生物技术通报 ›› 2023, Vol. 39 ›› Issue (9): 225-235.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0148
周嫒婷1(), 彭睿琦1, 王芳1(), 伍建榕1,2, 马焕成1()
收稿日期:
2023-02-22
出版日期:
2023-09-26
发布日期:
2023-10-24
通讯作者:
马焕成,男,博士,教授,研究方向:困难地段植被恢复;E-mail: mhc@swfu.edu.cn;作者简介:
周嫒婷,女,博士研究生,研究方向:资源微生物利用;E-mail: Zhouat2022@163.com
基金资助:
ZHOU Ai-ting1(), PENG Rui-qi1, WANG Fang1(), WU Jian-rong1,2, MA Huan-cheng1()
Received:
2023-02-22
Published:
2023-09-26
Online:
2023-10-24
摘要:
特基拉芽孢杆菌DZY6715是对油茶炭疽菌有较好抑制作用的生防菌,为明确该菌株在生长前期和生长后期的差异代谢物质及其调控功能。以菌株DZY6715的生长曲线为基础,先利用平板对峙法测定该菌株在生长前期和生长后期对油茶炭疽菌的抑制活性,然后通过非靶代谢组学技术,对这两个时期的发酵液进行生物信息学分析。结果表明,菌株生长前期的抑菌活性弱于生长后期,差异代谢物共注释到32条通路,前20条富集到183个差异代谢物,其中潜在重要性高的代谢通路有5条,富集的差异代谢物有84个,27种,涉及的代谢物以氨基酸和有机酸为主,并伴有诺氟沙星、N-乙酰-d-氨基葡萄糖、腺苷、苯酚等物质。另外,生长前期氨基酸的总表达量显著高于生长后期,而有机酸及其他差异代谢物在生长后期的总表达量则明显高于生长前期。因此,本文认为氨基酸主要参与细胞结构的构建,同时附有抑菌功能,而有机酸、诺氟沙星、腺苷等更多的是作为抵抗胁迫过程的重要调节剂。
周嫒婷, 彭睿琦, 王芳, 伍建榕, 马焕成. 生防菌株DZY6715在不同生长期的代谢差异分析[J]. 生物技术通报, 2023, 39(9): 225-235.
ZHOU Ai-ting, PENG Rui-qi, WANG Fang, WU Jian-rong, MA Huan-cheng. Analysis of Metabolic Differences of Biocontrol Strain DZY6715 at Different Growth Stages[J]. Biotechnology Bulletin, 2023, 39(9): 225-235.
图4 不同生长期的菌株DZY6715处理后对油茶炭疽菌菌丝形态的影响(10×100倍)
Fig. 4 Effects of strain DZY6715 on mycelial morphology of C. fructicola at different growth stages(10×100 times)
通路ID KEGG ID | 通路名称 Map_Name | 上调代谢物数量 Up-numb | 下调代谢物数量 Down-numb | P值 P-value | 重要性 Significance |
---|---|---|---|---|---|
ko04974 | 蛋白质消化和吸收Protein digestion and absorption | 8 | 11 | 1.04582E-14 | 0.3830 |
ko00970 | 氨酰tRNA生物合成Aminoacyl-tRNA biosynthesis | 4 | 10 | 2.37618E-08 | 0.2500 |
ko01230 | 氨基酸的生物合成Biosynthesis of amino acids | 8 | 11 | 5.8421E-06 | 0.2759 |
ko02010 | ABC转运蛋白ABC transporters | 5 | 12 | 0.001180783 | 0.2174 |
ko01210 | 2-氧羰基酸代谢2-Oxocarboxylic acid metabolism | 8 | 7 | 0.001180783 | 0.2174 |
表1 5条重要代谢通路中的差异代谢物
Table 1 Differential metabolites in 5 metabolic pathways
通路ID KEGG ID | 通路名称 Map_Name | 上调代谢物数量 Up-numb | 下调代谢物数量 Down-numb | P值 P-value | 重要性 Significance |
---|---|---|---|---|---|
ko04974 | 蛋白质消化和吸收Protein digestion and absorption | 8 | 11 | 1.04582E-14 | 0.3830 |
ko00970 | 氨酰tRNA生物合成Aminoacyl-tRNA biosynthesis | 4 | 10 | 2.37618E-08 | 0.2500 |
ko01230 | 氨基酸的生物合成Biosynthesis of amino acids | 8 | 11 | 5.8421E-06 | 0.2759 |
