生物技术通报 ›› 2023, Vol. 39 ›› Issue (4): 166-175.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0982
李善家1,2(), 雷雨昕1, 孙梦格1, 刘海锋1, 王兴敏1
收稿日期:
2022-08-15
出版日期:
2023-04-26
发布日期:
2023-05-16
通讯作者:
李善家同为本文通讯作者作者简介:
李善家,男,博士,教授,研究方向:植物微生物共生关系;E-mail: lishanjia@lut.edu.cn
基金资助:
LI Shan-jia1,2(), LEI Yu-xin1, SUN Meng-ge1, LIU Hai-feng1, WANG Xing-min1
Received:
2022-08-15
Published:
2023-04-26
Online:
2023-05-16
摘要:
种子作为植物重要的繁殖器官,是多种有益微生物的载体,其内部普遍存在种类丰富多样且对植物具有一定作用的内生菌群落。种子内生细菌可以直接或间接地促进种子萌发和植物生长、提高植物对各种病原菌和环境胁迫的抗性、促进活性成分产生和累积,并产生各种生物学效应,它们的分布和种群结构受寄主植物的遗传特性和健康状况以及周围环境生态的影响。本文从种子内生细菌的多样性,种子内生细菌促进植物生长、提高植物抗性、促进活性成分累积以及在农业生产和生物防治方面的应用前景,对种子内生细菌研究领域所取得的进展进行论述并提出展望,为后续种子内生细菌相关研究提供参考。
李善家, 雷雨昕, 孙梦格, 刘海锋, 王兴敏. 种子内生细菌多样性与植物互馈作用研究进展[J]. 生物技术通报, 2023, 39(4): 166-175.
LI Shan-jia, LEI Yu-xin, SUN Meng-ge, LIU Hai-feng, WANG Xing-min. Research Progress in the Diversity of Endophytic Bacteria in Seeds and Their Interaction with Plants[J]. Biotechnology Bulletin, 2023, 39(4): 166-175.
属 Genera | 植物种类 Plant species | 参考文献Reference | 属 Genera | 植物种类 Plant species | 参考文献Reference | |
---|---|---|---|---|---|---|
芽孢杆菌属 | 水稻Oryza sativa | [ | 鞘氨醇单胞菌属 | 玉米Z. mays | [ | |
Bacillus | 银杏Ginkgo biloba | [ | Sphingomonas | 矮松P. virginiana | [ | |
海滨木巴戟Morinda citrifolia | [ | 水稻O. sativa | [ | |||
烟草Nicotiana tabacum | [ | 伯克霍尔德氏菌属 | 小粒咖啡Coffea arabica | [ | ||
鹰嘴豆Cicer arietinum | [ | Burkholderia | 小麦T. aestivum | [ | ||
番茄Solanum lycopersicum | [ | 水稻O. sativa | [ | |||
田菁Sesbania cannabina | [ | 肠杆菌属Enterobacter | 玉米Z. mays | [ | ||
蚕豆Vicia faba | [ | 鹰嘴豆C. arietinum | [ | |||
假单胞菌属 | 玉米Zea mays | [ | 短小杆菌属Curtobacterium | 小麦T. aestivum | [ | |
Pseudomonas | 银杏Ginkgo biloba | [ | 水稻O. sativa | [ | ||
水稻O. sativa | [ | 寡养单胞菌属 | 小粒咖啡C. arabica | [ | ||
烟草N. tabacum | [ | Stenotrophomonas | 玉米Z. mays | [ | ||
喜树Camptothecaacuminata | [ | 烟草N. tabacum | [ | |||
鹰嘴豆C. arietinum | [ | 沙雷氏菌属Serratia | 玉米Z. mays | [ | ||
丹参Salvia miltiorrhiza | [ | 小麦T. aestivum | [ | |||
芦苇Phragmites australis | [ | 根瘤菌属Rhizobiwn | 水稻O. sativa | [ | ||
西黄松 Pinus ponderosa | [ | 田菁S. cannabina | [ | |||
野甘蓝Brassica oleracea | [ | 拟杆菌属Bacteroides | 蚕豆Vicia faba | [ | ||
类芽孢杆菌属 | 水稻O. sativa | [ | 乳杆菌属Lactobacillus | 小麦T. aestivum | [ | |
Paenibacillus | 烟草N. tabacum | [ | 蚕豆V. faba | [ | ||
小麦Triticum aestivum | [ | 不动杆菌属Acinetobacter | 海滨木巴戟M. citrifolia | [ | ||
食酸菌属 | 小麦T. aestivum | [ | 纤维菌属Cellulomonas | 田菁S. cannabina | [ | |
Acidovorax | 水稻O. sativa | [ | 马赛菌属Massilia | 小麦T. aestivum | [ | |
葡萄球菌属 | 鹰嘴豆C. arietinum | [ | 链霉菌属Streptomyces | 小麦T. aestivum | [ | |
Staphylococcus | 矮松Pinus virginiana | [ | 奈瑟氏菌属Neisseria | 小麦T. aestivum | [ | |
