生物技术通报 ›› 2023, Vol. 39 ›› Issue (3): 184-195.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0729
赵艳侠(), 张晶莹, 孙骏飞, 王绛辉, 孙家波(), 吕晓惠()
收稿日期:
2022-06-17
出版日期:
2023-03-26
发布日期:
2023-04-10
通讯作者:
孙家波,男,博士,副研究员,研究方向:农业信息化和都市农业;E-mail: sjbsd@qq.com;作者简介:
赵艳侠,女,博士,助理研究员,研究方向:玫瑰生理与分子生物学;E-mail:zhaoyanxia2368@sina.com
基金资助:
ZHAO Yan-xia(), ZHANG Jing-ying, SUN Jun-fei, WANG Jiang-hui, SUN Jia-bo(), LV Xiao-hui()
Received:
2022-06-17
Published:
2023-03-26
Online:
2023-04-10
摘要:
为探究调控‘重瓣红’玫瑰花发育过程中花香关键基因和代谢通路,对花不同发育阶段样本进行转录组和代谢组测序分析。转录组学分析在花蕾期、初开期、半开期、盛开期和落花期对比中分别检测出4 435、2 444、7 021、4 123个差异表达基因,其中5个阶段共有差异基因214个。代谢组学共检测到508个代谢物,230个差异代谢物,在不同发育时期代谢物有明显的差异,代谢物被分为4簇。在分析玫瑰花香苯环类和萜烯类合成途径中,发现差异表达基因58个,差异代谢物11个。结合转录组和代谢组分析,花发育过程基因和挥发物质变化明显,花蕾期形成单萜类物质,半开期挥发物逐渐积累,落花期代谢物释放量减少,典型玫瑰花香物质主要在半开期形成。因此,选择合适采收时间有助于玫瑰花香品质的形成与保留。
赵艳侠, 张晶莹, 孙骏飞, 王绛辉, 孙家波, 吕晓惠. ‘重瓣红’玫瑰不同花发育阶段转录和代谢差异分析[J]. 生物技术通报, 2023, 39(3): 184-195.
ZHAO Yan-xia, ZHANG Jing-ying, SUN Jun-fei, WANG Jiang-hui, SUN Jia-bo, LV Xiao-hui. Analyses of Transcription and Metabolic Differential in the Flower Development Processes of ‘Rose rugosa cv. Plena’[J]. Biotechnology Bulletin, 2023, 39(3): 184-195.
图1 不同花发育阶段的‘重瓣红’玫瑰 S1,花蕾期;S2,初开期;S3,半开期;S4,盛开期;S5,落花期
Fig. 1 ‘Rose rugosa cv. Plena’ at different flower develo-pment stages S1, bud stage; S2, early opening stage; S3, half opening stage; S4, full opening stage; S5, falling stage
样品Sample | 干净数据Clean reads/条 | 干净碱基Clean bases/条 | Q30/% | GC% | 总覆盖率Total map | 单基因簇覆盖率Uniqene map |
---|---|---|---|---|---|---|
S1_1 | 43560704 | 6.53G | 93.11 | 46.38 | 38653888(88.74%) | 37024958(85.0%) |
S1_2 | 41108142 | 6.17G | 93.59 | 46.24 | 36527928(88.86%) | 34961281(85.05%) |
S1_3 | 41270832 | 6.19G | 92.90 | 46.57 | 36416339(88.24%) | 34853914(84.45%) |
S2_1 | 40157090 | 6.02G | 92.70 | 46.15 | 35191533(87.63%) | 33462150(83.33%) |
S2_2 | 40792264 | 6.12G | 93.43 | 46.00 | 36413732(89.27%) | 34522803(84.63%) |
S2_3 | 50193776 | 7.53G | 93.74 | 44.87 | 44201173(88.06%) | 41939032(83.55%) |
S3_1 | 42675712 | 6.4G | 92.93 | 46.36 | 37888228(88.78%) | 35915909(84.16%) |
S3_2 | 38782360 | 5.82G | 93.87 | 45.44 | 34250173(88.31%) | 32535926(83.89%) |
S3_3 | 39070016 | 5.86G | 93.88 | 46.28 | 34707961(88.84%) | 32862481(84.11%) |
S4_1 | 48560062 | 7.28G | 93.19 | 46.35 | 42964625(88.48%) | 41292162(85.03%) |
S4_2 | 43634520 | 6.55G | 93.42 | 46.53 | 38758791(88.83%) | 37288218(85.46%) |
S4_3 | 41766500 | 6.26G | 94.09 | 46.32 | 37080845(88.78%) | 35641262(85.33%) |
