online:
2022-01-19
摘要:
人类生命早期的肠道已暴露在有菌环境中,正常的肠道菌群能够通过形成菌群屏障,分泌次生代谢产物,调节宿主免疫等方式维持肠道内环境稳态。而疫苗是一类通过宿主免疫应答而发挥作用的药物。疫苗与微生物之间的相互关系目前报道较少,近年研究发现肠道菌群会对疫苗制剂产生一定影响。本文回顾了肠道菌群与疫苗相互作用的研究进展,希望对疫苗研发提供理论基础与指导。
陈斯谦, 吴边, 柳陈坚, 李晓然. 肠道微生物对疫苗免疫效果影响的研究进展[J]. 生物技术通报, 2021, 37(12): 220-226.
CHEN Si-qian, WU Bian, LIU Chen-jian, LI Xiao-ran. Research Advances on the Influence of Intestinal Microorganism on the Immune Effect of Vaccine[J]. Biotechnology Bulletin, 2021, 37(12): 220-226.
图1 肠道微生物通过影响宿主免疫系统进而影响疫苗作用效果的可能路径
Fig.1 The possible pathways of affecting vaccine effects in intestinal microorganism by affecting the host immune system BAs:Bile acids. BAMs:Bile acid metabolisms. SCFAs:Short chain fatty acids
[1] |
Yatsunenko T, Rey FE, et al. Human gut microbiome viewed across age and geography[J]. Nature, 2012, 486(7402):222-227.
doi: 10.1038/nature11053 URL |
[2] |
Palmer C, Bik EM, DiGiulio DB, et al. Development of the human infant intestinal microbiota[J]. PLoS Biol, 2007, 5(7):e177.
doi: 10.1371/journal.pbio.0050177 URL |
[3] | John P. Factors influencing the composition of the intestinal microbiota in early infancy[J]. Pediatrics, 2006(118):511-521. |
[4] |
Renz H, Skevaki C. Early life microbial exposures and allergy risks:opportunities for prevention[J]. Nat Rev Immunol, 2021, 21(3):177-191.
doi: 10.1038/s41577-020-00420-y URL |
[5] |
Fassarella M, Blaak EE, Penders J, et al. Gut microbiome stability and resilience:elucidating the response to perturbations in order to modulate gut health[J]. Gut, 2021, 70(3):595-605.
doi: 10.1136/gutjnl-2020-321747 URL |
[6] |
Harris V, Armah G, et al. The infant gut microbiome correlates significantly with rotavirus vaccine response in rural ghana[J]. The Journal of infectious diseases, 2017, 215(1):34-41.
doi: 10.1093/infdis/jiw518 URL |
[7] |
Huda MN, Lewis Z, et al. Stool microbiota and vaccine responses of infants[J]. Pediatrics, 2014, 134(2):e362-e372.
doi: 10.1542/peds.2013-3937 URL |
[8] | 朱群, 常娟, 尹清强, 等. 益生菌对乳仔猪生长性能及肠道免疫和微生物区系的影响[R]. 中国畜牧兽医学会动物营养学分会第十二次动物营养学术研讨会, 武汉, 2015. |
Zhu Q, Chang J, Yi QQ, et al. Effects of probiotics on growth performance, intestinal immunity and microflora of piglets[R]. The 12th animal nutrition Symposium of animal nutrition branch of Chinese society of animal husbandry and veterinary. Wuhan, 2015 | |
[9] |
Liu CJ, Tang XD, Yu J, et al. Gut microbiota alterations from different Lactobacillus probiotic-fermented yoghurt treatments in slow-transit constipation[J]. J Funct Foods, 2017, 38:110-118.
doi: 10.1016/j.jff.2017.08.037 URL |
[10] | Li XR, Liu CJ, et al. Gut microbiota alterations from three-strain yogurt formulation treatments in slow-transit constipation[J]. Can J Infect Dis Med Microbiol, 2020: 4583973. |
[11] | 孟菲, 王春凤, 等. 益生菌与肠上皮细胞间相互作用和免疫调节机制研究进展[J]. 食品科学, 2013, 34(21):394-398. |
Meng F, Wang CF, Yang GL. Mechanisms of interaction between probiotics and intestinal epithelial cells and immune regulation[J]. Food Sci, 2013, 34(21):394-398.