泛菌属Pantoea | 玉米Z. mays | [ | 甲烷细菌属Methanobacterium | 小麦T. aestivum | [ | |
水稻O. sativa | [ | 金黄杆菌属Chryseobacterium | 小麦T. aestivum | [ | ||
烟草N. tabacum | [ | 肠球菌属Enterococcus | 棕榈Trachycarpus fortunei | [ | ||
鹰嘴豆C. arietinum | [ | 三药槟榔Areca triandra | [ | |||
丹参S. miltiorrhiza | [ | 短穗鱼尾葵Caryota mitis | [ | |||
矮松P. virginiana | [ | 软叶刺葵Phoenix roebelenii | [ | |||
小麦T. aestivum | [ | 山棕Arenga engleri | [ |
表1 植物种子内生细菌的常见种属
Table 1 Common species and genera of endophytic bacteria in plant seeds
属 Genera | 植物种类 Plant species | 参考文献Reference | 属 Genera | 植物种类 Plant species | 参考文献Reference | |
---|---|---|---|---|---|---|
芽孢杆菌属 | 水稻Oryza sativa | [ | 鞘氨醇单胞菌属 | 玉米Z. mays | [ | |
Bacillus | 银杏Ginkgo biloba | [ | Sphingomonas | 矮松P. virginiana | [ | |
海滨木巴戟Morinda citrifolia | [ | 水稻O. sativa | [ | |||
烟草Nicotiana tabacum | [ | 伯克霍尔德氏菌属 | 小粒咖啡Coffea arabica | [ | ||
鹰嘴豆Cicer arietinum | [ | Burkholderia | 小麦T. aestivum | [ | ||
番茄Solanum lycopersicum | [ | 水稻O. sativa | [ | |||
田菁Sesbania cannabina | [ | 肠杆菌属Enterobacter | 玉米Z. mays | [ | ||
蚕豆Vicia faba | [ | 鹰嘴豆C. arietinum | [ | |||
假单胞菌属 | 玉米Zea mays | [ | 短小杆菌属Curtobacterium | 小麦T. aestivum | [ | |
Pseudomonas | 银杏Ginkgo biloba | [ | 水稻O. sativa | [ | ||
水稻O. sativa | [ | 寡养单胞菌属 | 小粒咖啡C. arabica | [ | ||
烟草N. tabacum | [ | Stenotrophomonas | 玉米Z. mays | [ | ||
喜树Camptothecaacuminata | [ | 烟草N. tabacum | [ | |||
鹰嘴豆C. arietinum | [ | 沙雷氏菌属Serratia | 玉米Z. mays | [ | ||
丹参Salvia miltiorrhiza | [ | 小麦T. aestivum | [ | |||
芦苇Phragmites australis | [ | 根瘤菌属Rhizobiwn | 水稻O. sativa | [ | ||
西黄松 Pinus ponderosa | [ | 田菁S. cannabina | [ | |||
野甘蓝Brassica oleracea | [ | 拟杆菌属Bacteroides | 蚕豆Vicia faba | [ | ||
类芽孢杆菌属 | 水稻O. sativa | [ | 乳杆菌属Lactobacillus | 小麦T. aestivum | [ | |
Paenibacillus | 烟草N. tabacum | [ | 蚕豆V. faba | [ | ||
小麦Triticum aestivum | [ | 不动杆菌属Acinetobacter | 海滨木巴戟M. citrifolia | [ | ||
食酸菌属 | 小麦T. aestivum | [ | 纤维菌属Cellulomonas | 田菁S. cannabina | [ | |
Acidovorax | 水稻O. sativa | [ | 马赛菌属Massilia | 小麦T. aestivum | [ | |
葡萄球菌属 | 鹰嘴豆C. arietinum | [ | 链霉菌属Streptomyces | 小麦T. aestivum | [ | |
Staphylococcus | 矮松Pinus virginiana | [ | 奈瑟氏菌属Neisseria | 小麦T. aestivum | [ | |
泛菌属Pantoea | 玉米Z. mays | [ | 甲烷细菌属Methanobacterium | 小麦T. aestivum | [ | |
水稻O. sativa | [ | 金黄杆菌属Chryseobacterium | 小麦T. aestivum | [ | ||
烟草N. tabacum | [ | 肠球菌属Enterococcus | 棕榈Trachycarpus fortunei | [ | ||
鹰嘴豆C. arietinum | [ | 三药槟榔Areca triandra | [ | |||
丹参S. miltiorrhiza | [ | 短穗鱼尾葵Caryota mitis | [ | |||
矮松P. virginiana | [ | 软叶刺葵Phoenix roebelenii | [ | |||
小麦T. aestivum | [ | 山棕Arenga engleri | [ |
[1] |
Kandel SL, Joubert PM, Doty SL. Bacterial endophyte colonization and distribution within plants[J]. Microorganisms, 2017, 5(4): 77.
