生物技术通报 ›› 2023, Vol. 39 ›› Issue (9): 202-212.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0278
杨志晓1(), 侯骞2, 刘国权3, 卢志刚3, 曹毅1, 芶剑渝4, 王轶1, 林英超1()
收稿日期:
2023-03-26
出版日期:
2023-09-26
发布日期:
2023-10-24
通讯作者:
林英超,男,博士,副研究员,研究方向:烟草育种;E-mail: lin.yingchao@qq.com作者简介:
杨志晓,男,博士,副研究员,研究方向:烟草遗传育种;E-mail: linyingxian2006@126.com
基金资助:
YANG Zhi-xiao1(), HOU Qian2, LIU Guo-quan3, LU Zhi-gang3, CAO Yi1, GOU Jian-yu4, WANG Yi1, LIN Ying-chao1()
Received:
2023-03-26
Published:
2023-09-26
Online:
2023-10-24
摘要:
本研究以抗、感烟草品系JYH、CBH为试验材料,分析赤星病胁迫对光合作用和核酮糖-1,5-二磷酸核酮糖羧化酶/加氧酶(Rubisco)、核酮糖-1,5-二磷酸核酮糖羧化酶/加氧酶活化酶(RCA)活性及基因表达的影响。结果表明,胁迫9 d,JYH的光合作用及Rubisco、RCA活性、基因表达水平和蛋白含量受到明显抑制。赤星病胁迫显著降低CBH的光合作用及Rubisco、RCA活性和蛋白含量,Rubisco大、小亚基基因(rbcL、rbcS)、RCA基因(rca)的相对表达量也持续下降。JYH的Rubisco、RCA活性、基因表达水平和蛋白含量均显著高于CBH。相关性分析结果显示,Pn与Rubisco、RCA活性及基因表达量呈显著、极显著正相关。在赤星病胁迫下,JYH可维持较高的Pn与Rubisco、RCA活性,从而具有较强抗性。
杨志晓, 侯骞, 刘国权, 卢志刚, 曹毅, 芶剑渝, 王轶, 林英超. 不同抗性烟草品系Rubisco及其活化酶对赤星病胁迫的响应[J]. 生物技术通报, 2023, 39(9): 202-212.
YANG Zhi-xiao, HOU Qian, LIU Guo-quan, LU Zhi-gang, CAO Yi, GOU Jian-yu, WANG Yi, LIN Ying-chao. Responses of Rubisco and Rubisco Activase in Different Resistant Tobacco Strains to Brown Spot Stress[J]. Biotechnology Bulletin, 2023, 39(9): 202-212.
基因 Gene | 正向引物Forward primer(5'-3') | 反向引物Reverse primer(5'-3') |
---|---|---|
rbcL | TTACAAAGGGCGATGCTACC | GAACCCAAATACGTTACCTACAATG |
RbcS | GCTTCCTCTGTTCTTTCCTCTG | GCAATGGAAGTGATGTCAAGG |
Rca | AGCAGCAGAAATCATCAG | ATTGTCCAGGGAAGGTAT |
Actin | CCTGAGGTCCTTTTCCAACCA | GGATTCCGGCAGCTTCCATT |
表1 实时荧光定量PCR引物
Table 1 Primers for real-time quantitative RCR
基因 Gene | 正向引物Forward primer(5'-3') | 反向引物Reverse primer(5'-3') |
---|---|---|
rbcL | TTACAAAGGGCGATGCTACC | GAACCCAAATACGTTACCTACAATG |
RbcS | GCTTCCTCTGTTCTTTCCTCTG | GCAATGGAAGTGATGTCAAGG |
Rca | AGCAGCAGAAATCATCAG | ATTGTCCAGGGAAGGTAT |
Actin | CCTGAGGTCCTTTTCCAACCA | GGATTCCGGCAGCTTCCATT |
图1 赤星病胁迫对不同抗性烟草品系光合作用参数的影响 JYH-T和CBH-T:JYH、CBH接种烟草赤星病菌。JYH-CK和CBH-CK:JYH、CBH未接种烟草赤星病菌。不同字母表示差异显著(P<0.05)。下同
Fig. 1 Effects of brown spot stress on photosynthetic parameters in different resistant tobacco cultivars JYH-T and CBH-T: Inoculated with tobacco brown spot of JYH and CBH. JYH-CK and CBH-CK: Non-inoculated with tobacco brown spot of JYH and CBH. Different letters indicate significant differences(P<0.05). The same below
图3 赤星病胁迫对不同抗性烟草品系rbcL、rbcS和rca相对表达量的影响
Fig. 3 Effects of brown spot stress on the relative expressions of rbcL, rbcS and rca in different resistant tobacco cultivars
图4 赤星病胁迫对不同抗性烟草品系rbcL、rbcS和rca含量的影响
Fig. 4 Effects of brown spot stress on the contents of rbcL, rbcS and rca in different resistant tobacco cultivars