ko02010 | ABC转运蛋白ABC transporters | 5 | 12 | 0.001180783 | 0.2174 |
ko01210 | 2-氧羰基酸代谢2-Oxocarboxylic acid metabolism | 8 | 7 | 0.001180783 | 0.2174 |
序号No. | KEGG ID | 代谢物名称Metabolic name | 类别Category |
---|---|---|---|
1 | C00062 | 精氨酸 Arginine | 氨基酸Amino acid |
2 | C00099 | β-丙氨酸 Beta-alanine | |
3 | C00025 | 谷氨酸 Glutamic acid | |
4 | C00148 | DL-脯氨酸 DL-proline | |
5 | C00188 | DL-苏氨酸 DL-threonine | |
6 | C00078 | DL-色氨酸 DL-tryptophan | |
7 | C00082 | DL-酪氨酸 DL-tyrosine | |
8 | C00183 | DL-缬氨酸 DL-valine | |
9 | C00037 | 甘氨酸 Glycine | |
10 | C00407 | 异亮氨酸 Isoleucine | |
11 | C00049 | L-天冬氨酸 L-aspartic acid | |
12 | C00123 | 亮氨酸 Leucine | |
13 | C00047 | 赖氨酸 Lysine | |
14 | C00079 | 苯丙氨酸 Phenylalanine | |
15 | C00233 | 酮亮氨酸 Ketoleucine | |
16 | C00624 | N-乙酰-l-谷氨酸 N-acetyl-l-glutamate | |
17 | C00437 | N-α-乙酰-l-鸟氨酸 N-.alpha.-acetyl-l-ornithine | |
18 | C00246 | 丁酸 Butanoic acid | 有机酸 Organic acids |
19 | C00163 | 丙酸 Propionic acid | |
20 | C00956 | 2-氨基己二酸 2-aminoadipic acid | |
21 | C08262 | 异戊酸 Isovaleric acid | |
22 | C01606 | 邻苯二甲酸 1,2-benzenedicarboxylic acid | |
23 | C01251 | 高柠檬酸盐 Homocitrate | / |
24 | C00146 | 苯酚 Phenol | / |
25 | C00212 | 腺苷 Adenosine | / |
26 | C00140 | N-乙酰-d-氨基葡萄糖 N-acetyl-d-glucosamine | / |
27 | C06687 | 诺氟沙星 Norfloxacin | / |
28 | C00378 | 硫胺素 Thiamine | / |
表2 5条代谢通路的差异代谢物分析
Table 2 Differential metabolite analysis of five metabolic pathways
序号No. | KEGG ID | 代谢物名称Metabolic name | 类别Category |
---|---|---|---|
1 | C00062 | 精氨酸 Arginine | 氨基酸Amino acid |
2 | C00099 | β-丙氨酸 Beta-alanine | |
3 | C00025 | 谷氨酸 Glutamic acid | |
4 | C00148 | DL-脯氨酸 DL-proline | |
5 | C00188 | DL-苏氨酸 DL-threonine | |
6 | C00078 | DL-色氨酸 DL-tryptophan | |
7 | C00082 | DL-酪氨酸 DL-tyrosine | |
8 | C00183 | DL-缬氨酸 DL-valine | |
9 | C00037 | 甘氨酸 Glycine | |
10 | C00407 | 异亮氨酸 Isoleucine | |
11 | C00049 | L-天冬氨酸 L-aspartic acid | |
12 | C00123 | 亮氨酸 Leucine | |
13 | C00047 | 赖氨酸 Lysine | |
14 | C00079 | 苯丙氨酸 Phenylalanine | |
15 | C00233 | 酮亮氨酸 Ketoleucine | |
16 | C00624 | N-乙酰-l-谷氨酸 N-acetyl-l-glutamate | |
17 | C00437 | N-α-乙酰-l-鸟氨酸 N-.alpha.-acetyl-l-ornithine | |
18 | C00246 | 丁酸 Butanoic acid | 有机酸 Organic acids |
19 | C00163 | 丙酸 Propionic acid | |
20 | C00956 | 2-氨基己二酸 2-aminoadipic acid | |
21 | C08262 | 异戊酸 Isovaleric acid | |