doi: 10.3390/microorganisms5040077 URL |
[2] | 姜晓宇, 高菊生, 徐凤花, 等. 水稻种子内生细菌多样性及其分泌植物生长素能力的测定[J]. 微生物学报, 2013, 53(3): 269-275. |
Jiang XY, Gao JS, Xu FH, et al. Diversity of endophytic bacteria in rice seeds and their secretion of indole acetic acid[J]. Acta Microbiol Sin, 2013, 53(3): 269-275. | |
[3] | 文才艺, 吴元华, 田秀玲. 植物内生菌研究进展及其存在的问题[J]. 生态学杂志, 2004, 23(2): 86-91. |
Wen CY, Wu YH, Tian XL. Recent advances and issues on the endophyte[J]. Chin J Ecol, 2004, 23(2): 86-91. | |
[4] |
Stierle A, Strobel G, Stierle D. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew[J]. Science, 1993, 260(5105): 214-216.
pmid: 8097061 |
[5] | Petrini O. Fungal endophytes of tree leaves[M]// Brock/Springer Series in Contemporary Bioscience. New York: Springer New York, 1991: 179-197. |
[6] |
Kloepper JW, Beauchamp CJ. A review of issues related to measuring colonization of plant roots by bacteria[J]. Can J Microbiol, 1992, 38(12): 1219-1232.
doi: 10.1139/m92-202 URL |
[7] |
Dudeja SS, Suneja-Madan P, Paul M, et al. Bacterial endophytes: molecular interactions with their hosts[J]. J Basic Microbiol, 2021, 61(6): 475-505.
doi: 10.1002/jobm.v61.6 URL |
[8] |
Rosenblueth M, Martínez-Romero E. Bacterial endophytes and their interactions with hosts[J]. Mol Plant Microbe Interact, 2006, 19(8): 827-837.
doi: 10.1094/MPMI-19-0827 URL |
[9] | 王志伟, 纪燕玲, 陈永敢. 植物内生菌研究及其科学意义[J]. 微生物学通报, 2015, 42(2): 349-363. |
Wang ZW, Ji YL, Chen YG. Studies and biological significances of plant endophytes[J]. Microbiol China, 2015, 42(2): 349-363. | |
[10] |
Mohamad OAA, Li L, Ma JB, et al. Evaluation of the antimicrobial activity of endophytic bacterial populations from Chinese traditional medicinal plant licorice and characterization of the bioactive secondary metabolites produced by Bacillus atrophaeus against Verticillium dahliae[J]. Front Microbiol, 2018, 9: 924.
doi: 10.3389/fmicb.2018.00924 pmid: 29867835 |
[11] |
Soares MA, Li HY, Kowalski KP, et al. Functional role of bacteria from invasive Phragmites australis in promotion of host growth[J]. Microb Ecol, 2016, 72(2): 407-417.
doi: 10.1007/s00248-016-0793-x pmid: 27260154 |
[12] |
Rangjaroen C, Lumyong S, Sloan WT, et al. Herbicide-tolerant endophytic bacteria of rice plants as the biopriming agents for fertility recovery and disease suppression of unhealthy rice seeds[J]. BMC Plant Biol, 2019, 19(1): 580.