指标 Index | Pn | rbcL 相对表达量 rbcL relative expression | rbcS相对表达量 rbcS relative expression | rca相对表达量 rca relative expression | rbcL含量 Content of rbcL | rbcS含量 Content of rbcS | rca含量 Content of rca | Rubisco活化状态 Activation state of Rubisco | Rubisco 初始活性 Initial activity of Rubisco | Rubisco总活性 Total activity of Rubisco |
---|---|---|---|---|---|---|---|---|---|---|
rbcL相对表达量 rbcL relative expression | 0.996** | |||||||||
rbcS相对表达量 rbcS relative expression | 0.989** | 0.427 | ||||||||
rca相对表达量 rca relative expression | 0.991** | 0.193 | 0.704 | |||||||
rbcL含量 Content of rbcL | 0.375 | 0.743 | 0.588 | 0.611 | ||||||
rbcS含量 Content of rbcS | 0.442 | 0.347 | -0.623 | -0.194 | 0.927* | |||||
rca含量 Content of rca | 0.296 | 0.204 | 0.037 | 0.974** | 0.492 | 0.613 | ||||
Rubisco活化状态 Activation state of Rubisco | 0.926* | 0.938* | 0.198 | 0.427 | 0.128 | 0.327 | 0.979** | |||
Rubisco初始活性 Initial activity of Rubisco | 0.917* | 0.962* | 0.529 | 0.947* | -0.384 | 0.535 | 0.993** | 0.584 | ||
Rubisco总活性 Total activity of Rubisco | 0.943* | 0.987** | -0.394 | 0.919* | 0.456 | 0.136 | 0.982** | 0.371 | 0.603 | |
RCA活性 Activity of RCA | 0.932* | 0.449 | 0.438 | 0.996** | 0.295 | 0.477 | 0.438 | 0.149 | 0.582 | 0.497 |
表2 不同抗性烟草品系净光合速率与Rubisco、RCA基因表达特性的相关性分析
Table 2 Correlation analysis between net photosynthetic rate and gene expression characteristics of Rubisco and RCA in different resistant tobacco cultivars under brown spot stress
指标 Index | Pn | rbcL 相对表达量 rbcL relative expression | rbcS相对表达量 rbcS relative expression | rca相对表达量 rca relative expression | rbcL含量 Content of rbcL | rbcS含量 Content of rbcS | rca含量 Content of rca | Rubisco活化状态 Activation state of Rubisco | Rubisco 初始活性 Initial activity of Rubisco | Rubisco总活性 Total activity of Rubisco |
---|---|---|---|---|---|---|---|---|---|---|
rbcL相对表达量 rbcL relative expression | 0.996** | |||||||||
rbcS相对表达量 rbcS relative expression | 0.989** | 0.427 | ||||||||
rca相对表达量 rca relative expression | 0.991** | 0.193 | 0.704 | |||||||
rbcL含量 Content of rbcL | 0.375 | 0.743 | 0.588 | 0.611 | ||||||
rbcS含量 Content of rbcS | 0.442 | 0.347 | -0.623 | -0.194 | 0.927* | |||||
rca含量 Content of rca | 0.296 | 0.204 | 0.037 | 0.974** | 0.492 | 0.613 | ||||
Rubisco活化状态 Activation state of Rubisco | 0.926* | 0.938* | 0.198 | 0.427 | 0.128 | 0.327 | 0.979** | |||
Rubisco初始活性 Initial activity of Rubisco | 0.917* | 0.962* | 0.529 | 0.947* | -0.384 | 0.535 | 0.993** | 0.584 | ||
Rubisco总活性 Total activity of Rubisco | 0.943* | 0.987** | -0.394 | 0.919* | 0.456 | 0.136 | 0.982** | 0.371 | 0.603 | |
RCA活性 Activity of RCA | 0.932* | 0.449 | 0.438 | 0.996** | 0.295 | 0.477 | 0.438 | 0.149 | 0.582 | 0.497 |
[1] |
童治军, 张谊寒, 陈学军, 等. 雪茄烟品种Beinhart1000-1赤星病抗性基因的QTL定位[J]. 作物学报, 2019, 45(3): 477-482.
