生物技术通报 ›› 2023, Vol. 39 ›› Issue (11): 217-225.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0123
车永梅(), 刘广超, 郭艳苹, 叶青, 赵方贵, 刘新()
收稿日期:
2023-02-15
出版日期:
2023-11-26
发布日期:
2023-12-20
通讯作者:
刘新,女,博士,教授,研究方向:植物与微生物互作;E-mail: liuxin6080@126.com作者简介:
车永梅,女,硕士,副教授,研究方向:植物逆境生理;E-mail: yongmeiche@163.com
基金资助:
CHE Yong-mei(), LIU Guang-chao, GUO Yan-ping, YE Qing, ZHAO Fang-gui, LIU Xin()
Received:
2023-02-15
Published:
2023-11-26
Online:
2023-12-20
摘要:
土壤盐渍化是影响作物生长发育和产量的主要环境因素,利用土壤有益微生物治理盐渍化土壤是盐碱地改良的有效途径。本实验室前期从盐渍化土壤中筛选到两株耐盐菌株氧化微杆菌(Microbacterium oxydans)C8和嗜麦芽窄食单胞菌(Stenotrophomonas maltophilia)B4。菌株C8具有解钾、溶有机磷和无机磷及产生长素的能力,菌株B4具有溶有机磷和产生长素的功能。本文研究了C8和B4混合发酵对其功能的影响,结果表明,C8和B4混合培养后,其解钾、溶磷及产生长素的能力显著高于单一菌株。利用正交试验和响应面优化试验对其混合发酵培养基和培养条件进行优化,C8和B4混合发酵最适培养基配方为:葡萄糖10 g/L,酵母膏10 g/L,NaCl 4.5 g/L;最适培养条件为:pH 7.4,温度28.8℃,转速129 r/min,接种量2%,装瓶量20%,培养时间23 h。以烟草为材料,检测复合菌剂对植株生长的作用,结果显示,盐胁迫下C8和B4复合菌剂处理显著促进植株生长。
车永梅, 刘广超, 郭艳苹, 叶青, 赵方贵, 刘新. 一种耐盐复合菌剂的制备和促生作用研究[J]. 生物技术通报, 2023, 39(11): 217-225.
CHE Yong-mei, LIU Guang-chao, GUO Yan-ping, YE Qing, ZHAO Fang-gui, LIU Xin. Preparation of Compound Halotolerant Bioinoculant and Study on Its Growth-promoting Effect[J]. Biotechnology Bulletin, 2023, 39(11): 217-225.
水平 Level | 葡萄糖 Glucose/(g·L-1) | 酵母膏 Yeast extract/(g·L-1) | NaCl/(g·L-1) |
---|---|---|---|
1 | 8 | 5 | 2.5 |
2 | 10 | 10 | 4.5 |
3 | 12 | 15 | 6.5 |
表1 正交设计因素及水平
Table 1 Factors and levels of orthogonal test
水平 Level | 葡萄糖 Glucose/(g·L-1) | 酵母膏 Yeast extract/(g·L-1) | NaCl/(g·L-1) |
---|---|---|---|
1 | 8 | 5 | 2.5 |
2 | 10 | 10 | 4.5 |
3 | 12 | 15 | 6.5 |
因素Factor | 水平Level | ||
---|---|---|---|
-1 | 1 | ||
pH | 5 | 9 | |
温度 Temperature/oC | 20 | 30 | |
装瓶量 Bottling amount/% | 10 | 30 | |
转速 Rotation speed/(r·min-1) | 130 | 180 | |
接种量 Inoculation amount/% | 1 | 3 |
表2 Plackett-Burman设计因素及水平
Table 2 Factors and levels of Plackett-Burman design
因素Factor | 水平Level | ||
---|---|---|---|
-1 | 1 | ||
pH | 5 | 9 | |
温度 Temperature/oC | 20 | 30 | |
装瓶量 Bottling amount/% | 10 | 30 | |
转速 Rotation speed/(r·min-1) | 130 | 180 | |
接种量 Inoculation amount/% | 1 | 3 |
水平 Level | 温度 Temperature/℃ | pH | 转速 Rotation speed/(r·min-1) |
---|---|---|---|
α | 33.4 | 10.4 | 200.5 |
1 | 30 | 9 | 180 |
0 | 25 | 7 | 150 |
-1 | 20 | 5 | 120 |
-α | 16.6 | 3.6 | 99.5 |
表3 CCD试验因素与水平
Table 3 Factors and levels of CCD
水平 Level | 温度 Temperature/℃ | pH | 转速 Rotation speed/(r·min-1) |