doi: 10.1186/s12870-019-2206-z pmid: 31870307 |
[13] |
White JF, Kingsley KL, Zhang QW, et al. Review: Endophytic microbes and their potential applications in crop management[J]. Pest Manag Sci, 2019, 75(10): 2558-2565.
doi: 10.1002/ps.5527 pmid: 31228333 |
[14] |
Adam E, Bernhart M, Müller H, et al. The Cucurbita pepo seed microbiome: genotype-specific composition and implications for breeding[J]. Plant Soil, 2018, 422(1/2): 35-49.
doi: 10.1007/s11104-016-3113-9 URL |
[15] |
Johnston-Monje D, Lundberg DS, Lazarovits G, et al. Bacterial populations in juvenile maize rhizospheres originate from both seed and soil[J]. Plant Soil, 2016, 405(1/2): 337-355.
doi: 10.1007/s11104-016-2826-0 URL |
[16] |
Shade A, Jacques MA, Barret M. Ecological patterns of seed microbiome diversity, transmission, and assembly[J]. Curr Opin Microbiol, 2017, 37: 15-22.
doi: S1369-5274(16)30157-6 pmid: 28437661 |
[17] |
Berg G, Raaijmakers JM. Saving seed microbiomes[J]. ISME J, 2018, 12(5): 1167-1170.
doi: 10.1038/s41396-017-0028-2 pmid: 29335636 |
[18] |
Robinson RJ, Fraaije BA, Clark IM, et al. Wheat seed embryo excision enables the creation of axenic seedlings and Koch’s postulates testing of putative bacterial endophytes[J]. Sci Rep, 2016, 6: 25581.
doi: 10.1038/srep25581 pmid: 27151146 |
[19] |
Nelson EB. The seed microbiome: Origins, interactions, and impacts[J]. Plant Soil, 2018, 422(1/2): 7-34.
doi: 10.1007/s11104-017-3289-7 |
[20] |
张凯晔, 刘晓琳, 董小燕, 等. 田菁种子内生菌的分离及其对萌发的影响[J]. 中国农业科技导报, 2020, 22(6): 40-48.
doi: 10.13304/j.nykjdb.2020.0127 |
Zhang KY, Liu XL, Dong XY, et al. Isolation of endophytic cultures from Sesbania cannabina seeds and their effects on germination[J]. J Agric Sci Technol, 2020, 22(6): 40-48. | |
[21] | 颜瑾. 烟草品种K326种子内生细菌多样性与生物学功能研究[D]. 长沙: 湖南农业大学, 2013. |
Yan J. Biodiversity and functional study on the endophytic bacteria in the seeds of tobacco K326[D]. Changsha: Hunan Agricultural University, 2013. | |
[22] |
Mukherjee A, Singh BK, Verma JP. Harnessing chickpea(Cicer arietinum L.) seed endophytes for enhancing plant growth attributes and bio-controlling against Fusarium sp[J]. Microbiol Res, 2020, 237: 126469.
doi: 10.1016/j.micres.2020.126469 URL |
[23] |
刘璐, 名晓东, 张晓艳, 等. 高通量测序分析蚕豆种子内生细菌的多样性[J]. 中国农业科技导报, 2021, 23(2): 73-80.
doi: 10.13304/j.nykjdb.2019.0860 |
Liu L, Ming XD, Zhang XY, et al. Diversity of endophytic bacteria in Faba bean seeds by high-throughput sequencing[J]. J Agric Sci Technol, 2021, 23(2): 73-80. | |
[24] | 刘媛, 渠露露, 叶美迪, 等. 棕榈科植物种子内生细菌群落多样性的高通量测序分析[J]. 微生物学报, 2019, 59(3): 554-565. |
Liu Y, Qu LL, Ye MD, et al. Diversity of bacterial endophytes communities in the seeds of several Palmae plants via high throughput sequencing method[J]. Acta Microbiol Sin, 2019, 59(3): 554-565. | |
[25] |
Kuźniar A, Włodarczyk K, Grządziel J, et al. New insight into the composition of wheat seed microbiota[J]. Int J Mol Sci, 2020, 21(13): 4634.
