生物技术通报 ›› 2023, Vol. 39 ›› Issue (9): 213-224.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1457
赵志祥1(), 王殿东2, 周亚林3, 王培4, 严婉荣1, 严蓓5, 罗路云2(), 张卓4()
收稿日期:
2022-11-28
出版日期:
2023-09-26
发布日期:
2023-10-24
通讯作者:
罗路云,男,博士,讲师,研究方向:植物病理学;E-mail: luoluyun1992@163.com;作者简介:
赵志祥,男,博士,副研究员,研究方向:植物病害综合防治;E-mail: zhaozhixiang0207@126.com
基金资助:
ZHAO Zhi-xiang1(), WANG Dian-dong2, ZHOU Ya-lin3, WANG Pei4, YAN Wan-rong1, YAN Bei5, LUO Lu-yun2(), ZHANG Zhuo4()
Received:
2022-11-28
Published:
2023-09-26
Online:
2023-10-24
摘要:
探究生防菌枯草芽孢杆菌Ya-1对辣椒枯萎病的防治效果,及对辣椒受尖孢镰刀菌侵染后根际真菌群落和多样性的影响。以枯草芽孢杆菌Ya-1为接种菌,探究了枯草芽孢杆菌Ya-1对辣椒枯萎病的防治效果,并通过高通量测序研究了接种前,接种后10 d,20 d时受尖孢镰刀菌侵染后辣椒根际真菌群落变化。与FOC处理(C)相比,Ya-1+FOC(D)在第10天和第20天的相对防治效果分别为77.93%和77.26%。同时接种枯草芽孢杆菌Ya-1和辣椒枯萎病菌组真菌α多样性在10 d和20 d时真菌香农指数均高于接种辣椒枯萎病菌组。在进行处理后真菌群落组成发生了显著变化,同一时间点处理组和对照组真菌群落具有显著差异,接种辣椒枯萎病菌组和同时接种辣椒枯萎病菌和枯草芽孢杆菌Ya-1组也具有显著差异(P < 0.05)。各处理土壤优势真菌种群分别为子囊菌门、接合菌门、担子菌门。在10 d和20 d,接种病原菌(OTU_1)相对丰度在接种辣椒枯萎病原菌组和同时接种辣椒枯萎病菌组和枯草芽孢杆菌Ya-1组间具有显著差异,相比较接种辣椒枯萎病原菌组,OTU_1相对丰度降低,被孢霉菌(Mortierella)的相对丰度升高。相比较对照组,接种辣椒枯萎病菌处理后连接数减少,而在加入枯草芽孢杆菌Ya-1处理后,正连接数降低。枯草芽孢杆菌Ya-1处理对辣椒枯萎病有较好的防治效果,同时它也改变了接种病原菌辣椒根际真菌群落多样性和结构,降低了真菌群落的复杂度和根际土壤中病原菌的丰度。
赵志祥, 王殿东, 周亚林, 王培, 严婉荣, 严蓓, 罗路云, 张卓. 枯草芽孢杆菌Ya-1对辣椒枯萎病的防治及其对根际真菌群落的影响[J]. 生物技术通报, 2023, 39(9): 213-224.
ZHAO Zhi-xiang, WANG Dian-dong, ZHOU Ya-lin, WANG Pei, YAN Wan-rong, YAN Bei, LUO Lu-yun, ZHANG Zhuo. Control of Pepper Fusarium Wilt by Bacillus subtilis Ya-1 and Its Effect on Rhizosphere Fungal Microbial Community[J]. Biotechnology Bulletin, 2023, 39(9): 213-224.