---|---|---|---|
α | 33.4 | 10.4 | 200.5 |
1 | 30 | 9 | 180 |
0 | 25 | 7 | 150 |
-1 | 20 | 5 | 120 |
-α | 16.6 | 3.6 | 99.5 |
图1 混合发酵对菌株C8和B4 解钾、解有机磷、无机磷和产生长素能力的影响 结果为平均值±标准差,图中柱子上不同小写字母表示不同处理间差异显著(P <0.05),下同
Fig. 1 Effects of mixed culture on the abilities of C8 and B4 dissolving potassium, organic and inorganic phosphorus as well as producing auxin The result is the mean ± standard deviation. Different lowercase letters on the column in the figure indicate significant difference between different treatments(P<0.05), the same below
序号 No. | 葡萄糖Glucose(A)/(g·L-1) | 酵母膏Yeast extract(B)/(g·L-1) | NaCl(C)/(g·L-1) | OD600 |
---|---|---|---|---|
1 | 1 | 1 | 1 | 1.17 |
2 | 1 | 2 | 2 | 1.28 |
3 | 1 | 3 | 3 | 1.12 |
4 | 2 | 1 | 2 | 1.30 |
5 | 2 | 2 | 3 | 1.35 |
6 | 2 | 3 | 1 | 1.32 |
7 | 3 | 1 | 3 | 1.34 |
8 | 3 | 2 | 1 | 1.27 |
9 | 3 | 3 | 2 | 1.32 |
k1 | 1.27 | 1.28 | 1.28 | |
k2 | 1.30 | 1.30 | 1.31 | |
k3 | 1.25 | 1.27 | 1.23 | |
R | 0.05 | 0.03 | 0.09 |
表4 正交试验设计和结果
Table 4 Design and results of orthogonal experiment
序号 No. | 葡萄糖Glucose(A)/(g·L-1) | 酵母膏Yeast extract(B)/(g·L-1) | NaCl(C)/(g·L-1) | OD600 |
---|---|---|---|---|
1 | 1 | 1 | 1 | 1.17 |
2 | 1 | 2 | 2 | 1.28 |
3 | 1 | 3 | 3 | 1.12 |
4 | 2 | 1 | 2 | 1.30 |
5 | 2 | 2 | 3 | 1.35 |
6 | 2 | 3 | 1 | 1.32 |
7 | 3 | 1 | 3 | 1.34 |
8 | 3 | 2 | 1 | 1.27 |
9 | 3 | 3 | 2 | 1.32 |
k1 | 1.27 | 1.28 | 1.28 | |
k2 | 1.30 | 1.30 | 1.31 | |
k3 | 1.25 | 1.27 | 1.23 | |
R | 0.05 | 0.03 | 0.09 |
序号 No. | 因素Factor | OD600 | ||||
---|---|---|---|---|---|---|
pH | 温度Temperature/℃ | 装瓶量Bottling volunm/% | 转速Rotating speed/(r·min-1) | 接种量Inoculation amount/% | ||
1 | -1 | 1 | 1 | 1 | -1 | 0.79 |
2 | 1 | -1 | 1 | 1 | -1 | 0.81 |
3 | -1 | 1 | -1 | 1 | 1 | 1.12 |
4 | -1 | 1 | 1 | -1 | 1 | 1.29 |
5 | 1 | -1 | -1 | -1 | 1 | 1.37 |
6 | -1 | -1 | -1 | -1 | -1 | 1.14 |
7 | -1 | -1 | -1 | 1 | -1 | 0.80 |
8 | -1 | -1 | 1 | -1 | 1 | 1.11 |
9 | 1 | 1 | -1 | 1 | 1 | 1.30 |
10 | 1 | -1 | 1 | 1 | 1 | 1.48 |
11 | 1 | 1 | 1 | -1 | -1 | 1.20 |
12 | 1 | 1 | -1 | -1 | -1 | 1.10 |
表5 Plackett-Burman实验设计与结果
Table 5 Plackett-Burman design and results
序号 No. | 因素Factor | OD600 | ||||
---|---|---|---|---|---|---|
pH | 温度Temperature/℃ | 装瓶量Bottling volunm/% | 转速Rotating speed/(r·min-1) | 接种量Inoculation amount/% | ||
1 | -1 | 1 | 1 | 1 | -1 | 0.79 |
2 | 1 | -1 | 1 | 1 | -1 | 0.81 |