22 | C01606 | 邻苯二甲酸 1,2-benzenedicarboxylic acid | |
23 | C01251 | 高柠檬酸盐 Homocitrate | / |
24 | C00146 | 苯酚 Phenol | / |
25 | C00212 | 腺苷 Adenosine | / |
26 | C00140 | N-乙酰-d-氨基葡萄糖 N-acetyl-d-glucosamine | / |
27 | C06687 | 诺氟沙星 Norfloxacin | / |
28 | C00378 | 硫胺素 Thiamine | / |
[1] |
李兴龙, 李彦忠. 土传病害生物防治研究进展[J]. 草业学报, 2015, 24(3)204-212
doi: 10.11686/cyxb20150321 |
Li XL, Li YZ. Research advances in biological control of soil-borne disease[J]. Acta Prataculturae Sin, 2015, 24(3)204-212 | |
[2] |
Romanazzi G, Feliziani E, Baños SB, et al. Shelf life extension of fresh fruit and vegetables by chitosan treatment[J]. Crit Rev Food Sci Nutr, 2017, 57(3): 579-601.
pmid: 26047630 |
[3] |
Wu YJ, Lin HT, Lin YF, et al. Effects of biocontrol bacteria Bacillus amyloliquefaciens LY-1 culture broth on quality attributes and storability of harvested litchi fruit[J]. Postharvest Biol Technol, 2017, 132: 81-87.
doi: 10.1016/j.postharvbio.2017.05.021 URL |
[4] |
Kiran GS, Priyadharsini S, Sajayan A, et al. An antibiotic agent pyrrolo[1, 2-a]pyrazine-1, 4-dione, hexahydro isolated from a marine bacteria Bacillus tequilensis MSI45 effectively controls multi-drug resistant Staphylococcus aureus[J]. RSC Adv, 2018, 8(32): 17837-17846.
doi: 10.1039/C8RA00820E URL |
[5] |
Li H, Guan Y, Dong YL, et al. Isolation and evaluation of endophytic Bacillus tequilensis GYLH001 with potential application for biological control of Magnaporthe oryzae[J]. PLoS One, 2018, 13(10): e0203505.
doi: 10.1371/journal.pone.0203505 URL |
[6] |
Zhou H, Zhu HJ, Ren ZH, et al. Efficacy of Bacillus tequilensis strain JN-369 to biocontrol of rice blast and enhance rice growth[J]. Biol Control, 2021, 160: 104652.
doi: 10.1016/j.biocontrol.2021.104652 URL |
[7] |
Shultana R, Zuan ATK, Yusop MR, et al. Bacillus tequilensis strain ‘UPMRB9’ improves biochemical attributes and nutrient accumulation in different rice varieties under salinity stress[J]. PLoS One, 2021, 16(12): e0260869.
doi: 10.1371/journal.pone.0260869 URL |
[8] | 李偲奇. 不同料型日粮对育肥羊生产性能、胃肠道微生物组和代谢组的影响研究[D]. 泰安: 山东农业大学, 2020. |
Li SQ. Effects of diets types on performance, gastrointestinal microbiome and metabolome of fattening lambs[D]. Tai'an: Shandong Agricultural University, 2020. | |
[9] |
范乐乐, 郭妍, 赵雪, 等. 淡紫紫孢菌微菌核发酵滤液生防活性及代谢组学分析[J]. 中国生物防治学报, 2022, 38(4): 821-830.