处理 Treatment | 发病率Incidence rate /% | 防治效果 Control effect /% | ||
---|---|---|---|---|
10 d | 20 d | 10 d | 20 d | |
A(CK) | - | - | - | - |
B(Ya-1) | - | - | - | - |
C(FOC) | 32.08 A | 45.83 A | - | - |
D(Ya-1+FOC) | 7.08 B | 10.42 B | 77.93 | 77.26 |
表1 拮抗菌Ya-1在不同时间点辣椒枯萎病发病率和防治效果
Table 1 Incidence rate and control effect of pepper Fusarium wilt with antagonist Ya-1 at different time points
处理 Treatment | 发病率Incidence rate /% | 防治效果 Control effect /% | ||
---|---|---|---|---|
10 d | 20 d | 10 d | 20 d | |
A(CK) | - | - | - | - |
B(Ya-1) | - | - | - | - |
C(FOC) | 32.08 A | 45.83 A | - | - |
D(Ya-1+FOC) | 7.08 B | 10.42 B | 77.93 | 77.26 |
分组Group | Shannon index | Chao1 |
---|---|---|
0 d | 7.05±0.19ab | 2099.63±72.01bc |
10d-A | 7.11±0.17ab | 2381.63±114.67b |
10d-B | 7.47±0.13a | 2244.79±70.87b |
10d-C | 5.36±0.27d | 2078.28±120.13bc |
10d-D | 6.64±0.04bc | 2382.08±75.46b |
20d-A | 6.78±0.28bc | 1802.08±101.82c |
20d-B | 6.79±0.27bc | 2081.37±72.32bc |
20d-C | 6.17±0.36ac | 2234.21±158.02b |
20d-D | 6.62±0.23abc | 2777.5±115.61a |
表2 辣椒根际真菌α多样性指数
Table 2 Fungal α diversity indices around pepper rhizosphere soil
分组Group | Shannon index | Chao1 |
---|---|---|
0 d | 7.05±0.19ab | 2099.63±72.01bc |
10d-A | 7.11±0.17ab | 2381.63±114.67b |
10d-B | 7.47±0.13a | 2244.79±70.87b |
10d-C | 5.36±0.27d | 2078.28±120.13bc |
10d-D | 6.64±0.04bc | 2382.08±75.46b |
20d-A | 6.78±0.28bc | 1802.08±101.82c |
20d-B | 6.79±0.27bc | 2081.37±72.32bc |
20d-C | 6.17±0.36ac | 2234.21±158.02b |
20d-D | 6.62±0.23abc | 2777.5±115.61a |
图3 OTU_1总相对丰度 数据分析采用单因素方差分析,不同字母表示差异显著(P < 0.05)
Fig. 3 Total relative abundance of OTU_1 The data are analyzed by the one-way ANOVA method. Different letters indicate significant differences(P < 0.05)
分组 Group | 非参数多反应置换法MRPP | 相似性分析ANOSIM | 非参数多变量置换法PERMANOVA | |||
---|---|---|---|---|---|---|
δ | P | R | P | F | P | |
0 d vs 10 d | 0.6067 | 0.016 | 0.3198 | 0.001 | 2.5237 | 0.004 |
0 d vs 20 d | 0.6366 | 0.003 | 0.2697 | 0.031 | 2.3031 | 0.004 |
10 d vs 20 d | 0.6228 | 0.085 | 0.0281 | 0.143 | 1.4528 | 0.11 |
表3 不同时期两组间辣椒根际真菌群落相异性分析
Table 3 Dissimilarity test of pepper rhizosphere soil fungal community between two groups at different time points
分组 Group | 非参数多反应置换法MRPP | 相似性分析ANOSIM | 非参数多变量置换法PERMANOVA | |||
---|---|---|---|---|---|---|
δ | P | R | P | F | P | |
0 d vs 10 d | 0.6067 | 0.016 | 0.3198 | 0.001 | 2.5237 | 0.004 |
0 d vs 20 d | 0.6366 | 0.003 | 0.2697 | 0.031 | 2.3031 | 0.004 |
10 d vs 20 d | 0.6228 | 0.085 | 0.0281 | 0.143 | 1.4528 | 0.11 |
时间点 Time point | 分组 Group | 多重响应排列程序MRPP | 相似性分析ANOSIM | 置换多元方差分析PERMANOVA | ||||||
---|---|---|---|---|---|---|---|---|---|---|
δ | P | R | P | F | P | |||||
10 d | A vs B | 0.5371 | 0.015 | 0.432 | 0.011 | 1.7814 | 0.008 | |||
A vs C | 0.4488 | 0.005 | 1 | 0.009 | 7.6872 | 0.006 | ||||
A vs D | 0.503 | 0.005 | 0.996 | 0.015 | 5.7611 | 0.012 | ||||
C vs D | 0.4835 | 0.008 | 1 | 0.006 | 5.4845 | 0.010 | ||||
20 d | A vs B | 0.6623 | 0.026 | 0.256 | 0.029 | 1.3989 | 0.019 | |||
A vs C | 0.5822 | 0.009 | 0.528 | 0.010 | 2.6899 | 0.007 | ||||
A vs D | 0.5915 | 0.007 | 0.684 | 0.010 | 3.0096 | 0.009 | ||||