3 | -1 | 1 | -1 | 1 | 1 | 1.12 |
4 | -1 | 1 | 1 | -1 | 1 | 1.29 |
5 | 1 | -1 | -1 | -1 | 1 | 1.37 |
6 | -1 | -1 | -1 | -1 | -1 | 1.14 |
7 | -1 | -1 | -1 | 1 | -1 | 0.80 |
8 | -1 | -1 | 1 | -1 | 1 | 1.11 |
9 | 1 | 1 | -1 | 1 | 1 | 1.30 |
10 | 1 | -1 | 1 | 1 | 1 | 1.48 |
11 | 1 | 1 | 1 | -1 | -1 | 1.20 |
12 | 1 | 1 | -1 | -1 | -1 | 1.10 |
运行序 Sequence | 温度 Temperature/℃ | pH | 转速Rotational speed/(r·min-1) | OD600 |
---|---|---|---|---|
1 | 1 | -1 | 1 | 1.035 |
2 | -1 | -1 | -1 | 1.028 |
3 | 1 | 1 | 1 | 1.173 |
4 | 0 | 0 | 1 | 1.320 |
5 | 33.409 | 0 | 1 | 1.241 |
6 | 0 | 0 | 99.546 | 1.273 |
7 | 0 | 0 | 1 | 1.350 |
8 | 0 | 0 | 200.454 | 0.984 |
9 | -1 | 1 | -1 | 1.126 |
10 | -1 | 1 | 1 | 1.011 |
11 | 0 | 0 | 1 | 1.363 |
12 | 0 | 0 | 1 | 1.285 |
13 | 0 | 10.364 | 1 | 1.118 |
14 | 1 | 1 | -1 | 1.329 |
15 | 1 | -1 | -1 | 1.285 |
16 | 16.591 | 0 | 1 | 0.925 |
17 | 0 | 3.636 | 1 | 1.044 |
18 | 0 | 0 | 1 | 1.387 |
19 | -1 | -1 | 1 | 0.998 |
20 | 0 | 0 | 1 | 1.387 |
表6 CCD设计与结果
Table 6 Results of CCD design
运行序 Sequence | 温度 Temperature/℃ | pH | 转速Rotational speed/(r·min-1) | OD600 |
---|---|---|---|---|
1 | 1 | -1 | 1 | 1.035 |
2 | -1 | -1 | -1 | 1.028 |
3 | 1 | 1 | 1 | 1.173 |
4 | 0 | 0 | 1 | 1.320 |
5 | 33.409 | 0 | 1 | 1.241 |
6 | 0 | 0 | 99.546 | 1.273 |
7 | 0 | 0 | 1 | 1.350 |
8 | 0 | 0 | 200.454 | 0.984 |
9 | -1 | 1 | -1 | 1.126 |
10 | -1 | 1 | 1 | 1.011 |
11 | 0 | 0 | 1 | 1.363 |
12 | 0 | 0 | 1 | 1.285 |
13 | 0 | 10.364 | 1 | 1.118 |
14 | 1 | 1 | -1 | 1.329 |
15 | 1 | -1 | -1 | 1.285 |
16 | 16.591 | 0 | 1 | 0.925 |
17 | 0 | 3.636 | 1 | 1.044 |
18 | 0 | 0 | 1 | 1.387 |
19 | -1 | -1 | 1 | 0.998 |
20 | 0 | 0 | 1 | 1.387 |
来源Source | 自由度Degree of freedom | Seq SS | Adj SS | Adj MS | F | P |
---|---|---|---|---|---|---|
回归 | 9 | 0.439 222 | 0.439 222 | 0.048 802 | 25.01 | 0.000 |
线性 | 3 | 0.195 425 | 0.123 644 | 0.041 215 | 21.12 | 0.000 |
平方 | 3 | 0.234 599 | 0.234 599 | 0.078 200 | 40.07 | 0.000 |
交互作用 | 3 | 0.009 197 | 0.009 197 | 0.003 066 | 1.57 | 0.257 |
残差误差 | 10 | 0.019 517 | 0.019 517 | 0.001 952 | ||
失拟 | 5 | 0.011 442 | 0.011 442 | 0.002 288 | 1.42 | 0.356 |
纯误差 | 5 | 0.008 075 | 0.008 075 | 0.001 615 | ||
合计 | 19 | 0.458 739 |
表7 CCD设计方差分析
Table 7 Variance analysis of CCD design
来源Source | 自由度Degree of freedom | Seq SS | Adj SS | Adj MS | F | P |
---|---|---|---|---|---|---|
回归 | 9 | 0.439 222 | 0.439 222 | 0.048 802 | 25.01 | 0.000 |