doi: 10.1111/jfds.1969.34.issue-5 URL |
|
[12] |
Galdeano CM, et al. The probiotic bacterium Lactobacillus casei induces activation of the gut mucosal immune system through innate immunity[J]. Clin Vaccine Immunol, 2006, 13(2):219-226.
doi: 10.1128/CVI.13.2.219-226.2006 URL |
[13] |
Valdez Y, et al. Influence of the microbiota on vaccine effectiveness[J]. Trends Immunol, 2014, 35(11):526-537.
doi: 10.1016/j.it.2014.07.003 pmid: 25113637 |
[14] |
Donohoe DR, Garge N, Zhang X, et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon[J]. Cell Metab, 2011, 13(5):517-526.
doi: 10.1016/j.cmet.2011.02.018 pmid: 21531334 |
[15] |
Rosshart SP, Herz J, Vassallo BG, et al. Laboratory mice born to wild mice have natural microbiota and model human immune responses[J]. Science, 2019, 365(6452):eaaw4361.
doi: 10.1126/science.aaw4361 URL |
[16] |
Ekmekciu I, von Klitzing E, Fiebiger U, et al. Immune responses to broad-spectrum antibiotic treatment and fecal microbiota transplantation in mice[J]. Front Immunol, 2017, 8:397.
doi: 10.3389/fimmu.2017.00397 pmid: 28469619 |
[17] |
Hagan T, Cortese M, Rouphael N, et al. Antibiotics-driven gut microbiome perturbation alters immunity to vaccines in humans[J]. Cell, 2019, 178(6):1313-1328.e13.
doi: 10.1016/j.cell.2019.08.010 URL |
[18] |
Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease[J]. Nat Rev Microbiol, 2021, 19(1):55-71.
doi: 10.1038/s41579-020-0433-9 URL |
[19] |
Brown JM, Hazen SL. Microbial modulation of cardiovascular disease[J]. Nat Rev Microbiol, 2018, 16(3):171-181.
doi: 10.1038/nrmicro.2017.149 pmid: 29307889 |
[20] |
Dalile B, Van Oudenhove L, Vervliet B, et al. The role of short-chain fatty acids in microbiota-gut-brain communication[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(8):461-478.
doi: 10.1038/s41575-019-0157-3 URL |
[21] |
Chiang JYL. Bile acids:regulation of synjournal:thematic review series:bile acids[J]. J Lipid Res, 2009(10):1955-1966.
doi: 10.1194/jlr.R900010-JLR200 pmid: 19346330 |
[22] |
Gérard P. Metabolism of cholesterol and bile acids by the gut microbiota[J]. Pathogens, 2013, 3(1):14-24.
doi: 10.3390/pathogens3010014 URL |
[23] |
Kuipers F, de Boer JF, Staels B. Microbiome modulation of the host adaptive immunity through bile acid modification[J]. Cell Metab, 2020, 31(3):445-447.
doi: 10.1016/j.cmet.2020.02.006 URL |
[24] | 赵圆圆, 朱云, 高树娟, 等. 胆汁酸与肠道微生物相互影响及其在疾病中的作用[J]. 医学综述, 2020, 26(14):2743-2747, 2752. |
Zhao YY, Zhu Y, Gao SJ, et al. Interaction between bile acids and intestinal microorganisms and its role in disease[J]. Med Recapitul, 2020, 26(14):2743-2747, 2752. | |
[25] |
Song X, Sun X, Oh SF, et al. Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis[J]. Nature, 2020, 577(7790):410-415.
doi: 10.1038/s41586-019-1865-0 URL |
[26] |
Ramanan D, Sefik E, Galván-Peña S, et al. An immunologic mode of multigenerational transmission governs a gut treg setpoint[J]. Cell, 2020, 181(6):1276-1290.e13.