C vs D | 0.5866 | 0.007 | 0.604 | 0.007 | 2.6057 | 0.011 |
表4 不同时间点不同处理间辣椒根际真菌群落相异性分析
Table 4 Dissimilarity analysis of pepper rhizosphere soil fungal community at different time points among different treatments
时间点 Time point | 分组 Group | 多重响应排列程序MRPP | 相似性分析ANOSIM | 置换多元方差分析PERMANOVA | ||||||
---|---|---|---|---|---|---|---|---|---|---|
δ | P | R | P | F | P | |||||
10 d | A vs B | 0.5371 | 0.015 | 0.432 | 0.011 | 1.7814 | 0.008 | |||
A vs C | 0.4488 | 0.005 | 1 | 0.009 | 7.6872 | 0.006 | ||||
A vs D | 0.503 | 0.005 | 0.996 | 0.015 | 5.7611 | 0.012 | ||||
C vs D | 0.4835 | 0.008 | 1 | 0.006 | 5.4845 | 0.010 | ||||
20 d | A vs B | 0.6623 | 0.026 | 0.256 | 0.029 | 1.3989 | 0.019 | |||
A vs C | 0.5822 | 0.009 | 0.528 | 0.010 | 2.6899 | 0.007 | ||||
A vs D | 0.5915 | 0.007 | 0.684 | 0.010 | 3.0096 | 0.009 | ||||
C vs D | 0.5866 | 0.007 | 0.604 | 0.007 | 2.6057 | 0.011 |
属性Attribute | A | B | C | D | |
---|---|---|---|---|---|
节点数Nodes | 290 | 292 | 311 | 309 | |
连接数Links | 443 | 416 | 406 | 346 | |
正连接数Positive links | 342 | 250 | 250 | 187 | |
负连接数Negative links | 101 | 166 | 156 | 159 | |
平均度Average degree | 3.055 | 2.849 | 2.611 | 2.239 | |
EN | 平均路径距离Average path distance | 6.482 | 6.739 | 7.669 | 9.086 |
RN | 4.778 +/- 0.078 | 5.010 +/- 0.103 | 5.770 +/- 0.108 | 6.606 +/- 0.209 | |
EN | 平均聚类系数Average clustering coefficient | 0.135 | 0.153 | 0.146 | 0.109 |
RN | 0.012 +/- 0.005 | 0.010 +/- 0.005 | 0.006 +/- 0.004 | 0.005 +/- 0.003 | |
EN | 模块化值Modularity | 0.756 | 0.808 | 0.827 | 0.865 |
RN | 0.608 +/- 0.009 | 0.638 +/- 0.008 | 0.690 +/- 0.007 | 0.766 +/- 0.009 |
表5 不同处理下真菌种群的经验网络和随机网络性质
Table 5 Empirical network and random network properties of fungal populations under different treatments
属性Attribute | A | B | C | D | |
---|---|---|---|---|---|
节点数Nodes | 290 | 292 | 311 | 309 | |
连接数Links | 443 | 416 | 406 | 346 | |
正连接数Positive links | 342 | 250 | 250 | 187 | |
负连接数Negative links | 101 | 166 | 156 | 159 | |
平均度Average degree | 3.055 | 2.849 | 2.611 | 2.239 | |
EN | 平均路径距离Average path distance | 6.482 | 6.739 | 7.669 | 9.086 |
RN | 4.778 +/- 0.078 | 5.010 +/- 0.103 | 5.770 +/- 0.108 | 6.606 +/- 0.209 | |
EN | 平均聚类系数Average clustering coefficient | 0.135 | 0.153 | 0.146 | 0.109 |
RN | 0.012 +/- 0.005 | 0.010 +/- 0.005 | 0.006 +/- 0.004 | 0.005 +/- 0.003 | |
EN | 模块化值Modularity | 0.756 | 0.808 | 0.827 | 0.865 |
RN | 0.608 +/- 0.009 | 0.638 +/- 0.008 | 0.690 +/- 0.007 | 0.766 +/- 0.009 |
图5 不同处理真菌群落网络图 每个节点代表一个真菌OTU,连线代表相关性,红色连线(边)表示负相关,绿色连线(边)表示正相关
Fig. 5 Network diagram of fungal communities under different treatments Each node indicates a fungal OTU, and lines indicate correlations, red lines(edges)indicate negative correlations, and green lines(edges)indicate positive correlations
[1] | El-Eraky AMI, Moubasher AH, Ismail MA, et al. Mycosynthesis of silver nanoparticles and their role in the control of Fusarium wilt of pepper[J]. Journal of Basic and Applied Mycology, 2017, 8: 5-34. |
[2] |
Bashir MR, Atiq M, Sajid M, et al. Antifungal exploitation of fungicides against Fusarium oxysporum f.sp. capsici causing Fusarium wilt of chilli pepper in Pakistan[J]. Environ Sci Pollut Res, 2018, 25(7): 6797-6801.