线性 | 3 | 0.195 425 | 0.123 644 | 0.041 215 | 21.12 | 0.000 |
平方 | 3 | 0.234 599 | 0.234 599 | 0.078 200 | 40.07 | 0.000 |
交互作用 | 3 | 0.009 197 | 0.009 197 | 0.003 066 | 1.57 | 0.257 |
残差误差 | 10 | 0.019 517 | 0.019 517 | 0.001 952 | ||
失拟 | 5 | 0.011 442 | 0.011 442 | 0.002 288 | 1.42 | 0.356 |
纯误差 | 5 | 0.008 075 | 0.008 075 | 0.001 615 | ||
合计 | 19 | 0.458 739 |
图2 各因素交互作用对菌株生物量的响应面 A:转速和pH对生物量的影响;B:转速和温度对生物量的影响;C:温度和pH对生物量的影响
Fig. 2 Response surface of the interactive effect of different factors on the biomass of bacteria strain A: Effect of rotating speed and pH on the biomass of bacteria strain. B: Effect of rotating speed and temperature on the biomass of bacteria strain. C: Effect of temperature and pH on the biomass of bacteria strain
图3 发酵优化对C8和B4混合菌株生物量、解钾、解无机磷、有机磷和产生长素能力的影响
Fig. 3 Effect of fermentation optimization on biomass, function of dissolving potassium, inorganic phosphorus and organic phosphorus as well as producing auxinof mixed strains of C8 and B4
图4 C8和B4复合菌剂对盐胁迫下烟草地上部分和地下部分生长的影响
Fig. 4 Effect of compound bioinoculant of C8 and B4 on the growth of aboveground and underground parts of tobacco under salt stress
[1] | Selvakumar G, Kim K, Hu SJ, et al. Effect of salinity on plants and the role of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria in alleviation of salt stress[M]// Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment. New York: Springer New York, 2013: 115-144. |
[2] | 罗达, 吴正保, 史彦江, 等. 盐胁迫对3种平欧杂种榛幼苗叶片解剖结构及离子吸收、运输与分配的影响[J]. 生态学报, 2022, 42(5): 1876-1888. |
Luo D, Wu ZB, Shi YJ, et al. Effects of salt stress on leaf anatomical structure and ion absorption, transportation and distribution of three Ping'ou hybrid hazelnut seedlings[J]. Acta Ecol Sin, 2022, 42(5): 1876-1888. | |
[3] |
马宜林, 吴广海, 申洪涛, 等. 羊粪有机肥与化肥配施对烤烟生长及土壤肥力特性的影响[J]. 核农学报, 2021, 35(10): 2423-2430.
doi: 10.11869/j.issn.100-8551.2021.10.2423 |
Ma YL, Wu GH, Shen HT, et al. Effects of combined application of sheep manure-derived organic fertilizer and chemical fertilizer on tobacco growth and soil fertility[J]. J Nucl Agric Sci, 2021, 35(10): 2423-2430.
doi: 10.11869/j.issn.100-8551.2021.10.2423 |
|
[4] |
Wang JJ, Li RC, Zhang H, et al. Beneficial bacteria activate nutrients and promote wheat growth under conditions of reduced fertilizer application[J]. BMC Microbiol, 2020, 20(1): 38.
