生物技术通报 ›› 2023, Vol. 39 ›› Issue (11): 226-237.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0417
收稿日期:
2023-04-29
出版日期:
2023-11-26
发布日期:
2023-12-20
通讯作者:
谢采芸,女,博士,研究方向:酿酒酵母育种;E-mail: xiecy@scu.edu.cn作者简介:
孙言秋,女,硕士研究生,研究方向:环境科学与工程;E-mail: sonyeonchu@qq.com
SUN Yan-qiu1(), XIE Cai-yun1,2(), TANG Yue-qin1,2
Received:
2023-04-29
Published:
2023-11-26
Online:
2023-12-20
摘要:
旨在构建优良的高温耐受酿酒酵母菌株,并探究其高温耐受机制。通过CRISPR/Cas9技术在絮凝性工业酿酒酵母KF-7中敲除ASP3(编码 L-天冬酰胺酶II)并进一步高表达CRZ1(编码具有锌指结构的转录因子Crz1p),通过比较转录组解析重组菌株的高温耐受机制。结果显示,在44℃高温条件下,ASP3敲除菌株KAS11利用98.36 g/L葡萄糖产生43.68 g/L乙醇。在KAS11基础上高表达CRZ1后,菌株KASCR7发酵105.37 g/L葡萄糖产48.02 g/L乙醇。与KF-7相比,两个重组菌株的乙醇产量分别提升了4.77%和15.18%。比较转录组分析结果表明,在高温胁迫下,重组菌株的核糖体生物合成及翻译相关基因受到抑制,而热休克蛋白基因以及NAD+、NADH、嘌呤、甘油、脯氨酸等合成相关基因受到诱导,这些响应可能共同导致重组菌株的高温耐受性提升。研究结果可为构建高温耐受酿酒酵母菌株提供优良菌株资源和理论基础。
孙言秋, 谢采芸, 汤岳琴. 耐高温酿酒酵母的构建与高温耐受机制解析[J]. 生物技术通报, 2023, 39(11): 226-237.
SUN Yan-qiu, XIE Cai-yun, TANG Yue-qin. Construction and Mechanism Analysis of High-temperature Resistant Saccharomyces cerevisiae[J]. Biotechnology Bulletin, 2023, 39(11): 226-237.
质粒Plasmid | 描述Description | 来源Source |
---|---|---|
Cas9-NAT | Ampr; Cas9; NAT1 | [ |
pMEL13-CRZ1 | Ampr; 2 μm orign, KanMX, gRNA-CRZ1 | [ |
pMEL13-ASP3 | Ampr; 2 μm orign, KanMX, gRNA-ASP3 | [ |
表1 本研究所用质粒
Table 1 Plasmids used in this study
质粒Plasmid | 描述Description | 来源Source |
---|---|---|
Cas9-NAT | Ampr; Cas9; NAT1 | [ |
pMEL13-CRZ1 | Ampr; 2 μm orign, KanMX, gRNA-CRZ1 | [ |
pMEL13-ASP3 | Ampr; 2 μm orign, KanMX, gRNA-ASP3 | [ |
引物用途 Usage of primer | 引物名称Name | 引物序列 Primer sequence(5'-3') |
---|---|---|
扩增带CRZ1同源臂的修复片段 | CRZ1 RF F | GGGCTGAAAAGTACATCCGCGCATTTAACAATTGCTAAGCCACACACCATAGCTTCAAAATG |
CRZ1 RF R | TAGTCATGTAGGAAGCCATATTTCCGTTGCTGAATGACATTTTGTAATTAAAACT | |
高表达CRZ1验证引物 | CRZ1 VP F | GCTTTGACTGCACTTTAGCTTAG |
CRZ1 VP R | ATTATTACGTCTGTAAGCGC | |
敲除ASP3修复片段 | ASP3 RF F | AGAGCAAATGTTGGCTCGCTATTCTTTTGTAAGCAATCTGGTACTCACCAACCTCCAACTAGCCTGATCAGTGACTTTTCATCACACTGTGTTTTTATATAGTTCTTAGTAGTAAATATA |
ASP3 RF R | TATATTTACTACTAAGAACTATATAAAAACACAGTGTGATGAAAAGTCACTGATCAGGCTAGTTGGAGGTTGGTGAGTACCAGATTGCTTACAAAAGAATAGCGAGCCAACATTTGCTCT | |
敲除ASP3验证引物 | ASP3 VP F | TATCAGACCCTTCAGCACGT |
ASP3 VP R | TGACACTGCTCAAGGGATAA |
表2 本研究所用引物
Table 2 Primers used in this study
引物用途 Usage of primer | 引物名称Name | 引物序列 Primer sequence(5'-3') |
---|---|---|
扩增带CRZ1同源臂的修复片段 | CRZ1 RF F | GGGCTGAAAAGTACATCCGCGCATTTAACAATTGCTAAGCCACACACCATAGCTTCAAAATG |