doi: 10.1007/s11356-017-1032-9 URL |
[3] |
Mohammed TA, Welderufael AH, Yeshinigus BB. Assessment and distribution of foliar and soil-borne diseases of Capsicum species in Ethiopia[J]. Int J Phytopathol, 2021, 10(2): 125-139.
doi: 10.33687/phytopath URL |
[4] |
Wang JH, Wang SX, Zhao ZY, et al. Species composition and toxigenic potential of Fusarium isolates causing fruit rot of sweet pepper in China[J]. Toxins, 2019, 11(12): 690.
doi: 10.3390/toxins11120690 URL |
[5] |
Everts KL, Egel DS, Langston D, et al. Chemical management of Fusarium wilt of watermelon[J]. Crop Prot, 2014, 66: 114-119.
doi: 10.1016/j.cropro.2014.09.003 URL |
[6] |
Debode J, De Tender C, Soltaninejad S, et al. Chitin mixed in potting soil alters lettuce growth, the survival of zoonotic bacteria on the leaves and associated rhizosphere microbiology[J]. Front Microbiol, 2016, 7: 565.
doi: 10.3389/fmicb.2016.00565 pmid: 27148242 |
[7] |
Nadeem SM, Ahmad M, Zahir ZA, et al. The role of mycorrhizae and plant growth promoting rhizobacteria(PGPR)in improving crop productivity under stressful environments[J]. Biotechnol Adv, 2014, 32(2): 429-448.
doi: 10.1016/j.biotechadv.2013.12.005 URL |
[8] |
Tian YT, Yue TL, Yuan YH, et al. Tobacco biomass hydrolysate enhances coenzyme Q10 production using photosynthetic Rhodospirillum rubrum[J]. Bioresour Technol, 2010, 101(20): 7877-7881.
doi: 10.1016/j.biortech.2010.05.020 URL |
[9] |
Xu ZH, Shao JH, Li B, et al. Contribution of bacillomycin D in Bacillus amyloliquefaciens SQR9 to antifungal activity and biofilm formation[J]. Appl Environ Microbiol, 2013, 79(3): 808-815.
doi: 10.1128/AEM.02645-12 URL |
[10] | 吴月, 李海群, 乔雪, 等. 辣椒枯萎病拮抗细菌Ljb002菌株发酵条件的优化[J]. 微生物学杂志, 2015, 35(5): 67-72. |
Wu Y, Li HQ, Qiao X, et al. Optimization of ferment conditions of pepper wilt antagonistic bacterium strain Ljb002[J]. J Microbiol, 2015, 35(5): 67-72. | |
[11] |
郭珺, 武爱莲, 闫敏, 等. 芽孢杆菌 Pb-4菌株鉴定及其抑菌活性的研究[J]. 华北农学报, 2016, 31(2)224-230
doi: 10.7668/hbnxb.2016.02.036 |
Guo J, Wu AL, Yan M, et al. Identification of Bacillus sp. Pb-4 and its unitilization for antimicrobial activity[J]. Acta Agric Boreali Sin, 2016, 31(2): 224-230 | |
[12] |
Jamal Q, Lee YS, Jeon HD, et al. Effect of plant growth-promoting bacteria Bacillus amylliquefaciens Y1 on soil properties, pepper seedling growth, rhizosphere bacterial flora and soil enzymes[J]. Plant Prot Sci, 2018, 54(3): 129-137.