doi: 10.1186/s12866-020-1708-z pmid: 32085752 |
[5] |
Dellagi A, Quillere I, Hirel B. Beneficial soil-borne bacteria and fungi: a promising way to improve plant nitrogen acquisition[J]. J Exp Bot, 2020, 71(15): 4469-4479.
doi: 10.1093/jxb/eraa112 pmid: 32157312 |
[6] |
杨亚东, 王志敏, 曾昭海. 长期施肥和灌溉对土壤细菌数量、多样性和群落结构的影响[J]. 中国农业科学, 2018, 51(2): 290-301.
doi: 10.3864/j.issn.0578-1752.2018.02.009 |
Yang YD, Wang ZM, Zeng ZH. Effects of long-term different fertilization and irrigation managements on soil bacterial abundance, diversity and composition[J]. Sci Agric Sin, 2018, 51(2): 290-301.
doi: 10.3864/j.issn.0578-1752.2018.02.009 |
|
[7] | 韩苗, 朱晓艳, 陈国炜, 等. 解钾菌及其释钾微观机制的研究进展[J]. 土壤学报, 2022, 59(2): 334-348. |
Han M, Zhu XY, Chen GW, et al. Advances on potassium-solubilizing bacteria and their microscopic potassium solubilizing mechanisms[J]. Acta Pedol Sin, 2022, 59(2): 334-348. | |
[8] | Kumar S, Diksha, Sindhu SS, et al. Biofertilizers: an ecofriendly technology for nutrient recycling and environmental sustainability[J]. Curr Res Microb Sci, 2021, 3: 100094. |
[9] |
Jiang HH, Qi PS, Wang T, et al. Role of halotolerant phosphate-solubilising bacteria on growth promotion of peanut(Arachis hypogaea)under saline soil[J]. Ann Appl Biol, 2019, 174(1): 20-30.
doi: 10.1111/aab.2019.174.issue-1 URL |
[10] |
Rajawat MVS, Singh R, Singh D, et al. Spatial distribution and identification of bacteria in stressed environments capable to weather potassium aluminosilicate mineral[J]. Braz J Microbiol, 2020, 51(2): 751-764.
doi: 10.1007/s42770-019-00210-2 pmid: 31898251 |
[11] |
Nacoon S, Jogloy S, Riddech N, et al. Interaction between phosphate solubilizing bacteria and arbuscular mycorrhizal fungi on growth promotion and tuber inulin content of Helianthus tuberosus L[J]. Sci Rep, 2020, 10(1): 4916.
doi: 10.1038/s41598-020-61846-x |
[12] |
Rezakhani L, Motesharezadeh B, Tehrani MM, et al. Effect of silicon and phosphate-solubilizing bacteria on improved phosphorus(P)uptake is not specific to insoluble P-fertilized sorghum(Sorg-hum bicolor L.) plants[J]. J Plant Growth Regul, 2020, 39(1): 239-253.
doi: 10.1007/s00344-019-09978-x |
[13] |
Khan H, Akbar WA, Shah Z, et al. Coupling phosphate-solubilizing bacteria(PSB)with inorganic phosphorus fertilizer improves mungbean(Vigna radiata)phosphorus acquisition, nitrogen fixation, and yield in alkaline-calcareous soil[J]. Heliyon, 2022, 8(3): e09081.
doi: 10.1016/j.heliyon.2022.e09081 URL |
[14] |
Sukweenadhi J, Balusamy SR, Kim YJ, et al. A growth-promoting bacteria, Paenibacillus yonginensis DCY84T enhanced salt stress tolerance by activating defense-related systems in Panax ginseng[J]. Front Plant Sci, 2018, 9: 813.