S5_1 | 44557882 | 6.68G | 93.32 | 46.36 | 39238867(88.06%) | 37801285(84.84%) |
S5_2 | 46285840 | 6.94G | 93.00 | 46.18 | 40765093(88.07%) | 39282444(84.87%) |
S5_3 | 43097136 | 6.46G | 93.23 | 46.15 | 38142503(88.5%) | 36731475(85.23%) |
表1 转录组测序结果统计
Table 1 Statistics of transcriptome sequencing data assembly
样品Sample | 干净数据Clean reads/条 | 干净碱基Clean bases/条 | Q30/% | GC% | 总覆盖率Total map | 单基因簇覆盖率Uniqene map |
---|---|---|---|---|---|---|
S1_1 | 43560704 | 6.53G | 93.11 | 46.38 | 38653888(88.74%) | 37024958(85.0%) |
S1_2 | 41108142 | 6.17G | 93.59 | 46.24 | 36527928(88.86%) | 34961281(85.05%) |
S1_3 | 41270832 | 6.19G | 92.90 | 46.57 | 36416339(88.24%) | 34853914(84.45%) |
S2_1 | 40157090 | 6.02G | 92.70 | 46.15 | 35191533(87.63%) | 33462150(83.33%) |
S2_2 | 40792264 | 6.12G | 93.43 | 46.00 | 36413732(89.27%) | 34522803(84.63%) |
S2_3 | 50193776 | 7.53G | 93.74 | 44.87 | 44201173(88.06%) | 41939032(83.55%) |
S3_1 | 42675712 | 6.4G | 92.93 | 46.36 | 37888228(88.78%) | 35915909(84.16%) |
S3_2 | 38782360 | 5.82G | 93.87 | 45.44 | 34250173(88.31%) | 32535926(83.89%) |
S3_3 | 39070016 | 5.86G | 93.88 | 46.28 | 34707961(88.84%) | 32862481(84.11%) |
S4_1 | 48560062 | 7.28G | 93.19 | 46.35 | 42964625(88.48%) | 41292162(85.03%) |
S4_2 | 43634520 | 6.55G | 93.42 | 46.53 | 38758791(88.83%) | 37288218(85.46%) |
S4_3 | 41766500 | 6.26G | 94.09 | 46.32 | 37080845(88.78%) | 35641262(85.33%) |
S5_1 | 44557882 | 6.68G | 93.32 | 46.36 | 39238867(88.06%) | 37801285(84.84%) |
S5_2 | 46285840 | 6.94G | 93.00 | 46.18 | 40765093(88.07%) | 39282444(84.87%) |
S5_3 | 43097136 | 6.46G | 93.23 | 46.15 | 38142503(88.5%) | 36731475(85.23%) |
图10 花发育阶段萜烯类生物合成的代谢组和转录组分析 五个花发育阶段的基因表达水平(Log2-FPRM)由绿色到红色的颜色渐变表示。当基因表达FPRM≤1 在Log2转换后被设置为0。蓝色到红色的网格渐变分别用来代表S2/S1、S3/S1、S4/S1、S5/S1代谢物的比值
Fig. 10 Metabolomic and transcript profiling in the terpene biosynthetic in flower development stages Gene expression levels(Log2 FPRM)in five flower development stages in rose are represented by color gradation from green to red. Gene expression with FPRM ≤ 1 was set to 0 after log2 transformation. Grids with a color-scale from blue to red represent values of metabolite S2/S1, S3/S1, S4/S1 and S5/S1, respectively
[1] | 陈玉霞. 山东玫瑰产业发展现状及建议[J]. 中国果菜, 2020, 40(6): 116-118, 128. |
Chen YX. Present situation and suggestion of Shandong rose industry development[J]. China Fruit & Veg, 2020, 40(6): 116-118, 128. | |
[2] |
Knudsen JT, Eriksson R, Gershenzon J, et al. Diversity and distribution of floral scent[J]. Bot Rev, 2006, 72(1): 1-120.