CRZ1 RF R | TAGTCATGTAGGAAGCCATATTTCCGTTGCTGAATGACATTTTGTAATTAAAACT | |
高表达CRZ1验证引物 | CRZ1 VP F | GCTTTGACTGCACTTTAGCTTAG |
CRZ1 VP R | ATTATTACGTCTGTAAGCGC | |
敲除ASP3修复片段 | ASP3 RF F | AGAGCAAATGTTGGCTCGCTATTCTTTTGTAAGCAATCTGGTACTCACCAACCTCCAACTAGCCTGATCAGTGACTTTTCATCACACTGTGTTTTTATATAGTTCTTAGTAGTAAATATA |
ASP3 RF R | TATATTTACTACTAAGAACTATATAAAAACACAGTGTGATGAAAAGTCACTGATCAGGCTAGTTGGAGGTTGGTGAGTACCAGATTGCTTACAAAAGAATAGCGAGCCAACATTTGCTCT | |
敲除ASP3验证引物 | ASP3 VP F | TATCAGACCCTTCAGCACGT |
ASP3 VP R | TGACACTGCTCAAGGGATAA |
培养基Culture medium | 组分Components | pH |
---|---|---|
LB+Kana | 5 g/L酵母浸出粉,10 g/L蛋白胨,10 g/L NaCl,0.1 g/L Kana | 7.0 |
LB+NAT | 5 g/L酵母浸出粉,10 g/L蛋白胨,10 g/L NaCl,0.05 g/L NAT | 7.0 |
2% YPD | 10 g/L酵母浸出粉,20 g/L蛋白胨,20 g/L葡萄糖 | 自然 |
2% YPD+NAT | 10 g/L酵母浸出粉,20 g/L蛋白胨,20 g/L葡萄糖,0.05 g/L NAT | 自然 |
2% YPD+G418 | 10 g/L酵母浸出粉,20 g/L 蛋白胨,20 g/L葡萄糖,0.1 g/L G418 | 自然 |
2% YPD+NAT+G418 | 10 g/L酵母浸出粉,20 g/L蛋白胨,20 g/L葡萄糖,0.05 g/L NAT,0.1 g/L G418 | 自然 |
5% YPD | 10 g/L酵母浸出粉,20 g/L蛋白胨,50 g/L葡萄糖 | 自然 |
15% YPD | 10 g/L酵母浸出粉,20 g/L蛋白胨,150 g/L葡萄糖 | 自然 |
表3 本研究所用培养基
Table 3 Media used in this study
培养基Culture medium | 组分Components | pH |
---|---|---|
LB+Kana | 5 g/L酵母浸出粉,10 g/L蛋白胨,10 g/L NaCl,0.1 g/L Kana | 7.0 |
LB+NAT | 5 g/L酵母浸出粉,10 g/L蛋白胨,10 g/L NaCl,0.05 g/L NAT | 7.0 |
2% YPD | 10 g/L酵母浸出粉,20 g/L蛋白胨,20 g/L葡萄糖 | 自然 |
2% YPD+NAT | 10 g/L酵母浸出粉,20 g/L蛋白胨,20 g/L葡萄糖,0.05 g/L NAT | 自然 |
2% YPD+G418 | 10 g/L酵母浸出粉,20 g/L 蛋白胨,20 g/L葡萄糖,0.1 g/L G418 | 自然 |
2% YPD+NAT+G418 | 10 g/L酵母浸出粉,20 g/L蛋白胨,20 g/L葡萄糖,0.05 g/L NAT,0.1 g/L G418 | 自然 |
5% YPD | 10 g/L酵母浸出粉,20 g/L蛋白胨,50 g/L葡萄糖 | 自然 |
15% YPD | 10 g/L酵母浸出粉,20 g/L蛋白胨,150 g/L葡萄糖 | 自然 |
菌株 Strain | 乙醇产量 Ethanol production/(g·L-1) | 葡萄糖消耗量 Glucose consumption/(g·L-1) | 乙醇收率Ethanol yield/(g·L-1) | 乙醇产量提升百分比Increased percentage of ethanol production/% |
---|---|---|---|---|
KF-7 | 41.69±0.88 | 94.14±2.60 | 0.45±0.02 | / |
KAS11 | 43.68±0.48* | 98.36±3.28 | 0.44±0.01 | 4.77 |
KASCR7 | 48.02±1.03** | 105.37±0.89* | 0.46±0.01 | 15.18 |
表4 44℃条件下发酵72 h时各菌株的葡萄糖利用和乙醇生产情况
Table 4 Glucose utilization and ethanol production of each strain after 72 h fermentation at 44℃
菌株 Strain | 乙醇产量 Ethanol production/(g·L-1) | 葡萄糖消耗量 Glucose consumption/(g·L-1) | 乙醇收率Ethanol yield/(g·L-1) | 乙醇产量提升百分比Increased percentage of ethanol production/% |
---|---|---|---|---|
KF-7 | 41.69±0.88 | 94.14±2.60 | 0.45±0.02 | / |