doi: 10.3724/SP.J.1006.2019.84035 |
Tong ZJ, Zhang HY, Chen XJ, et al. Mapping of quantitative trait loci conferring resistance to brown spot in cigar tobacco cultivar Beinhart1000-1[J]. Acta Agronomica Sinica, 2019, 45(3): 477-482.
doi: 10.3724/SP.J.1006.2019.84035 URL |
|
[2] | Shew HD. Compendium of tobacco diseases[M]. Minnesota: Amer Phytopathological Society, 1991. |
[3] |
Feng ZH, Li YX, Ma XY, et al. Draft genome sequence of Alternaria longipes causing tobacco brown spot[J]. Plant Dis, 2022, 106(2): 734-736.
doi: 10.1094/PDIS-06-21-1274-A URL |
[4] |
Nowicka B, Ciura J, Szymańska R, et al. Improving photosynthesis, plant productivity and abiotic stress tolerance-current trends and future perspectives[J]. J Plant Physiol, 2018, 231: 415-433.
doi: 10.1016/j.jplph.2018.10.022 URL |
[5] | 沈喜, 李红玉, 贾秋珍, 等. 条锈病对小麦(Triticum aestivum L.) 叶片光合功能及光合功能蛋白D1表达的影响[J]. 生态学报, 2008, 28(2): 669-676. |
Shen X, Li HY, Jia QZ, et al. Influence of wheat(Triticum aestivum L.) stripe rust infection on photosynthetic function and expression protein D1 of what leaves[J]. Acta Ecol Sin, 2008, 28(2): 669-676. | |
[6] | 部建雯, 姚广, 高辉远, 等. 核盘菌(Sclerotinia sclerotiorum (Lib.)de Bary)侵染抑制黄瓜光合作用的机理[J]. 植物病理学报, 2009, 39(6): 613-621. |
Bu JW, Yao G, Gao HY, et al. Inhibition mechanism of photosynthesis in cucumber leaves infected by Sclerotinia sclerotiorum(Lib.) de Bary[J]. Acta Phytopathol Sin, 2009, 39(6): 613-621. | |
[7] | Day W, Chalabi ZS. Use of models to investigate the link between the modification of photosynthetic characteristics and improved crop yields[J]. Plant Physiol Bioch, 1998, 26(4): 511-517. |
[8] |
Suzuki YJ, Makino A. Translational downregulation of RBCL is operative in the coordinated expression of Rubisco genes in senescent leaves in rice[J]. J Exp Bot, 2013, 64(4): 1145-1152.
doi: 10.1093/jxb/ers398 pmid: 23349140 |
[9] |
Sun JL, Sui XL, Wang SH, et al. The response of rbcL, rbcS and rca genes in cucumber(Cucumis sativus L.) to growth and induction light intensity[J]. Acta Physiol Plant, 2014, 36(10): 2779-2791.
doi: 10.1007/s11738-014-1648-z URL |
[10] |
Kaiser E, Morales A, Harbinson J, et al. Dynamic photosynthesis in different environmental conditions[J]. J Exp Bot, 2014, 66: 2415-2426.
doi: 10.1093/jxb/eru406 URL |
[11] |
颜坤, 赵世杰, 徐化凌, 等. 盐胁迫对不同倍性金银花光合特性的影响[J]. 中国农业科学, 2015, 48(16): 3275-3286.
doi: 10.3864/j.issn.0578-1752.2015.16.017 |
Yan K, Zhao SJ, Xu HL, et al. Effects of salt stress on photosynthetic characters in honeysuckle with different ploidies[J]. Sci Agr Sin, 2015, 48(16): 3275-3286. | |
[12] |
Martinez-Barajas E, Molina-Galan J, Sanchez De Jimenez E. Regulation of Rubisco activity during grain-fill in maize: possible role of Rubisco activase[J]. J Agr Sci, 1997, 128: 155-161.