doi: 10.16409/j.cnki.2095-039x.2022.04.008 |
Fan LL, Guo Y, Zhao X, et al. Biocontrol activities and metabolome analysis of microsclerotia fermentation filtrate of Purpureocillium lilacinum[J]. Chin J Biol Control, 2022, 38(4): 821-830. | |
[10] | 杜青平, 王倩, 曹立创, 等. 悬浮物变化引起细菌JS17生长曲线的波动规律[J]. 广东工业大学学报, 2012, 29(3): 77-80. |
Du QP, Wang Q, Cao LC, et al. A study of bacterium growth curve and suspended matter in the medium[J]. J Guangdong Univ Technol, 2012, 29(3): 77-80. | |
[11] |
李雪萍, 张怡忻, 李建军, 等. 兰州百合防病促生细菌筛选及其效果评价[J]. 中国生物防治学报, 2022, 38(5)1296-1307.
doi: 10.16409/j.cnki.2095-039x.2022.06.008 |
Li XP, Zhang YX, Li JJ, et al. Screening of disease-control and growth-promoting bacteria and their effecs on Lanzhou lily[J]. Chin J Biol Control, 2022, 38(5)1296-1307. | |
[12] | 王春梅, 张杰, 陈浩, 等. 丁香酚对灰霉病菌的抑制活性及对菌丝形态的影响[J]. 江西农业学报, 2008, 20(10)72-75. |
Wang CM, Zhang J, Chen H, et al. Inhibition activity of eugenol to Botrytis cinerea and its effects on mycelial morphology[J]. Acta Agric Jiangxi, 2008, 20(10)72-75. | |
[13] | 金学平, 唐启明, 余磊, 等. 氨基酸衍生物——一类安全性能好的抗菌剂[J]. 化学与生物工程, 2019, 36(11)8-11. |
Jin XP, Tang QM, Yu L, et al. Amino acid derivatives—a kind of antibacterial agent with high safety[J]. Chem Bioeng, 2019, 36(11)8-11. | |
[14] | 曾令杰, 丰丕雪, 黄锦翔, 等. 基于非靶向代谢组学分析酿酒酵母甲酸胁迫的响应和耐受性机制[J]. 食品科学, 2022, 43(4)95-104. |
Zeng LJ, Feng PX, Huang JX, et al. Non-targeted metabolomic analysis of response and tolerance mechanism of Saccharomyces cerevisiae to formic acid stress[J]. Food Sci, 2022, 43(4)95-104. | |
[15] |
Grant CM, MacIver FH, Dawes IW. Glutathione is an essential metabolite required for resistance to oxidative stress in the yeastSaccharomyces cerevisiae[J]. Curr Genet, 1996, 29(6): 511-515.
doi: 10.1007/BF02426954 pmid: 8662189 |
[16] |
Nocek BP, Gillner DM, Fan Y, et al. Structural basis for catalysis by the mono- and dimetalated forms of the dapE-encoded N-succinyl-L, L-diaminopimelic acid desuccinylase[J]. J Mol Biol, 2010, 397(3): 617-626.
doi: 10.1016/j.jmb.2010.01.062 URL |
[17] |
Colabroy KL, Begley TP. Tryptophan catabolism: identification and characterization of a new degradative pathway[J]. J Bacteriol, 2005, 187(22): 7866-7869.
pmid: 16267312 |
[18] |
Lv LX, Yan R, Shi HY, et al. Integrated transcriptomic and proteomic analysis of the bile stress response in probiotic Lactobacillus salivarius LI01[J]. J Proteom, 2017, 150: 216-229.
doi: 10.1016/j.jprot.2016.08.021 URL |
[19] |
Chen YN, Chi WC, Trinh NN, et al. Transcriptome profiling and physiological studies reveal a major role for aromatic amino acids in mercury stress tolerance in rice seedlings[J]. PLoS One, 2014, 9(5): e95163.