KAS11 | 43.68±0.48* | 98.36±3.28 | 0.44±0.01 | 4.77 |
KASCR7 | 48.02±1.03** | 105.37±0.89* | 0.46±0.01 | 15.18 |
Pathway | Gene | Description | log2 Fold Change | ||
---|---|---|---|---|---|
KAS11 vs KF-7 | KASCR7 vs KF-7 | ||||
Ribosome (P=0.007 65) | RPS22A | Ribosomal 40S subunit protein S22A | -2.12 | -2.43 | |
RPL11A | Ribosomal 60S subunit protein L11A | -1.82 | -2.39 | ||
RPS8B | Ribosomal 40S subunit protein S8B | -2.01 | -2.36 | ||
RPS5 | Ribosomal 40S subunit protein S5 | -1.92 | -2.33 | ||
RPL12B | Ribosomal 60S subunit protein L12B | -1.96 | -2.31 | ||
RPL2B | Ribosomal 60S subunit protein L2B | -1.85 | -2.30 | ||
One carbon pool by folate (P=0.033 83) | ADE17 | Bifunctional Phosphoribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydrolase | 1.35 | 1.95 | |
SHM2 | Glycine hydroxymethyltransferase | 1.16 | 2.05 | ||
GCV1 | Glycine decarboxylase subunit T | 1.59 | 2.15 | ||
MTD1 | Methylenetetrahydrofolate dehydrogenase(NAD+) | 1.00 | 1.70 |
表5 共有DEGs的通路富集结果
Table 5 Enriched pathways of common DEGs
Pathway | Gene | Description | log2 Fold Change | ||
---|---|---|---|---|---|
KAS11 vs KF-7 | KASCR7 vs KF-7 | ||||
Ribosome (P=0.007 65) | RPS22A | Ribosomal 40S subunit protein S22A | -2.12 | -2.43 | |
RPL11A | Ribosomal 60S subunit protein L11A | -1.82 | -2.39 | ||
RPS8B | Ribosomal 40S subunit protein S8B | -2.01 | -2.36 | ||
RPS5 | Ribosomal 40S subunit protein S5 | -1.92 | -2.33 | ||
RPL12B | Ribosomal 60S subunit protein L12B | -1.96 | -2.31 | ||
RPL2B | Ribosomal 60S subunit protein L2B | -1.85 | -2.30 | ||
One carbon pool by folate (P=0.033 83) | ADE17 | Bifunctional Phosphoribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydrolase | 1.35 | 1.95 | |
SHM2 | Glycine hydroxymethyltransferase | 1.16 | 2.05 | ||
GCV1 | Glycine decarboxylase subunit T | 1.59 | 2.15 | ||
MTD1 | Methylenetetrahydrofolate dehydrogenase(NAD+) | 1.00 | 1.70 |
MCODE | GO/KEGG | Description | P value |
---|---|---|---|
MCODE_1 | R-SCE-72706 | GTP hydrolysis and joining of the 60S ribosomal subunit | 1.00×10-100 |
R-SCE-72689 | Formation of a pool of free 40S subunits | 1.00×10-100 | |
WP210 | Cytoplasmic ribosomal proteins | 1.00×10-100 | |
MCODE_2 | WP32 | Translation factors | 6.31×10-8 |
R-SCE-72662 | Activation of the mRNA upon binding of the cap-binding complex and eIFs, and subsequent binding to 43S | 3.98×10-7 | |