doi: 10.1017/S002185969600408X URL |
[13] | 杜兴良, 兰盼龙, 张皓帆, 等. 一氧化氮对高温与干旱复合胁迫下小麦叶片Rca基因表达及Rubisco活性的影响[J]. 河南农业大学学报, 2018, 52(6): 868-873. |
Du XL, Lan PL, Zhang HF, et al. Regulating effect of nitric oxide on expression of Rca gene and activity of Rubisco in wheat leaves under combined stress of heat and drought[J]. J Henan Agr Univ, 2018, 52(6): 868-873. | |
[14] |
Pinheiro C, Chaves MM. Photosynthesis and drought: can we make metabolic connections from available data?[J]. J Exp Bot, 2011, 62: 869-882.
doi: 10.1093/jxb/erq340 pmid: 21172816 |
[15] |
Goumenaki E, Taybi T, Borland A, et al. Mechanisms underlying the impacts of ozone on photosynthetic performance[J]. Environ Exp Bot, 2010, 69(3): 259-266.
doi: 10.1016/j.envexpbot.2010.04.011 URL |
[16] |
孙建磊, 王崇启, 肖守华, 等. 弱光对黄瓜幼苗光合特性及Rubisco酶的影响[J]. 核农学报, 2017, 31(6): 1200-1209.
doi: 10.11869/j.issn.100-8551.2017.06.1200 |
Sun JL, Wang CQ, Xiao SH, et al. Effect of low light on photosynthesis and Rubisco of cucumber seedlings[J]. J Nucl Agr Sci, 2017, 31(6): 1200-1209. | |
[17] |
杨青华, 郑博元, 李蕾蕾, 等. 外源NO供体对水分亏缺下玉米叶片碳同化关键酶及抗氧化系统的影响[J]. 作物学报, 2018, 44(9): 1393-1399.
doi: 10.3724/SP.J.1006.2018.01393 |
Yang QH, Zheng BY, Li LL, et al. Effect of exogenous nitric oxide donor on carbon assimilation and antioxidant system in leaves of maize seedlings under PEG-induced water deficit stress[J]. Acta Agron Sinica, 2018, 44(9): 1393-1399.
doi: 10.3724/SP.J.1006.2018.01393 URL |
|
[18] | 郭鹏诚. 烟草赤星病抗性候选基因筛选及功能分析[D]. 北京: 中国农业科学院, 2021. |
Guo PC. Screening and functional analysis of resistance candidate gene to tobacco brown spot[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021. | |
[19] | 杨志晓, 丁燕芳, 张小全, 等. 赤星病胁迫对不同抗性烟草品种光合作用和叶绿素荧光特性的影响[J]. 生态学报, 2015, 35(12): 4146-4154. |
Yang ZX, Ding YF, Zhang XQ, et al. Impacts of Alternaria alterna-ta stress on characteristics of photosynthesis and chlorophyll fluorescence in two tobacco cultivars with different resistances[J]. Acta Ecol Sin, 2015, 35(12): 4146-4154. | |
[20] |
Yang ZX, Yang YF, Yu SZ, et al. Photosynthetic, photochemical and osmotic regulation changes in tobacco resistant and susceptible to Alternaria alternata[J]. Trop plant pathol, 2018, 43(5): 413-421.
doi: 10.1007/s40858-018-0222-4 |
[21] | 牛俊轲, 卢宝慧, 刘丽萍, 等. 吉林省和黑龙江省烟草赤星病病原鉴定[J]. 中国烟草科学, 2019, 40(5): 52-59. |
Niu JK, Lu BH, Liu LP, et al. Identification of the pathogens causing tobacco brown spot disease in Jilin and Heilongjiang provinces[J]. Chin Tob Sci, 2019, 40(5): 52-59. | |
[22] | 王文静, 王凤龙, 焦芳蝉, 等. 基于重测序的烟草赤星病抗性关联SNP位点挖掘[J]. 分子植物育种, 2023, 21(5): 1475-1480. |
Wang WJ, Wang FL, Jiao FC, et al. Investigation on occurrence regularity and influencing factors of tobacco brown spot[J]. Mol Plant Breed, 2023, 21(5): 1475-1480. | |
[23] | 樊杰, Tom Hsiang T, 李芝义, 等. Civitas Pre-M1xed安全性评价及其对烟草赤星病的防治效果[J]. 农药学学报, 2020, 22(3): 477-482. |
Fan J, Tom Hsiang T, Li ZY, et al. Safety evaluation of Civitas Pre-M1xed and its effect on brown spot disease of tobacco[J]. Chin J Pestic Sci, 2020, 22(3): 477-482. | |
[24] | 孔德钧, 王志红, 陈丽莉, 等. 烤烟抗赤星病种质资源的筛选[J]. 广东农业科学, 2018, 45(4): 22-27. |
Kong DJ, Wang ZH, Chen LL, et al. Identification of flue-cured tobacco germplasm resources resistant to brown spot disease[J]. Guangdong Agr Sci, 2018, 45(4): 22-27. | |
[25] |
Yang ZX, Chen Y, Wang Y, et al. Nitrogen metabolic rate and differential ammonia volatilization regulate resistance against opportunistic fungus Alternaria alternata in tobacco[J]. Front Plant Sci. 2022, 13: 1003534.