doi: 10.3389/fpls.2018.00813 pmid: 30083171 |
[15] | 刘晓倩, 杜杏蓉, 谭玉娇, 等. 增施不同配比解磷菌、解钾菌生物菌肥对烤烟生长发育和根际土壤酶活性的影响[J]. 云南农业大学学报: 自然科学, 2019, 34(5): 845-851. |
Liu XQ, Du XR, Tan YJ, et al. The effects of different ratios between phosphate-solubilizing bacteria and potassium-solubilizing bacteria fertilizers on the flue-cured tobacco growth and the enzyme activities in the rhizospheric soil[J]. J Yunnan Agric Univ Nat Sci Ed, 2019, 34(5): 845-851. | |
[16] | 胡倡, 李慧明, 伍惠, 等. 解磷菌和根瘤菌复合接种对大豆和紫云英共生固氮的影响[J]. 华中农业大学学报, 2020, 39(4): 38-45. |
Hu C, Li HM, Wu H, et al. Effects of co-inoculation of phosphate-solubilizing bacteria and rhizobium on symbiotic nitrogen fixation of soybean and Astragalus sinensis[J]. J Huazhong Agric Univ, 2020, 39(4): 38-45. | |
[17] |
Wu GF, Zhou XP. Characterization of phosphorus-releasing bacteria in a small eutrophic shallow lake, Eastern China[J]. Water Res, 2005, 39(19): 4623-4632.
doi: 10.1016/j.watres.2005.08.036 URL |
[18] | 李忠, 蒋次清, 刘巍, 等. 烟草中钾含量测定的研究[J]. 分析科学学报, 2001, 17(1): 60-61. |
Li Z, Jiang CQ, Liu W, et al. A study on determination of potassium in tobacco[J]. J Anal Sci, 2001, 17(1): 60-61. | |
[19] | 姚拓. 高寒地区燕麦根际联合固氮菌研究II固氮菌的溶磷性和分泌植物生长素特性测定[J]. 草业学报, 2004, 13(3): 85-90. |
Yao T. Associative nitrogen-fixing bacteria in the rhizosphere of Avena sativa in an alpine region II phosphate-solubilizing power and auxin production[J]. Acta Pratacultural Sci, 2004, 13(3): 85-90. | |
[20] |
朱娟娟, 马海军, 张琇, 等. 盐胁迫下解钾菌对枸杞幼苗的促生效应[J]. 应用生态学报, 2021, 32(4): 1289-1297.
doi: 10.13287/j.1001-9332.202104.021 |
Zhu JJ, Ma HJ, Zhang X, et al. Effects of potassium-solubilizing bacteria promoting the growth of Lycium barbarum seedlings under salt stress[J]. Chin J Appl Ecol, 2021, 32(4): 1289-1297. | |
[21] | 孙晓莹, 陈意超, 曹沁, 等. 耐盐菌Pseudomonas brassicacear-um YZX4的筛选、鉴定及其植物促生特性[J]. 应用与环境生物学报, 2019, 25(5): 1133-1138. |
Sun XY, Chen YC, Cao Q, et al. Isolation and identification of halotolerant Pseudomonas brassicacearum YZX4 and its plant growth-promoting traits[J]. Chin J Appl Environ Biol, 2019, 25(5): 1133-1138. | |
[22] |
Yahya M, Islam EU, Rasul M, et al. Differential root exudation and architecture for improved growth of wheat mediated by phosphate solubilizing bacteria[J]. Front Microbiol, 2021, 12: 744094.
doi: 10.3389/fmicb.2021.744094 URL |
[23] |
丛韫喆, 马群飞, 杨文慧, 等. 拟康氏木霉和黑根霉混合发酵对苹果链格孢的防治[J]. 中国农学通报, 2020, 36(19): 121-126.
doi: 10.11924/j.issn.1000-6850.casb20190600347 |
Cong YZ, Ma QF, Yang WH, et al. Control of Alternaria alternata by mixed fermentation of Trichoderma pseudokoningii and Rhizopus nigrican[J]. Chin Agric Sci Bull, 2020, 36(19): 121-126. | |
[24] |
Mohammadi A, Shojaosadati SA, Tehrani HJ, et al. Schizophyllan production by newly isolated fungus Schizophyllum commune IBRC-M 30213: optimization of culture medium using response surface methodology[J]. Ann Microbiol, 2018, 68(1): 47-62.
doi: 10.1007/s13213-017-1316-9 URL |
[25] | 郭渊, 李韵雅, 江威, 等. 一株高效解磷肠膜明串珠菌的分离鉴定及解磷能力研究[J]. 微生物学通报, 2018, 45(10): 2131-2141. |
Guo Y, Li YY, Jiang W, et al. Isolation and identification of a phosphate solubilizing bacterium Leuconostoc mesenteroides and its ability to dissolve phosphorus[J]. Microbiol China, 2018, 45(10): 2131-2141. | |
[26] |
Ham S, Yoon H, Park JM, et al. Optimization of fermentation medium for indole acetic acid production by Pseudarthrobacter sp. NIBRBAC000502770[J]. Appl Biochem Biotechnol, 2021, 193(8): 2567-2579.