doi: 10.1663/0006-8101(2006)72[1:DADOFS]2.0.CO;2 URL |
[3] | 张长波, 孙红霞, 巩中军, 等. 植物萜类化合物的天然合成途径及其相关合酶[J]. 植物生理学通讯, 2007, 43(4): 779-786. |
Zhang CB, Sun HX, Gong ZJ, et al. Plant terpenoid natural metabolism pathways and their synthases[J]. Plant Physiol Commun, 2007, 43(4): 779-786. | |
[4] |
Martin GJ, Heck G, Djamaris-Zainal R, et al. Isotopic criteria in the characterization of aromatic molecules. 1. Hydrogen affiliation in natural benzenoid/phenylpropanoid molecules[J]. J Agric Food Chem, 2006, 54(26): 10112-10119.
doi: 10.1021/jf061979w URL |
[5] | 孔滢, 孙明, 潘会堂, 等. 花香代谢与调控研究进展[J]. 北京林业大学学报, 2012, 34(2): 146-154. |
Kong Y, Sun M, Pan HT, et al. Advances in metabolism and regulation of floral scent[J]. J Beijing For Univ, 2012, 34(2): 146-154. | |
[6] |
姚晨阳, 葛红, 吴华, 等. 玫瑰不同品种花瓣挥发性成分分析[J]. 园艺学报, 2019, 46(2): 375-384.
doi: 10.16420/j.issn.0513-353x.2018-0196 |
Yao CY, Ge H, Wu H, et al. Petal volatile components among different varieties of Rosa rugosa[J]. Acta Hortic Sin, 2019, 46(2): 375-384. | |
[7] |
Jadaun JS, Sangwan NS, Narnoliya LK, et al. Over-expression of DXS gene enhances terpenoidal secondary metabolite accumulation in rose-scented geranium and Withania somnifera: active involvement of plastid isoprenogenic pathway in their biosynthesis[J]. Physiol Plant, 2017, 159(4): 381-400.
doi: 10.1111/ppl.12507 pmid: 27580641 |
[8] |
Kaminaga Y, Schnepp J, Peel G, et al. Plant phenylacetaldehyde synthase is a bifunctional homotetrameric enzyme that catalyzes phenylalanine decarboxylation and oxidation[J]. J Biol Chem, 2006, 281(33): 23357-23366.
doi: 10.1074/jbc.M602708200 pmid: 16766535 |
[9] |
Magnard JL, Roccia A, Caissard JC, et al. PLANT VOLATILES. Biosynthesis of monoterpene scent compounds in roses[J]. Science, 2015, 349(6243): 81-83.
doi: 10.1126/science.aab0696 URL |
[10] |
Feng LG, Chen C, Li TL, et al. Flowery odor formation revealed by differential expression of monoterpene biosynthetic genes and monoterpene accumulation in rose(Rosa rugosa Thunb.)[J]. Plant Physiol Biochem, 2014, 75: 80-88.
doi: 10.1016/j.plaphy.2013.12.006 URL |
[11] |
Tholl D, Gershenzon J. Biochemistry. The flowering of a new scent pathway in rose[J]. Science, 2015, 349(6243): 28-29.
doi: 10.1126/science.aac6509 URL |
[12] | Liu KD, Feng SX, Pan YL, et al. Transcriptome analysis and identification of genes associated with floral transition and flower development in sugar apple(Annona squamosa L.)[J]. Front Plant Sci, 2016, 7: 1695. |
[13] |
Chen F, Su LY, Hu SY, et al. A chromosome-level genome assembly of rugged rose(Rosa rugosa)provides insights into its evolution, ecology, and floral characteristics[J]. Hortic Res, 2021, 8(1): 141.
doi: 10.1038/s41438-021-00594-z |
[14] |
Vranová E, Coman D, Gruissem W. Network analysis of the MVA and MEP pathways for isoprenoid synthesis[J]. Annu Rev Plant Biol, 2013, 64: 665-700.
doi: 10.1146/annurev-arplant-050312-120116 pmid: 23451776 |
[15] |
Baldwin IT. Plant volatiles[J]. Curr Biol, 2010, 20(9): R392-R397.
doi: 10.1016/j.cub.2010.02.052 URL |
[16] |
Bouwmeester H, Schuurink RC, Bleeker PM, et al. The role of volatiles in plant communication[J]. Plant J, 2019, 100(5): 892-907.