doi: 10.3389/fpls.2022.1003534 URL |
[26] | 董汉松, 王智发. 烟草赤星病菌致病力测定方法的研究[J]. 山东农业大学学报, 1989, 4: 1-8. |
Dong HS, Wang ZF. Study on methods for identifying pathogenicity of tobacco brown spot pathogen[J]. J Shandong Agr Univ, 1989, 4: 1-8. | |
[27] | 易龙. 烟草赤星病菌菌种保存及致病性研究[J]. 植物保护, 2008, 34(1): 92-95. |
Yi L. Preservation of the pathogen of tobacco brown spot and its pathogenicity[J]. Plant Prot, 2008, 34(1): 92-95. | |
[28] |
Berry J, Bjorkman O. Photosynthetic response and adaptation to temperature in higher plants[J]. Annu Rev Plant Physiol, 1980, 31(1): 491-543.
doi: 10.1146/arplant.1980.31.issue-1 URL |
[29] |
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CTmethod[J]. Methods, 2001, 25(4): 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[30] | 马超, 张均, 宋鹏, 等. 外源海藻糖对PEG渗透胁迫下小麦Rubisco及其活化酶的影响[J]. 西北植物学报, 2019, 39(7): 1241-1249. |
Ma C, Zhang J, Song P, et al. Effect of exogenous trehalose on Rubisco and its activase in wheat under PEG osmotic stress[J]. Acta Bot Boreal-Occid Sin, 2019, 39(7): 1241-1249. | |
[31] |
Liu ZH, Dreybrodt W. Significance of the carbon sink produced by H2O-arbonate-CO2-aquatic phototroph interaction on land[J]. Sci Bull, 2015, 60(2): 182-191.
doi: 10.1007/s11434-014-0682-y URL |
[32] |
Balachandran S, Hull RJ, Martins RA, et al. Influence of environmental stress on biomass partitioning in transgenic tobacco plants expressing the movement protein of tobacco mosaic virus[J]. Plant Physiol, 1997, 114(2): 475-481.
pmid: 12223721 |
[33] | 贾士芳, 李从峰, 董树亭, 等. 弱光胁迫影响夏玉米光合效率的生理机制初探[J]. 植物生态学报, 2010, 34(12): 1496-1447. |
Jia SF, Li CF, Dong ST, et al. Physiological mechanism of shading stress on photosynthetic efficiency in summer maize(Zea mays)[J]. Chin J Plant Ecol, 2010, 34(12): 1496-1447. | |
[34] |
Farquhar GD, Sharkey TD. Stomatal conductance and photosynthesis[J]. Annu Rev Plant Physiol, 1982, 33(1): 317-345.
doi: 10.1146/arplant.1982.33.issue-1 URL |
[35] |
邹京南, 于奇, 金喜军, 等. 外源褪黑素对干旱胁迫下大豆鼓粒期生理和产量的影响[J]. 作物学报, 2020, 46(5): 745-758.
doi: 10.3724/SP.J.1006.2020.94111 |
Zou JN, Yu Q, Wang XJ, et al. Effects of exogenous melatonin on physiology and yield of soybean during seed filling stage under drought stress[J]. Acta Agr Sin, 2020, 46(5): 745-758. | |
[36] | 胥华伟, 侯典云. 番茄Rubisco小亚基叶绿体转运肽的克隆及其功能验证[J]. 基因组学与应用生物学, 2018, 37(4): 1570-1575. |
Xu HW, Hou DY. Cloning and functional verification of tomato Rubisco small subunit chloroplast transit peptide[J]. Genomics Appl Biol, 2018, 37(4): 1570-1575. | |
[37] | 李卫芳, 王忠, 韩鹰, 等. 小麦Rubisco活化酶的纯化及其活性特性[J]. 中国农业科学, 2002, 35(8): 929-933. |
Li WF, Wang Z, Han Y, et al. Purification and activity characteristics of Rubisco activase from wheat leaves[J]. Sci Agr Sin, 2002, 35(8): 929-933. | |
[38] |
Portis AR. Rubisco activase-Rubisco's catalytic chaperone[J]. Photosynth Res, 2003, 75: 11-27.