R-SCE-72649 | Translation initiation complex formation | 3.98×10-7 |
表6 共有DEGs 蛋白互作网络信息
Table 6 Protein interaction network information of common DEGs
MCODE | GO/KEGG | Description | P value |
---|---|---|---|
MCODE_1 | R-SCE-72706 | GTP hydrolysis and joining of the 60S ribosomal subunit | 1.00×10-100 |
R-SCE-72689 | Formation of a pool of free 40S subunits | 1.00×10-100 | |
WP210 | Cytoplasmic ribosomal proteins | 1.00×10-100 | |
MCODE_2 | WP32 | Translation factors | 6.31×10-8 |
R-SCE-72662 | Activation of the mRNA upon binding of the cap-binding complex and eIFs, and subsequent binding to 43S | 3.98×10-7 | |
R-SCE-72649 | Translation initiation complex formation | 3.98×10-7 |
Pathway | Gene | Description | log2 Fold Change |
---|---|---|---|
Longevity regulating pathway - multiple species(P=0.008 48) | PNC1 | Nicotinamidase | 1.29 |
SSA2 | Hsp70 family chaperone | 1.32 | |
SSA1 | Hsp70 family ATPase | 1.33 | |
RAS2 | Ras family GTPase | -1.23 | |
CTT1 | Catalase T | 1.33 | |
Nicotinate and nicotinamide metabolism(P=0.013 55) | NPT1 | Nicotinate phosphoribosyltransferase | -1.34 |
PNC1 | Nicotinamidase | 1.29 | |
NRK1 | Ribosylnicotinamide kinase | 1.44 | |
SDT1 | Nucleotidase | 1.10 | |
Biosynthesis of secondary metabolites(P=0.041 39) | PUT1 | Proline dehydrogenase | -1.60 |
HIS1 | ATP phosphoribosyltransferase | 1.36 | |
GPD1 | Glycerol-3-phosphate dehydrogenase(NAD+) | 1.60 | |
TSC13 | Trans-2-enoyl-CoA reductase(NADPH) | -1.52 | |
TKL2 | Transketolase | 1.29 | |
CTT1 | Catalase T | 1.33 |
表7 KASCR7 vs KF-7特有DEGs的pathway富集结果
Table 7 Enriched pathways of unique DEGs for KASCR7 vs KF-7
Pathway | Gene | Description | log2 Fold Change |
---|---|---|---|
Longevity regulating pathway - multiple species(P=0.008 48) | PNC1 | Nicotinamidase | 1.29 |
SSA2 | Hsp70 family chaperone | 1.32 | |
SSA1 | Hsp70 family ATPase | 1.33 | |
RAS2 | Ras family GTPase | -1.23 | |
CTT1 | Catalase T | 1.33 | |
Nicotinate and nicotinamide metabolism(P=0.013 55) | NPT1 | Nicotinate phosphoribosyltransferase | -1.34 |
PNC1 | Nicotinamidase | 1.29 | |
NRK1 | Ribosylnicotinamide kinase | 1.44 | |
SDT1 | Nucleotidase | 1.10 | |
Biosynthesis of secondary metabolites(P=0.041 39) | PUT1 | Proline dehydrogenase | -1.60 |
HIS1 | ATP phosphoribosyltransferase | 1.36 | |
GPD1 | Glycerol-3-phosphate dehydrogenase(NAD+) | 1.60 | |
TSC13 | Trans-2-enoyl-CoA reductase(NADPH) | -1.52 | |