doi: 10.3390/ijms21134634 URL |
[26] | 刘婉. 银杏种子发育及其内生菌研究[D]. 徐州: 江苏师范大学, 2013. |
Liu W. Study of the development of seed and endophytes isolated from Ginkgo biloba[D]. Xuzhou: Jiangsu Normal University, 2013. | |
[27] | 刘洋, 李辉, 李金霞, 等. 西沙野生诺尼种子内生细菌群落多样性的初步研究[J]. 生物技术通报, 2013(10): 142-147. |
Liu Y, Li H, Li JX, et al. Investigation on diversity of endophytic bacterial community in Xisha wild Noni(Morinda citrifolia L.) seed[J]. Biotechnol Bull, 2013(10): 142-147. | |
[28] |
Shaik SP, Thomas P. In vitro activation of seed-transmitted cultivation-recalcitrant endophytic bacteria in tomato and host-endophyte mutualism[J]. Microorganisms, 2019, 7(5): 132.
doi: 10.3390/microorganisms7050132 URL |
[29] | 姚晓玲, 康前进, 熊顺子, 等. 喜树种子内生放线菌的分离鉴定及抗菌活性物质初分离[J]. 微生物学通报, 2014, 41(6): 1109-1120. |
Yao XL, Kang QJ, Xiong SZ, et al. Isolation and identification of endophytic actinomycetes from the seeds of Camptotheca acum-inata Decne.and isolation of antimicrobial substances from those endophytic actinomycetes[J]. Microbiol China, 2014, 41(6): 1109-1120. | |
[30] |
Verma SK, Kingsley KL, Bergen MS, et al. Fungal disease prevention in seedlings of rice(Oryza sativa)and other grasses by growth-promoting seed-associated endophytic bacteria from invasive Phragmites australis[J]. Microorganisms, 2018, 6(1): 21.
doi: 10.3390/microorganisms6010021 URL |
[31] |
Chen HM, Wu HX, Yan B, et al. Core microbiome of medicinal plant Salvia miltiorrhiza seed: a rich reservoir of beneficial microbes for secondary metabolism?[J]. Int J Mol Sci, 2018, 19(3): 672.
doi: 10.3390/ijms19030672 URL |
[32] | Tyc O, Putra R, Gols R, et al. The ecological role of bacterial seed endophytes associated with wild cabbage in the United Kingdom[J]. MicrobiologyOpen, 2020, 9(1): e00954. |
[33] |
Matsumoto H, Fan XY, Wang Y, et al. Bacterial seed endophyte shapes disease resistance in rice[J]. Nat Plants, 2021, 7(1): 60-72.
doi: 10.1038/s41477-020-00826-5 pmid: 33398157 |
[34] |
Vega FE, Pava-Ripoll M, Posada F, et al. Endophytic bacteria in Coffea arabica L[J]. J Basic Microbiol, 2005, 45(5): 371-380.
doi: 10.1002/(ISSN)1521-4028 URL |
[35] |
Liu Y, Zuo SQ, Zou YY, et al. Investigation on diversity and population succession dynamics of endophytic bacteria from seeds of maize(Zea mays L., Nongda108)at different growth stages[J]. Ann Microbiol, 2013, 63: 71-79.
doi: 10.1007/s13213-012-0446-3 URL |
[36] | Verma SK, White JF. Seed Endophytes[M]. Varanasi: Springer Nature Switzerland AG, 2019. |
[37] |
Barret M, Briand M, Bonneau S, et al. Emergence shapes the structure of the seed microbiota[J]. Appl Environ Microbiol, 2015, 81(4): 1257-1266.
doi: 10.1128/AEM.03722-14 URL |
[38] |
王志山, 黎妮, 王伟平, 等. 水稻种子内生细菌研究进展[J]. 生物技术通报, 2022, 38(1): 236-246.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-0437 |
Wang ZS, Li N, Wang WP, et al. Research progress in endophytic bacteria in rice seeds[J]. Biotechnol Bull, 2022, 38(1): 236-246. | |
[39] |
Johnston-Monje D, Raizada MN. Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology[J]. PLoS One, 2011, 6(6): e20396.
doi: 10.1371/journal.pone.0020396 URL |
[40] |
Qin S, Miao Q, Feng WW, et al. Biodiversity and plant growth promoting traits of culturable endophytic actinobacteria associated with Jatropha curcas L. growing in Panxi dry-hot valley soil[J]. Appl Soil Ecol, 2015, 93: 47-55.
doi: 10.1016/j.apsoil.2015.04.004 URL |
[41] |
Borah A, Das R, Mazumdar R, et al. Culturable endophytic bacteria of Camellia species endowed with plant growth promoting characteristics[J]. J Appl Microbiol, 2019, 127(3): 825-844.