doi: 10.1023/A:1022458108678 URL |
[39] | 洪健, 王卫兵, 胡东维, 等. Rubisco和RCA在青菜叶绿体中的分布及病毒侵染对其细胞定位的影响[J]. 实验生物学报, 2005, 38(1): 29-36. |
Hong J, Wang WB, Hu DW, et al. Distribution of Rubisco and Rca in Brassica Chinensis chloroplasts and effect of TuMV-infection on their cellular localization[J]. Acta Biol Exp Sin, 2005, 38(1): 29-36. | |
[40] | 朱磊, 杨景华, 张明方. 芥菜Rubisco小亚基的基因克隆及其在芜菁花叶病毒侵染后的表达分析[J]. 核农学报, 2011, 25: 945-950. |
Zhu L, Yang JH, Zhang MF. Cloning of Rubisco small subunit gene from mustard and analysis of its expression in response to Turnip mosaic virus infection[J]. J Nucl Agric Sci, 2011, 25: 945-950. | |
[41] | 杨志晓, 王轶, 谢升东, 等. 二个抗、感病烟草品种对赤星病胁迫的光合生理响应差异[J]. 植物生理学报, 2022, 58(3): 565-576. |
Yang ZX, Wang Y, Xie SD, et al. Differences of photosynthetic physiological response in two resistant and susceptible tobacco cultivars to brown spot stress[J]. Plant Physiol J, 2022, 58(3): 565-576.
doi: 10.1111/ppl.1983.58.issue-4 URL |
|
[42] | 艾希珍, 郭延奎, 马兴庄, 等. 弱光条件下日光温室黄瓜需光特性及叶绿体超微结构[J]. 中国农业科学, 2004, 37(2): 268-273. |
Ai XZ, Guo YK, Ma XZ, et al. Phytosynthetic characteristics and ultrastructure of choloroplast of cucumber under low light intensity in solargreenhouse[J]. Sci Agr Sin, 2004, 37(2): 268-273. | |
[43] | Yue HY, Yin JR, Yan SQ, et al. Cloning and sequence analysis of rbcS gene of wild barley(Hordeum brevisubulatum)under salt stress[J]. Agr Sci & Technol, 2010, 11: 42-44. |
[44] | 陈丽芳. 外源亚精胺对盐胁迫下黄瓜幼苗CO2同化代谢的影响[D]. 南京: 南京农业大学, 2011. |
Chen LF. Effects of exogenous spermidine on CO2 assimilation and metabolism of salt-stressed cucumber seedlings[D]. Nanjing: Nanjing Agricultural University, 2011. | |
[45] |
Whitney SM, Andrews TJ. Plastome-encoded bacterial ribulose-1, 5-bisphosphate carboxylase/oxygenase(Rubisco)supports photosynthesis and growth in tobacco[J]. P Natl Acad Sci USA, 2001, 98(25): 14738-14743.
doi: 10.1073/pnas.261417298 URL |
[46] | 毕焕改, 李福德, 董绪兵, 等. 转酮醇酶基因沉默对高温胁迫下黄瓜幼苗光合作用的影响[J]. 植物生理学报, 2017, 53(10): 1859-1866. |
Bi HG, Li FD, Dong XB, et al. Effects of transketolase gene silencing on photosynthesis in cucumber seedlings under high temperature stress[J]. Plant Physiol J, 2017, 53(10): 1859-1866. | |
[47] |
Chen Y, Wan g XM, Zhou L, et al. Rubisco activase is also a multiple responder to abiotic stresses in rice[J]. Plos One, 2015, 10(10): e0140934.
doi: 10.1371/journal.pone.0140934 URL |
[48] |
李翔, 桑勤勤, 束胜, 等. 外源油菜素内酯对弱光下番茄幼苗光合碳同化关键酶及其基因的影响[J]. 园艺学报, 2016, 43(10): 2012-2020.