TKL2 | Transketolase | 1.29 | |
CTT1 | Catalase T | 1.33 |
MCODE | GO/KEGG | Description | P value |
---|---|---|---|
MCODE_1 | GO:0006913 | Nucleocytoplasmic transport | 7.94×10-5 |
GO:0051169 | Nuclear transport | 7.94×10-5 | |
GO:0000055 | Ribosomal large subunit export from nucleus | 7.94×10-5 | |
MCODE_2 | GO:0019646 | Aerobic electron transport chain | 2.00×10-7 |
GO:0042773 | ATP synthesis coupled electron transport | 2.00×10-7 | |
GO:0042775 | Mitochondrial ATP synthesis coupled electron transport | 2.00×10-7 | |
MCODE_3 | GO:0006364 | rRNA processing | 2.51×10-4 |
GO:0016072 | rRNA metabolic process | 7.94×10-5 | |
GO:0042254 | Ribosome biogenesis | 7.94×10-5 | |
MCODE_4 | GO:0006189 | ‘de novo’ IMP biosynthetic process | 7.94×10-5 |
GO:0006188 | IMP biosynthetic process | 6.31×10-9 | |
GO:0046040 | IMP metabolic process | 7.94×10-9 |
表8 KASCR7 vs KF-7特有DEGs蛋白互作网络信息
Table 8 Protein interaction network information for unique DEGs of KASCR7 vs KF-7
MCODE | GO/KEGG | Description | P value |
---|---|---|---|
MCODE_1 | GO:0006913 | Nucleocytoplasmic transport | 7.94×10-5 |
GO:0051169 | Nuclear transport | 7.94×10-5 | |
GO:0000055 | Ribosomal large subunit export from nucleus | 7.94×10-5 | |
MCODE_2 | GO:0019646 | Aerobic electron transport chain | 2.00×10-7 |
GO:0042773 | ATP synthesis coupled electron transport | 2.00×10-7 | |
GO:0042775 | Mitochondrial ATP synthesis coupled electron transport | 2.00×10-7 | |
MCODE_3 | GO:0006364 | rRNA processing | 2.51×10-4 |
GO:0016072 | rRNA metabolic process | 7.94×10-5 | |
GO:0042254 | Ribosome biogenesis | 7.94×10-5 | |
MCODE_4 | GO:0006189 | ‘de novo’ IMP biosynthetic process | 7.94×10-5 |
GO:0006188 | IMP biosynthetic process | 6.31×10-9 | |
GO:0046040 | IMP metabolic process | 7.94×10-9 |
[1] | 刘振, 王金鹏, 张立峰, 等. 木薯干原料同步糖化发酵生产乙醇[J]. 过程工程学报, 2005, 5(3): 353-356. |
Liu Z, Wang JP, Zhang LF, et al. Production of ethanol by simultaneous saccharifiction and fermentation from cassava[J]. Chin J Process Eng, 2005, 5(3): 353-356. | |
[2] | 王璀璨, 王义强, 陈介南, 等. 木质纤维生产燃料乙醇工艺的研究进展[J]. 生物技术通报, 2010(2): 51-57, 62. |
Wang CC, Wang YQ, Chen JN, et al. Research progress of technological processes in fuel ethanol production from lignocellulosic biomass[J]. Biotechnol Bull, 2010(2): 51-57, 62. | |
[3] | 刘海臣, 冉淦侨, 张兴, 等. 酒糟中超高温耐高酒精度酵母菌株的选育[J]. 酿酒科技, 2007(5): 28-31. |