doi: 10.1111/jam.14356 pmid: 31216598 |
[42] | 罗菲, 汪涯, 曾庆桂, 等. 东乡野生稻根际可培养细菌多样性及其植物促生活性分析[J]. 生物多样性, 2011, 19(4): 476-484. |
Luo F, Wang N, Zeng QG, et al. Diversity and plant growth promoting activities of the cultivable rhizobacteria of Dongxiang wild rice(Oryza rufipogon)[J]. Biodivers Sci, 2011, 19(4): 476-484.
doi: 10.3724/SP.J.1003.2011.09002 URL |
|
[43] |
Alibrandi P, Cardinale M, Rahman MM, et al. The seed endosphere of Anadenanthera colubrina is inhabited by a complex microbiota, including Methylobacterium spp. and Staphylococcus spp. with potential plant-growth promoting activities[J]. Plant Soil, 2018, 422(1/2): 81-99.
doi: 10.1007/s11104-017-3182-4 URL |
[44] |
Wan Y, Luo SL, Chen JL, et al. Effect of endophyte-infection on growth parameters and Cd-induced phytotoxicity of Cd-hyperaccumulator Solanum nigrum L[J]. Chemosphere, 2012, 89(6): 743-750.
doi: 10.1016/j.chemosphere.2012.07.005 URL |
[45] | Kesaulya H, Hasinu JV, Tuhumury GNC. Potential of Bacillus spp produces siderophores in suppressing the wilt disease of banana plants[C]// IOP Conference Series-Earth and Environmental Science. Semarang, 2018, 102: 012016. |
[46] |
Truyens S, Weyens N, Cuypers A, et al. Bacterial seed endophytes: genera, vertical transmission and interaction with plants[J]. Environ Microbiol Rep, 2015, 7(1): 40-50.
doi: 10.1111/emi4.2015.7.issue-1 URL |
[47] |
Liu Y, Bai FR, Li N, et al. Identification of endophytic bacterial strain RSE1 from seeds of super hybrid rice Shenliangyou 5814(Oryza sativa L.) and evaluation of its antagonistic activity[J]. Plant Growth Regul, 2017, 82(3): 403-408.
doi: 10.1007/s10725-017-0265-4 URL |
[48] |
Jing RX, Li N, Wang WP, et al. An endophytic strain JK of genus Bacillus isolated from the seeds of super hybrid rice(Oryza sativa L., Shenliangyou 5814)has antagonistic activity against rice blast pathogen[J]. Microb Pathog, 2020, 147: 104422.
doi: 10.1016/j.micpath.2020.104422 URL |
[49] | 许明双. 番茄和水稻种子可培养内生细菌的多样性分析及促生菌功能研究[D]. 北京: 中国农业大学, 2014. |
Xu MS. Culturable bacterial community compositions from seeds of tomato and rice and function of plant growth promoting endophytic bacteria[D]. Beijing: China Agricultural University, 2014. | |
[50] |
Rosenblueth M, Ormeño-Orrillo E, López-López A, et al. Nitrogen fixation in cereals[J]. Frontiers in Microbiology, 2018, 9: 1794.
doi: 10.3389/fmicb.2018.01794 pmid: 30140262 |
[51] | 覃姚红. 玉米种子内生固氮菌的鉴定及其对小麦生长及抗旱能力影响的研究[D]. 杨凌: 西北农林科技大学, 2014. |
Qin YH. Identification of endophytic diazotroph bacteria from maize seeds and research of its effects on wheat growth and drought resistance[D]. Yangling: Northwest A & F University, 2014. | |
[52] |
Lata R, Chowdhury S, Gond SK, et al. Induction of abiotic stress tolerance in plants by endophytic microbes[J]. Lett Appl Microbiol, 2018, 66(4): 268-276.
doi: 10.1111/lam.12855 pmid: 29359344 |
[53] |
Khan AL, Waqas M, Hussain J, et al. Fungal endophyte Penicillium janthinellum LK5 can reduce cadmium toxicity in Solanum lycopersicum(sitiens and rhe)[J]. Biol Fertil Soils, 2014, 50(1): 75-85.
doi: 10.1007/s00374-013-0833-3 URL |
[54] |
Zhang XX, Fan XM, Li CJ, et al. Effects of cadmium stress on seed germination, seedling growth and antioxidative enzymes in Achnatherum inebrians plants infected with a Neotyphodium endophyte[J]. Plant Growth Regul, 2010, 60(2): 91-97.