doi: 10.1371/journal.pone.0095163 URL |
[20] | 张琳, 杨轲, 汪军成, 等. 不同致病性的麦根腐平脐蠕孢菌代谢组学分析[J]. 山西农业科学, 2021, 49(12)1453-1461. |
Zhang L, Yang K, Wang JC, et al. Metabolome analysis of different pathogenicity Bipolaris sorokiniana strains[J]. J Shanxi Agric Sci, 2021, 49(12)1453-1461. | |
[21] |
Takagi H, Iwamoto F, Nakamori S. Isolation of freeze-tolerant laboratory strains of Saccharomyces cerevisiae from proline-analogue-resistant mutants[J]. Appl Microbiol Biotechnol, 1997, 47(4): 405-411.
pmid: 9163955 |
[22] |
Cheng YF, Du ZL, Zhu H, et al. Protective effects of arginine on Saccharomyces cerevisiae against ethanol stress[J]. Sci Rep, 2016, 6: 31311.
doi: 10.1038/srep31311 |
[23] | 孟露, 刘晗诚, 刘雅涵, 等. 基于代谢组学和转录组学分析工业面包酵母(Saccharomyces cerevisiae)ABY3冷冻胁迫应答机制[J]. 食品科学, 2021, 42(10): 193-200. |
Meng L, Liu HC, Liu YH, et al. Metabolomic and transcriptomic analysis of response mechanism of baker’s yeast to freezing stress[J]. Food Sci, 2021, 42(10): 193-200.
doi: 10.1111/jfds.1977.42.issue-1 URL |
|
[24] | 张军, 田子罡, 王建华, 等. 有机酸抑菌分子机理研究进展[J]. 畜牧兽医学报, 2011, 42(3):323-328. |
Zhang J, Tian ZG, Wang JH, et al. Advances in antimicrobial molecular mechanism of organic acids[J]. Chin J Animal Vet Sci, 2011, 42(3):323-328. | |
[25] |
Warth AD. Effect of benzoic acid on glycolytic metabolite levels and intracellular pH in Saccharomyces cerevisiae[J]. Appl Environ Microbiol, 1991, 57(12): 3415-3417.
doi: 10.1128/aem.57.12.3415-3417.1991 URL |
[26] | 张丹丹, 姜修婷. 乌梅有机酸的提取工艺及其抑菌活性[J]. 生物加工过程, 2018, 16(3): 47-52. |
Zhang DD, Jiang XT. Extraction and antibacterial activity of Fructus mume organic acids[J]. Chin J Bioprocess Eng, 2018, 16(3): 47-52. | |
[27] |
Corsetti A, Gobbetti M, Rossi J, et al. Antimould activity of sourdough lactic acid bacteria: identification of a mixture of organic acids produced by Lactobacillus sanfrancisco CB1[J]. Appl Microbiol Biotechnol, 1998, 50(2): 253-256.
pmid: 9763693 |
[28] |
Wang HK, Yan YH, Wang JM, et al. Production and characterization of antifungal compounds produced by Lactobacillus plantarum IMAU10014[J]. PLoS One, 2012, 7(1): e29452.