doi: 10.1007/s12010-021-03558-0 |
[1] | 杨志晓, 侯骞, 刘国权, 卢志刚, 曹毅, 芶剑渝, 王轶, 林英超. 不同抗性烟草品系Rubisco及其活化酶对赤星病胁迫的响应[J]. 生物技术通报, 2023, 39(9): 202-212. |
[2] | 程亚楠, 张文聪, 周圆, 孙雪, 李玉, 李庆刚. 乳酸乳球菌生产2'-岩藻糖基乳糖的途径构建及发酵培养基优化[J]. 生物技术通报, 2023, 39(9): 84-96. |
[3] | 刘珍银, 段郅臻, 彭婷, 王童欣, 王健. 基于三角梅的病毒诱导基因沉默体系的建立与优化[J]. 生物技术通报, 2023, 39(7): 123-130. |
[4] | 李文辰, 刘鑫, 康越, 李伟, 齐泽铮, 于璐, 王芳. TRV病毒诱导大豆基因沉默体系优化及应用[J]. 生物技术通报, 2023, 39(7): 143-150. |
[5] | 张路阳, 韩文龙, 徐晓雯, 姚健, 李芳芳, 田效园, 张智强. 烟草TCP基因家族的鉴定及表达分析[J]. 生物技术通报, 2023, 39(6): 248-258. |
[6] | 王羽, 尹铭绅, 尹晓燕, 奚家勤, 杨建伟, 牛秋红. 烟草甲体内烟碱降解菌的筛选、鉴定及降解特性[J]. 生物技术通报, 2023, 39(6): 308-315. |
[7] | 车永梅, 郭艳苹, 刘广超, 叶青, 李雅华, 赵方贵, 刘新. 菌株C8和B4的分离鉴定及其耐盐促生效果和机制[J]. 生物技术通报, 2023, 39(5): 276-285. |
[8] | 李善家, 雷雨昕, 孙梦格, 刘海锋, 王兴敏. 种子内生细菌多样性与植物互馈作用研究进展[J]. 生物技术通报, 2023, 39(4): 166-175. |
[9] | 申云鑫, 施竹凤, 周旭东, 李铭刚, 张庆, 冯路遥, 陈齐斌, 杨佩文. 三株具生防功能芽孢杆菌的分离鉴定及其生物活性研究[J]. 生物技术通报, 2023, 39(3): 267-277. |
[10] | 余世洲, 曹领改, 王世泽, 刘勇, 边文杰, 任学良. 烟草种质基因分型核心SNP标记的开发[J]. 生物技术通报, 2023, 39(3): 89-100. |
[11] | 杜清洁, 周璐瑶, 杨思震, 张嘉欣, 陈春林, 李娟起, 李猛, 赵士文, 肖怀娟, 王吉庆. 过表达CaCP1提高转基因烟草对盐胁迫的敏感性[J]. 生物技术通报, 2023, 39(2): 172-182. |
[12] | 汪格格, 邱诗蕊, 张琳晗, 杨国伟, 徐小云, 汪爱羚, 曾淑华, 刘雅洁. 异源三倍体普通烟草(SST)减数分裂期的分子细胞学研究[J]. 生物技术通报, 2023, 39(2): 183-192. |
[13] | 李莹, 宋新颖, 何康, 郭志青, 于静, 张霞. 贝莱斯芽孢杆菌ZHX-7的分离鉴定及抑菌促生效果[J]. 生物技术通报, 2023, 39(12): 229-236. |
[14] | 尹国英, 刘畅, 常永春, 羽王洁, 王兵, 张盼, 郭玉双. 烟草半胱氨酸蛋白酶家族和相应miRNAs的鉴定及其对PVY的响应[J]. 生物技术通报, 2023, 39(10): 184-196. |
[15] | 刘广超, 叶青, 车永梅, 李雅华, 安东, 刘新. 烟草根际高效解磷菌的筛选鉴定及促生作用研究[J]. 生物技术通报, 2022, 38(8): 179-187. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||