doi: 10.1007/s10725-009-9422-8 URL |
[55] | Truyens S, Beckers B, Thijs S, et al. Cadmium-induced and trans-generational changes in the cultivable and total seed endophytic community of Arabidopsis thaliana[J]. Plant Biol(Stuttg), 2016, 18(3): 376-381. |
[56] |
Sánchez-López AS, Pintelon I, Stevens V, et al. Seed endophyte microbiome of Crotalaria pumila unpeeled: identification of plant-beneficial methylobacteria[J]. Int J Mol Sci, 2018, 19(1): 291.
doi: 10.3390/ijms19010291 URL |
[57] |
White JF, Kingsley KL, Verma SK, et al. Rhizophagy cycle: an oxidative process in plants for nutrient extraction from symbiotic microbes[J]. Microorganisms, 2018, 6(3): 95.
doi: 10.3390/microorganisms6030095 URL |
[58] |
Irizarry I, White JF. Application of bacteria from non-cultivated plants to promote growth, alter root architecture and alleviate salt stress of cotton[J]. J Appl Microbiol, 2017, 122(4): 1110-1120.
doi: 10.1111/jam.13414 pmid: 28176460 |
[59] |
Hardoim PR, van Overbeek LS, Berg G, et al. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes[J]. Microbiol Mol Biol Rev, 2015, 79(3): 293-320.
doi: 10.1128/MMBR.00050-14 URL |
[60] |
Gond SK, Bergen MS, Torres MS, et al. Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize[J]. Microbiol Res, 2015, 172: 79-87.
doi: 10.1016/j.micres.2014.11.004 URL |
[61] |
Ongena M, Jacques P. Bacillus lipopeptides: versatile weapons for plant disease biocontrol[J]. Trends Microbiol, 2008, 16(3): 115-125.
doi: 10.1016/j.tim.2007.12.009 pmid: 18289856 |
[62] |
Mousa WK, Shearer C, Limay-Rios V, et al. Root-hair endophyte stacking in finger millet creates a physicochemical barrier to trap the fungal pathogen Fusarium graminearum[J]. Nat Microbiol, 2016, 1: 16167.
doi: 10.1038/nmicrobiol.2016.167 |
[63] |
Bastias DA, Martínez-Ghersa MA, Ballaré CL, et al. Epichloë fungal endophytes and plant defenses: not just alkaloids[J]. Trends Plant Sci, 2017, 22(11): 939-948.
doi: S1360-1385(17)30178-4 pmid: 28923242 |
[64] |
Sanchez-Azofeifa A, Oki Y, Wilson Fernandes G, et al. Relationships between endophyte diversity and leaf optical properties[J]. Trees, 2012, 26(2): 291-299.
doi: 10.1007/s00468-011-0591-5 URL |
[65] |
Mirzahossini Z, Shabani L, Sabzalian MR, et al. ABC transporter and metallothionein expression affected by NI and Epichloe endophyte infection in tall fescue[J]. Ecotoxicol Environ Saf, 2015, 120: 13-19.
doi: 10.1016/j.ecoenv.2015.05.025 URL |
[66] |
Sun C, Johnson JM, Cai DG, et al. Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein[J]. J Plant Physiol, 2010, 167(12): 1009-1017.
doi: 10.1016/j.jplph.2010.02.013 URL |
[67] | Girsowicz R, Moroenyane I, Steinberger Y. Bacterial seed endophyte community of annual plants modulated by plant photosynthetic pathways[J]. Microbiol Res, 2019, 223/224/225: 58-62. |
[68] | 常恺莉, 张琳, 周红英, 等. 药用植物内生菌资源在农业中的应用与研究进展[J]. 山东农业科学, 2021, 53(7): 135-141. |
Chang KL, Zhang L, Zhou HY, et al. Application and research progress of endophyte resources of medicinal plants in agriculture[J]. Shandong Agric Sci, 2021, 53(7): 135-141. | |
[69] |
Gond SK, Bergen MS, Torres MS, et al. Effect of bacterial endophyte on expression of defense genes in Indian popcorn against Fusarium moniliforme[J]. Symbiosis, 2015, 66(3): 133-140.
doi: 10.1007/s13199-015-0348-9 URL |
[70] |
Irizarry I, White JF. Bacillus amyloliquefaciens alters gene expression, ROS production and lignin synthesis in cotton seedling roots[J]. J Appl Microbiol, 2018, 124(6): 1589-1603.