doi: 10.17221/154/2016-PPS URL |
[13] |
Cao Y, Pi HL, Chandrangsu P, et al. Antagonism of two plant-growth promoting Bacillus velezensis isolates against Ralstonia solanacearum and Fusarium oxysporum[J]. Sci Rep, 2018, 8(1): 4360.
doi: 10.1038/s41598-018-22782-z pmid: 29531357 |
[14] |
Chowdhury SK, Majumdar S, Mandal V. Application of Bacillus sp. LBF-01 in Capsicum annuum plant reduces the fungicide use against Fusarium oxysporum[J]. Biocatal Agric Biotechnol, 2020, 27: 101714.
doi: 10.1016/j.bcab.2020.101714 URL |
[15] |
Ben Khedher S, Mejdoub-Trabelsi B, Tounsi S. Biological potential of Bacillus subtilis V26 for the control of Fusarium wilt and tuber dry rot on potato caused by Fusarium species and the promotion of plant growth[J]. Biol Control, 2021, 152: 104444.
doi: 10.1016/j.biocontrol.2020.104444 URL |
[16] |
Luo LY, Wang P, Zhai ZY, et al. The effects of Rhodopseudomonas palustris PSB06 and CGA009 with different agricultural applications on rice growth and rhizosphere bacterial communities[J]. AMB Express, 2019, 9(1): 173.
doi: 10.1186/s13568-019-0897-z |
[17] |
Zhu LY, Wang XH, Chen FF, et al. Effects of the successive planting of Eucalyptus urophylla on soil bacterial and fungal community structure, diversity, microbial biomass, and enzyme activity[J]. Land Degrad Dev, 2019, 30(6): 636-646.
doi: 10.1002/ldr.v30.6 URL |
[18] |
Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nat Methods, 2013, 10(10): 996-998.
doi: 10.1038/nmeth.2604 pmid: 23955772 |
[19] |
Abarenkov K, Henrik Nilsson R, Larsson KH, et al. The UNITE database for molecular identification of fungi—recent updates and future perspectives[J]. New Phytol, 2010, 186(2): 281-285.
doi: 10.1111/j.1469-8137.2009.03160.x pmid: 20409185 |
[20] | Anderson MJ. A new method for non-parametric multivariate analysis of variance[J]. Austral Ecol, 2001, 26(1): 32-46. |
[21] |
Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nat Methods, 2010, 7(5): 335-336.
doi: 10.1038/nmeth.f.303 pmid: 20383131 |
[22] |
Deng Y, Jiang YH, Yang YF, et al. Molecular ecological network analyses[J]. BMC Bioinform, 2012, 13(1): 113.
doi: 10.1186/1471-2105-13-113 |
[23] | Zhou JZ, Deng Y, Luo F, et al. Functional molecular ecological networks[J]. mBio, 2010, 1(4): e00169-e00110. |
[24] | Zhou JZ, Deng Y, Luo F, et al. Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2[J]. mBio, 2011, 2(4): e00122-e00111. |
[25] | 唐加雨. 辣椒枯萎病发生规律及其药效试验[J]. 上海蔬菜, 2014(3): 71-72. |
Tang JY. Occurrence regularity of pepper Fusarium wilt and its efficacy test[J]. Shanghai Veg, 2014(3):71-72. | |
[26] | 梁建根, 竺利红, 吴吉安, 等. 生防菌株B-3对辣椒枯萎病的防治及其鉴定[J]. 植物保护学报, 2007, 34(5): 529-533. |
Liang JG, Zhu LH, Wu J, et al. Control efficacy of biocontrol strain B-3 against pepper wilt and its identification[J]. J Plant Prot, 2007, 34(5): 529-533. | |
[27] |
Bakker MG, Chaparro JM, Manter DK, et al. Impacts of bulk soil microbial community structure on rhizosphere microbiomes of Zea mays[J]. Plant Soil, 2015, 392(1): 115-126.
doi: 10.1007/s11104-015-2446-0 URL |
[28] |
Walters WA, Jin Z, Youngblut N, et al. Large-scale replicated field study of maize rhizosphere identifies heritable microbes[J]. Proc Natl Acad Sci USA, 2018, 115(28): 7368-7373.