doi: 10.1016/j.cell.2020.04.030 URL |
[27] |
Zimmermann J, et al. Breast milk modulates transgenerational immune inheritance[J]. Cell, 2020, 181(6):1202-1204.
doi: S0092-8674(20)30625-5 pmid: 32497500 |
[28] | 李庆军, 曲新艳. 肠道微生物对疾病发生发展和中药代谢的影响[J]. 生物技术通讯, 2019, 30(4):571-578. |
Li QJ, Qu XY. Effects of gut microbiota on diseases and traditional Chinese medicine action[J]. Lett Biotechnol, 2019, 30(4):571-578.
doi: 10.1007/s10529-007-9594-0 URL |
|
[29] | 曹伟宇, 冯斌, 等. 肠道菌群/肝药酶系对天然皂苷类成分的代谢研究进展[J]. 中国药房, 2016, 27(28):3999-4002. |
Cao WY, Feng B, Wang XJ. Research Progress on metabolism of natural saponins by intestinal flora / hepatic drug enzymes[J]. China Pharm, 2016, 27(28):3999-4002. | |
[30] | 王艳, 舒健, 张宸, 等. 肠道微生物蛋白糖基化修饰的研究进展[J]. 微生物学通报, 2020, 47(1):253-262. |
Wang Y, Shu J, Zhang C, et al. New progress of protein glycosylation modification in gut microbes[J]. Microbiol China, 2020, 47(1):253-262. | |
[31] | Maini Rekdal V, Bess EN, Bisanz JE, et al. Discovery and inhibition of an interspecies gut bacterial pathway for Levodopa metabolism[J]. Science, 2019, 364(6445). |
[32] |
Zimmermann M, Zimmermann-Kogadeeva M, et al. Separating host and microbiome contributions to drug pharmacokinetics and toxicity[J]. Science, 2019, 363(6427):eaat9931.
doi: 10.1126/science.aat9931 URL |
[33] |
Xu J, Chen HB, Li SL. Understanding the molecular mechanisms of the interplay between herbal medicines and gut microbiota[J]. Med Res Rev, 2017, 37(5):1140-1185.
doi: 10.1002/med.2017.37.issue-5 URL |
[34] | 李康, 聂玉强. 肠道微生物代谢与药物治疗相关性研究进展[J]. 现代消化及介入诊疗, 2017, 22(5):756-759. |
Li K, Nie YQ. Research progress on the relationship between intestinal microbial metabolism and drug therapy[J]. Mod Dig Interv, 2017, 22(5):756-759. | |
[35] |
Mahowald MA, Rey FE, Seedorf H, et al. Characterizing a model human gut microbiota composed of members of its two dominant bacterial Phyla[J]. PNAS, 2009, 106(14):5859-5864.
doi: 10.1073/pnas.0901529106 pmid: 19321416 |
[36] |
Liu CJ, Liang X, Niu ZY, et al. Is the delivery mode a critical factor for the microbial communities in the meconium?[J]. EBioMedicine, 2019, 49:354-363.
doi: 10.1016/j.ebiom.2019.10.045 URL |
[37] |
Allaire JM, Crowley SM, Law HT, et al. The intestinal epithelium:central coordinator of mucosal immunity[J]. Trends Immunol, 2018, 39(9):677-696.
doi: 10.1016/j.it.2018.04.002 URL |
[38] |
Richards JL, Yap YA, et al. Dietary metabolites and the gut microbiota:an alternative approach to control inflammatory and autoimmune diseases[J]. Clin Transl Immunology, 2016, 5(5):e82.
doi: 10.1038/cti.2016.29 URL |
[39] |
Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis factor prevents intestinal inflammatory disease[J]. Nature, 2008, 453(7195):620-625.
doi: 10.1038/nature07008 URL |
[40] |
Round JL, Lee SM, Li J, et al. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota[J]. Science, 2011, 332(6032):974-977.