doi: 10.1111/jam.13744 pmid: 29473989 |
[71] |
Díaz Herrera S, Grossi C, Zawoznik M, et al. Wheat seeds harbour bacterial endophytes with potential as plant growth promoters and biocontrol agents of Fusarium graminearum[J]. Microbiol Res, 2016, 186/187: 37-43.
doi: 10.1016/j.micres.2016.03.002 URL |
[72] |
Kowalski KP, Bacon C, Bickford W, et al. Advancing the science of microbial symbiosis to support invasive species management: a case study on Phragmites in the Great Lakes[J]. Front Microbiol, 2015, 6: 95.
doi: 10.3389/fmicb.2015.00095 pmid: 25745417 |
[1] | 王贵芳, 姚元涛, 许海峰, 相昆, 梁家慧, 张淑辉, 王文茹, 张明娟, 张美勇, 陈新. 核桃JrSnRK1α1.1调控种子油脂合成与积累[J]. 生物技术通报, 2023, 39(9): 183-191. |
[2] | 吴巧茵, 施友志, 李林林, 彭政, 谭再钰, 刘利平, 张娟, 潘勇. 类胡萝卜素降解菌株的原位筛选及其在雪茄提质增香中的应用[J]. 生物技术通报, 2023, 39(9): 192-201. |
[3] | 刘保财, 陈菁瑛, 张武君, 黄颖桢, 赵云青, 刘剑超, 危智诚. 多花黄精种子微根茎基因表达特征分析[J]. 生物技术通报, 2023, 39(8): 220-233. |
[4] | 王羽, 尹铭绅, 尹晓燕, 奚家勤, 杨建伟, 牛秋红. 烟草甲体内烟碱降解菌的筛选、鉴定及降解特性[J]. 生物技术通报, 2023, 39(6): 308-315. |
[5] | 余洋, 刘天海, 刘理旭, 唐杰, 彭卫红, 陈阳, 谭昊. 羊肚菌菌种生产车间气溶胶微生物群落研究[J]. 生物技术通报, 2023, 39(5): 267-275. |
[6] | 车永梅, 郭艳苹, 刘广超, 叶青, 李雅华, 赵方贵, 刘新. 菌株C8和B4的分离鉴定及其耐盐促生效果和机制[J]. 生物技术通报, 2023, 39(5): 276-285. |
[7] | 罗义, 张丽娟, 黄伟, 王宁, 吾尔丽卡·买提哈斯木, 施宠, 王玮. 一株耐铀菌株的鉴定及其促生特性研究[J]. 生物技术通报, 2023, 39(5): 286-296. |
[8] | 孙亚玲, 李瑞平, 王振宝, 张庶, 刘冰江, 霍雨猛. 洋葱种子消毒和无菌苗培养新方法[J]. 生物技术通报, 2023, 39(4): 212-220. |
[9] | 徐小文, 李金仓, 海都, 查玉平, 宋菲, 王义勋. 核桃炭疽菌携带病毒种类鉴定及多样性分析[J]. 生物技术通报, 2023, 39(3): 278-289. |
[10] | 蒋铭轩, 李康, 罗亮, 刘建祥, 芦海平. 植物表达外源蛋白研究进展及展望[J]. 生物技术通报, 2023, 39(11): 110-122. |
[11] | 车永梅, 刘广超, 郭艳苹, 叶青, 赵方贵, 刘新. 一种耐盐复合菌剂的制备和促生作用研究[J]. 生物技术通报, 2023, 39(11): 217-225. |
[12] | 金云倩, 王彬, 郭书磊, 赵霖熙, 韩赞平. 赤霉素调控玉米种子活力的研究进展[J]. 生物技术通报, 2023, 39(1): 84-94. |
[13] | 王子夜, 王志刚, 阎爱华. 不同树龄桑根际土壤原生生物群落组成多样性[J]. 生物技术通报, 2022, 38(8): 206-215. |
[14] | 张昊, 刘苗苗, 刘晓娜, 李宗谕, 赵丽丽, 杨清香. 内生菌影响药用植物产生药理活性化合物的研究进展[J]. 生物技术通报, 2022, 38(8): 41-51. |
[15] | 高小宁, 刘睿, 吴自林, 吴嘉云. 宿根矮化病抗感甘蔗品种茎部内生真菌和细菌群落特征分析[J]. 生物技术通报, 2022, 38(6): 166-173. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||