doi: 10.1073/pnas.1800918115 pmid: 29941552 |
[29] |
Berendsen RL, Pieterse CMJ, Bakker PAHM. The rhizosphere microbiome and plant health[J]. Trends Plant Sci, 2012, 17(8): 478-486.
doi: 10.1016/j.tplants.2012.04.001 pmid: 22564542 |
[30] |
Qiao JQ, Yu X, Liang XJ, et al. Addition of plant-growth-promoting Bacillus subtilis PTS-394 on tomato rhizosphere has no durable impact on composition of root microbiome[J]. BMC Microbiol, 2017, 17(1): 131.
doi: 10.1186/s12866-017-1039-x URL |
[31] | 樊祖清, 芦阿虔, 王海涛, 等. 施用解淀粉芽孢杆菌对烟株生长和根际土壤微生物区系的影响[J]. 河南农业科学, 2019, 48(4): 33-40. |
Fan ZQ, Lu AQ, Wang HT, et al. Effects of Bacillus amyloliquefaciens on the growth of tobacco and microflora in rhizosphere soil[J]. J Henan Agric Sci, 2019, 48(4): 33-40. | |
[32] |
Wani ZA, Kumar A, Sultan P, et al. Mortierella alpina CS10E4, an oleaginous fungal endophyte of Crocus sativus L. enhances apocarotenoid biosynthesis and stress tolerance in the host plant[J]. Sci Rep, 2017, 7(1): 8598.
doi: 10.1038/s41598-017-08974-z |
[33] |
Johnson JM, Ludwig A, Furch ACU, et al. The beneficial root-colonizing fungus Mortierella hyalina promotes the aerial growth of Arabidopsis and activates calcium-dependent responses that restrict Alternaria brassicae-induced disease development in roots[J]. Mol Plant Microbe Interact, 2019, 32(3): 351-363.
doi: 10.1094/MPMI-05-18-0115-R URL |
[34] | 张艳敏. 云南省部分观赏植物叶面病原真菌的多样性调查和系统学研究[D]. 北京: 中国林业科学研究院, 2012. |
Zhang YM. Diversity investigation and systematic study of pathogenic fungi on leaves of some ornamental plants in Yunnan Province[D]. Beijing: Chinese Academy of Forestry, 2012. | |
[35] |
Bastida F, Torres IF, Moreno JL, et al. The active microbial diversity drives ecosystem multifunctionality and is physiologically related to carbon availability in Mediterranean semi-arid soils[J]. Mol Ecol, 2016, 25(18): 4660-4673.
doi: 10.1111/mec.13783 pmid: 27481114 |
[36] |
王小玲, 马琨, 伏云珍, 等. 免耕覆盖及有机肥施用对土壤真菌群落组成及多样性的影响[J]. 应用生态学报, 2020, 31(3): 890-898.
doi: 10.13287/j.1001-9332.202003.039 |
Wang XL, Ma K, Fu YZ, et al. Effects of no-tillage mulching and organic fertilizer application on soil fungal community composition and diversity[J]. Chin J Appl Ecol, 2020, 31(3): 890-898. | |
[37] |
Bezerra WM, dos Santos VM, et al. Fungal diversity in soils across a gradient of preserved Brazilian Cerrado[J]. J Microbiol, 2017, 55(4): 273-279.
doi: 10.1007/s12275-017-6350-6 pmid: 28127719 |
[38] | 薛晓敏, 王来平, 韩雪平, 等. 不同树盘覆盖对矮砧苹果园土壤微生物群落结构和多样性的影响[J]. 生态学报, 2021, 41(4): 1528-1536. |
Xue XM, Wang LP, Han XP, et al. Effects of different tree disk mulching on soil microbial community structure and diversity in dwarfing rootstock apple orchard[J]. Acta Ecol Sin, 2021, 41(4): 1528-1536. | |
[39] |
Mostert D, Molina AB, Daniells J, et al. The distribution and host range of the banana Fusarium wilt fungus, Fusarium oxysporum f. sp. cubense, in Asia[J]. PLoS One, 2017, 12(7): e0181630.