doi: 10.1111/tpj.14496 |
[17] |
Alquézar B, Rodríguez A, et al. Genomic analysis of terpene synthase family and functional characterization of seven sesquiterpene synthases from Citrus sinensis[J]. Front Plant Sci, 2017, 8: 1481.
doi: 10.3389/fpls.2017.01481 pmid: 28883829 |
[18] |
Hirata H, Ohnishi T, Watanabe N. Biosynthesis of floral scent 2-phenylethanol in rose flowers[J]. Biosci Biotechnol Biochem, 2016, 80(10): 1865-1873.
doi: 10.1080/09168451.2016.1191333 URL |
[19] | Chen XM, Kobayashi H, Sakai MW, et al. Functional characterization of rose phenylacetaldehyde reductase(PAR), an enzyme involved in the biosynthesis of the scent compound 2-phenylethanol[J]. J Plant Physiol, 2011, 168(2): 88-95. |
[20] |
Koeduka T, Fridman E, Gang DR, et al. Eugenol and isoeugenol, characteristic aromatic constituents of spices, are biosynthesized via reduction of a coniferyl alcohol ester[J]. Proc Natl Acad Sci USA, 2006, 103(26): 10128-10133.
doi: 10.1073/pnas.0603732103 pmid: 16782809 |
[21] | 王海萍, 晏慧君, 张颢, 等. 月季(Rosa chinensis)丁香酚合成酶基因RcEGS1的克隆及其表达分析[J]. 园艺学报, 2012, 39(7): 1387-1394. |
Wang HP, Yan HJ, Zhang H, et al. Cloning and expression analysis of eugenol synthase gene RcEGS1 in Rosa chinensis ‘pallida’[J]. Acta Hortic Sin, 2012, 39(7): 1387-1394. |
[1] | 周嫒婷, 彭睿琦, 王芳, 伍建榕, 马焕成. 生防菌株DZY6715在不同生长期的代谢差异分析[J]. 生物技术通报, 2023, 39(9): 225-235. |
[2] | 曹映辉, 胡美娟, 童妍, 张燕萍, 赵凯, 彭东辉, 周育真. 建兰ABC基因家族鉴定及其在花发育过程中的表达模式分析[J]. 生物技术通报, 2022, 38(11): 162-174. |
[3] | 刘传和, 贺涵, 何秀古, 赖秋勤, 刘开, 邵雪花, 赖多, 匡石滋, 肖维强. 转录组与代谢组联合分析菠萝网纱覆盖防寒机制[J]. 生物技术通报, 2022, 38(11): 58-69. |
[4] | 刘传和, 贺涵, 何秀古, 刘开, 邵雪花, 赖多, 匡石滋, 肖维强. 不同连作年限菠萝园土壤差异代谢物和细菌群落结构分析[J]. 生物技术通报, 2021, 37(8): 162-175. |
[5] | 曹继敏, 李双财, 何德. 镉胁迫后旱柳转录组变化分析[J]. 生物技术通报, 2020, 36(7): 32-39. |
[6] | 王得运, 罗光明, 刘培培, 周丽, 徐月莹, 陈云婷. 植物响应淹涝的转录组学研究进展[J]. 生物技术通报, 2019, 35(7): 156-161. |
[7] | 戴冬洋, 袁丽伟, 盛云燕, 郑群. 甜瓜雄性不育系不同发育时期雄蕊转录组分析[J]. 生物技术通报, 2018, 34(8): 93-100. |
[8] | 江为, 谷慧英, 王志敏, 宋明, 汤青林. 拟南芥花分生组织决定基因AGL24对花发育的影响[J]. 生物技术通报, 2014, 0(4): 6-13. |
[9] | 李敬, 谷慧英, 王志敏, 汤青林, 宋明. 拟南芥成花关键基因调控网络研究进展[J]. 生物技术通报, 2014, 0(12): 1-8. |
[10] | 马传营;潘东明;钟凤林;郭志雄;. 中国水仙花基因工程的研究现状[J]. , 2010, 0(10): 36-39. |
[11] | 闻可心;刘雪梅;. AP2功能基因在植物花发育中的重要作用[J]. , 2010, 0(02): 1-7. |
[12] | 秦春圃;. DDRT-PCR技术在研究附植前胚胎基因表达中的应用[J]. , 2008, 0(01): 29-29. |
[13] | 陶冶. 控制花的发育[J]. , 1995, 0(04): 15-16. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||