doi: 10.1126/science.1206095 pmid: 21512004 |
[41] |
Schluter J, Peled JU, Taylor BP, et al. The gut microbiota is associated with immune cell dynamics in humans[J]. Nature, 2020, 588(7837):303-307.
doi: 10.1038/s41586-020-2971-8 URL |
[1] | 王祥锟, 宋学宏, 刘金龙, 郭培红, 庄晓峰, 韦良孟, 周凡, 张树宇, 高攀攀, 魏凯. 新型冠状病毒亚单位疫苗研制及其高效免疫增强剂的筛选[J]. 生物技术通报, 2023, 39(1): 305-314. |
[2] | 温亚亚, 宋丽, 汪巧菊, 潘志明, 焦新安. 新冠肺炎疫苗的研究现状及面临的挑战[J]. 生物技术通报, 2022, 38(7): 136-145. |
[3] | 马芳芳, 康碧静, 马春英, 刘振斌, 杨迪, 乔自林, 王明明, 马忠仁, 王家敏. Vero细胞基质流感疫苗研究进展[J]. 生物技术通报, 2022, 38(12): 137-143. |
[4] | 张爱莲, 巴雪丽, 王丹阳, 赵兵. 新疆荒漠肉苁蓉粗多糖对口蹄疫疫苗抗体和T细胞亚群的影响[J]. 生物技术通报, 2021, 37(9): 212-218. |
[5] | 邱小宇, 刘作华, 齐仁立. 无菌猪和普通猪早期脂肪发育及脂肪组织基因转录表达的差异[J]. 生物技术通报, 2021, 37(5): 56-66. |
[6] | 殷俊磊, 张艳芳, 邹凡雨, 潘鹏涛, 段艳红, 仇书兴. 鸡白痢沙门菌sptP基因缺失株的构建及其免疫保护效力评价[J]. 生物技术通报, 2021, 37(2): 122-128. |
[7] | 谢果珍, 唐圆, 吴仪, 黄莉莉, 谭周进. 七味白术散总苷对菌群失调腹泻小鼠肠道微生物及酶活性的影响[J]. 生物技术通报, 2021, 37(12): 124-131. |
[8] | 梁旺旺, 李成龙, 陈文智, 丰志华, 蔡少丽, 陈骐. 表达非洲猪瘟病毒CD2v与P12蛋白的重组伪狂犬病毒的构建[J]. 生物技术通报, 2021, 37(12): 132-140. |
[9] | 黄小丹, 陈梦雨, 黄文洁, 张名位, 晏石娟. 基于代谢组学的植物多酚及其肠道健康效应研究进展[J]. 生物技术通报, 2021, 37(1): 123-136. |
[10] | 赵旭, 徐群, 侯彦茹, 李明宇, 张雅宁, 汪海. ANGPTL4在肠道微生物影响动物脂肪代谢中的作用[J]. 生物技术通报, 2020, 36(6): 230-235. |
[11] | 王晶, 戴东, 武书庚, 张海军, 齐广海. 鸡肠道微生物演替与早期定植的研究进展[J]. 生物技术通报, 2020, 36(2): 1-8. |
[12] | 黄海敏, 蓝秀万, 吴耀生. 肠道微生物与性激素相关疾病研究进展[J]. 生物技术通报, 2020, 36(2): 77-82. |
[13] | 胡峰, 王庆, 李莹莹, 曾伟伟, 王高学, 朱斌, 王英英, 尹纪元. 单壁碳纳米管载锦鲤疱疹病毒ORF149核酸疫苗的构建[J]. 生物技术通报, 2020, 36(2): 206-213. |
[14] | 刘淑君, 陈苗, 王凤忠, 包郁明, 辛凤姣, 温博婷. 谷氨酸(钠)对人体肠道菌群影响的体外发酵研究[J]. 生物技术通报, 2020, 36(12): 104-112. |
[15] | 刘世旭 ,王庆 ,方珍珍 ,常藕琴 ,曾伟伟 ,黄志斌. 水产动物口服疫苗的研究进展[J]. 生物技术通报, 2018, 34(6): 30-37. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||