doi: 10.1371/journal.pone.0181630 URL |
[40] |
Jangir M, Pathak R, Sharma S, et al. Biocontrol mechanisms of Bacillus sp., isolated from tomato rhizosphere, against Fusarium oxysporum f.sp. lycopersici[J]. Biol Control, 2018, 123: 60-70.
doi: 10.1016/j.biocontrol.2018.04.018 URL |
[41] |
Dhaya R. Flawless identification of Fusarium oxysporum in tomato plant leaves by machine learning algorithm[J]. J Innov Image Process, 2021, 2(4): 194-201.
doi: 10.36548/jiip URL |
[1] | 赵光绪, 杨合同, 邵晓波, 崔志豪, 刘红光, 张杰. 一株高效溶磷产红青霉培养条件优化及其溶磷特性[J]. 生物技术通报, 2023, 39(9): 71-83. |
[2] | 方澜, 黎妍妍, 江健伟, 成胜, 孙正祥, 周燚. 盘龙参内生真菌胞内细菌7-2H的分离鉴定和促生特性研究[J]. 生物技术通报, 2023, 39(8): 272-282. |
[3] | 谢田朋, 张佳宁, 董永骏, 张建, 景明. 早期抽薹对当归根际土壤微环境的影响[J]. 生物技术通报, 2023, 39(7): 206-218. |
[4] | 赵林艳, 徐武美, 王豪吉, 王昆艳, 魏富刚, 杨绍周, 官会林. 施用生物炭对连作三七根际真菌群落与存活率的影响[J]. 生物技术通报, 2023, 39(7): 219-227. |
[5] | 张蓓, 任福森, 赵洋, 郭志伟, 孙强, 刘贺娟, 甄俊琦, 王童童, 程相杰. 辣椒响应热胁迫机制的研究进展[J]. 生物技术通报, 2023, 39(7): 37-47. |
[6] | 徐红云, 吕俊, 于存. 根际溶磷伯克霍尔德菌Paraburkholderia spp.对马尾松苗的促生作用[J]. 生物技术通报, 2023, 39(6): 274-285. |
[7] | 李月, 余婉贤, 李宁, 姚明华, 李峰, 邓颖天. 辣椒苗期炭疽菌接种方法[J]. 生物技术通报, 2023, 39(4): 221-226. |
[8] | 杨冬, 唐璎. 枯草芽孢杆菌WTX1胞外酶降解AFB1酶学特性及降解位点分析[J]. 生物技术通报, 2023, 39(4): 93-102. |
[9] | 李琦, 杨晓蕾, 李晓林, 申友磊, 李建宏, 姚拓. 高寒草地燕麦根际解植酸磷促生菌鉴定及其优势菌假单胞菌属菌株功能特性[J]. 生物技术通报, 2023, 39(3): 243-253. |
[10] | 申云鑫, 施竹凤, 周旭东, 李铭刚, 张庆, 冯路遥, 陈齐斌, 杨佩文. 三株具生防功能芽孢杆菌的分离鉴定及其生物活性研究[J]. 生物技术通报, 2023, 39(3): 267-277. |
[11] | 徐小文, 李金仓, 海都, 查玉平, 宋菲, 王义勋. 核桃炭疽菌携带病毒种类鉴定及多样性分析[J]. 生物技术通报, 2023, 39(3): 278-289. |
[12] | 易希, 廖红东, 郑井元. 植物内生真菌防治根结线虫研究进展[J]. 生物技术通报, 2023, 39(3): 43-51. |
[13] | 王伟宸, 赵进, 黄薇颐, 郭芯竹, 李婉颖, 张卓. 芽胞杆菌代谢产物防治三种常见植物病原真菌的研究进展[J]. 生物技术通报, 2023, 39(3): 59-68. |
[14] | 杜清洁, 周璐瑶, 杨思震, 张嘉欣, 陈春林, 李娟起, 李猛, 赵士文, 肖怀娟, 王吉庆. 过表达CaCP1提高转基因烟草对盐胁迫的敏感性[J]. 生物技术通报, 2023, 39(2): 172-182. |
[15] | 王凤婷, 王岩, 孙颖, 崔文婧, 乔凯彬, 潘洪玉, 刘金亮. 耐盐碱土曲霉SYAT-1的分离鉴定及抑制植物病原真菌特性研究[J]. 生物技术通报, 2023, 39(2): 203-210. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||