doi: 10.16420/j.issn.0513-353x.2016-0364 |
Li X, Sang QQ, Shu S, et al. Effects of epibrassinolide on the activities and gene expression of photosynthetic enzymes in tomato seedlings under low light[J]. Acta Hortic Sin, 2016, 43(10): 2012-2020.
doi: 10.16420/j.issn.0513-353x.2016-0364 |
[1] | 李帜奇, 袁月, 苗荣庆, 庞秋颖, 张爱琴. 盐胁迫盐芥和拟南芥褪黑素含量及合成相关基因表达模式分析[J]. 生物技术通报, 2023, 39(5): 142-151. |
[2] | 刘奎, 李兴芬, 杨沛欣, 仲昭晨, 曹一博, 张凌云. 青杄转录共激活因子PwMBF1c的功能研究与验证[J]. 生物技术通报, 2023, 39(5): 205-216. |
[3] | 赖瑞联, 冯新, 高敏霞, 路喻丹, 刘晓驰, 吴如健, 陈义挺. 猕猴桃过氧化氢酶基因家族全基因组鉴定与表达分析[J]. 生物技术通报, 2023, 39(4): 136-147. |
[4] | 郭三保, 宋美玲, 李灵心, 尧子钊, 桂明明, 黄胜和. 斑地锦查尔酮合酶基因及启动子的克隆与分析[J]. 生物技术通报, 2023, 39(4): 148-156. |
[5] | 王琪, 胡哲, 富薇, 李光哲, 郝林. 伯克霍尔德氏菌GD17对黄瓜幼苗耐干旱的调节[J]. 生物技术通报, 2023, 39(3): 163-175. |
[6] | 陈强, 邹明康, 宋家敏, 张冲, 吴隆坤. 甜瓜LBD基因家族的鉴定和果实发育进程中的表达分析[J]. 生物技术通报, 2023, 39(3): 176-183. |
[7] | 姚晓文, 梁晓, 陈青, 伍春玲, 刘迎, 刘小强, 税军, 乔阳, 毛奕茗, 陈银华, 张银东. 二斑叶螨抗性木薯木质素合成途径基因表达特性研究[J]. 生物技术通报, 2023, 39(2): 161-171. |
[8] | 李彦霞, 王晋鹏, 冯芬, 包斌武, 董益闻, 王兴平, 罗仍卓么. 大肠杆菌型奶牛乳房炎对产奶性状相关基因表达的影响[J]. 生物技术通报, 2023, 39(2): 274-282. |
[9] | 冯策婷, 江律, 刘鑫颖, 罗乐, 潘会堂, 张启翔, 于超. 单叶蔷薇NAC基因家族鉴定及干旱胁迫响应分析[J]. 生物技术通报, 2023, 39(11): 283-296. |
[10] | 吴柏增, 何琪, 姚方杰, 赵梦然. 糙皮侧耳乳酸脱氢酶鉴定及其菌丝高温胁迫下表达特征分析[J]. 生物技术通报, 2023, 39(11): 350-359. |
[11] | 阮航, 多浩源, 范文艳, 吕清晗, 姜述君, 朱生伟. AtERF49在拟南芥应答盐碱胁迫中的作用[J]. 生物技术通报, 2023, 39(1): 150-156. |
[12] | 姜南, 石杨, 赵志慧, 李斌, 赵熠辉, 杨俊彪, 闫家铭, 靳雨璠, 陈稷, 黄进. 镉胁迫下水稻OsPT1的表达及功能分析[J]. 生物技术通报, 2023, 39(1): 166-174. |
[13] | 段敏杰, 李怡斐, 杨小苗, 王春萍, 黄启中, 黄任中, 张世才. 辣椒锌指蛋白DnaJ-Like基因家族鉴定及对高温胁迫的表达响应[J]. 生物技术通报, 2023, 39(1): 187-198. |
[14] | 袁星, 郭彩华, 刘金明, 亢超, 全绍文, 牛建新. 核桃CONSTANS-Like基因家族全基因组鉴定及表达分析[J]. 生物技术通报, 2022, 38(9): 167-179. |
[15] | 郭宾会, 宋丽. 大豆孢囊线虫侵染对乙烯合成及信号传导基因表达调控的研究[J]. 生物技术通报, 2022, 38(8): 150-158. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||