doi: 10.1371/journal.pone.0029452 URL |
[29] | 户红通, 徐达, 徐庆阳, 等. 谷氨酸清洁发酵工艺研究[J]. 中国酿造, 2018, 37(10)51-56. |
Hu HT, Xu D, Xu QY, et al. Study on clean fermentation process of glutamic acid[J]. China Brew, 2018, 37(10)51-56. | |
[30] | 张晓娟, 窦文芳, 许泓瑜, 等. 维生素对谷氨酸棒杆菌SYPS-062直接发酵合成L-丝氨酸的影响[J]. 中国生物工程杂志, 2007, 27(5): 50-55. |
Zhang XJ, Dou WF, Xu HY, et al. Effects of vitamins on the direct fermentative production of L-serine in Corynebacterium glutamicum SYPS-062[J]. China Biotechnol, 2007, 27(5): 50-55. | |
[31] | 孙鹏杰, 余子辰, 徐庆阳. B族维生素对枯草芽孢杆菌发酵生产腺苷的影响[J]. 中国酿造, 2022, 41(4)93-98. |
Sun PJ, Yu ZC, Xu QY. Effect of vitamin B on adenosine production by Bacillus subtilis fermentation[J]. China Brew, 2022, 41(4)93-98. | |
[32] | 王春茹, 郭晓风, 单胜艳. 天然型N-乙酰-D-氨基葡萄糖的生理功效及市场前景[J]. 食品研究与开发, 2014, 35(2): 131-134. |
Wang CR, Guo XF, Shan SY. The market prospects and physiological function of natural N-acetyl-D-glucosamine[J]. Food Res Dev, 2014, 35(2): 131-134. | |
[33] | 殷竟洲, 单步顺, 杨文澜. N-乙酰-D-氨基葡萄糖的制备条件优化及废液回收利用[J]. 应用化工, 2008, 37(12): 1517-1519. |
Yin JZ, Shan BS, Yang WL. Study of optimization technical condition for preparing N-acetyl-D-glucosamine and recycling the liquid waste[J]. Appl Chem Ind, 2008, 37(12): 1517-1519. | |
[34] | 叶子兰, 吴生亮, 姜立春, 等. 苯酚降解菌Y_1的分离与鉴定[J]. 四川环境, 2022, 41(1)24-29. |
Ye ZL, Wu SL, Jiang LC, et al. Isolation and identification of phenol degrading bacterium named Y_1[J]. Sichuan Environ, 2022, 41(1)24-29. | |
[35] |
陈禹竹, 唐琦勇, 顾美英, 等. 一株苯酚降解菌的筛选、鉴定及相关降解特性[J]. 新疆农业科学, 2019, 56(10)1912-1920.
doi: 10.6048/j.issn.1001-4330.2019.10.017 |
Chen YZ, Tang QY, Gu MY, et al. Screening and identification of a phenol degrading bacteria and the relevant degradation characteristics[J]. Xinjiang Agric Sci, 2019, 56(10)1912-1920.
doi: 10.6048/j.issn.1001-4330.2019.10.017 |
|
[36] | 闫莹, 何思锜, 张猛, 等. 诺氟沙星氧化降解过程的生态毒理效应研究[J]. 现代化工, 2022, 42(5): 132-137. |
Yan Y, He SQ, Zhang M, et al. Study on ecotoxicological effects in oxidative degradation process of norfloxacin[J]. Mod Chem Ind, 2022, 42(5): 132-137. | |
[37] | 陈天涯, 袁木子, 张舒羽, 等. 老化秸秆生物炭对诺氟沙星吸附特性的研究[J]. 农业环境科学学报, 2022, 41(5): 1047-1057. |
Chen TY, Yuan MZ, Zhang SY, et al. Effects of aged straw biochar on the adsorption characteristics of norfloxacin[J]. J Agro Environ Sci, 2022, 41(5): 1047-1057. |
[1] | 赵艳侠, 张晶莹, 孙骏飞, 王绛辉, 孙家波, 吕晓惠. ‘重瓣红’玫瑰不同花发育阶段转录和代谢差异分析[J]. 生物技术通报, 2023, 39(3): 184-195. |
[2] | 刘传和, 贺涵, 何秀古, 赖秋勤, 刘开, 邵雪花, 赖多, 匡石滋, 肖维强. 转录组与代谢组联合分析菠萝网纱覆盖防寒机制[J]. 生物技术通报, 2022, 38(11): 58-69. |
[3] | 刘传和, 贺涵, 何秀古, 刘开, 邵雪花, 赖多, 匡石滋, 肖维强. 不同连作年限菠萝园土壤差异代谢物和细菌群落结构分析[J]. 生物技术通报, 2021, 37(8): 162-175. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||