Liu HC, Ran GQ, Zhang X, et al. Breeding of alcohol yeast strains of high-temperature tolerance and high-alcoholicity endurance from distiller's grains[J]. Liquor Mak Sci Technol, 2007(5): 28-31. | |
[4] |
Hiraishi H, Mochizuki M, Takagi H. Enhancement of stress tolerance in Saccharomyces cerevisiae by overexpression of ubiquitin ligase Rsp5 and ubiquitin-conjugating enzymes[J]. Biosci Biotechnol Biochem, 2006, 70(11): 2762-2765.
doi: 10.1271/bbb.60250 URL |
[5] |
Nasution O, Lee J, Srinivasa K, et al. Loss of Dfg5 glycosylphosphatidylinositol-anchored membrane protein confers enhanced heat tolerance in Saccharomyces cerevisiae[J]. Environ Microbiol, 2015, 17(8): 2721-2734.
doi: 10.1111/emi.2015.17.issue-8 URL |
[6] |
Xu K, Yu LP, Bai WX, et al. Construction of thermo-tolerant yeast based on an artificial protein quality control system(APQC)to improve the production of bio-ethanol[J]. Chem Eng Sci, 2018, 177: 410-416.
doi: 10.1016/j.ces.2017.12.009 URL |
[7] |
Caspeta L, Chen Y, Ghiaci P, et al. Biofuels. Altered sterol composition renders yeast thermotolerant[J]. Science, 2014, 346(6205): 75-78.
doi: 10.1126/science.1258137 pmid: 25278608 |
[8] |
Lu Y, Cheng YF, He XP, et al. Improvement of robustness and ethanol production of ethanologenic Saccharomyces cerevisiae under co-stress of heat and inhibitors[J]. J Ind Microbiol Biotechnol, 2012, 39(1): 73-80.
doi: 10.1007/s10295-011-1001-0 URL |
[9] | 王莉. 燃料乙醇生产用多重耐受性酿酒酵母菌株构建及耐受性分子机制解析[D]. 成都: 四川大学, 2021. |
Wang L. Breeding and molecular tolerance mechanism of multiple stress-tolerant Saccharomyces cerevisiae strains for fuel ethanol production[D]. Chengdu: Sichuan University, 2021. | |
[10] |
Kida K, Kume K, Morimura S, et al. Repeated-batch fermentation process using a thermotolerant flocculating yeast constructed by protoplast fusion[J]. J Ferment Bioeng, 1992, 74(3): 169-173.
doi: 10.1016/0922-338X(92)90078-9 URL |
[11] | Mans R, van Rossum HM, Wijsman M, et al. CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae[J]. FEMS Yeast Res, 2015, 15(2): fov004. |
[12] |
Gietz RD, Woods RA. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method[J]. Methods Enzymol, 2002, 350: 87-96.
pmid: 12073338 |
[13] |
Auesukaree C, Koedrith P, Saenpayavai P, et al. Characterization and gene expression profiles of thermotolerant Saccharomyces cerevisiae isolates from Thai fruits[J]. J Biosci Bioeng, 2012, 114(2): 144-149.
doi: 10.1016/j.jbiosc.2012.03.012 pmid: 22579450 |
[14] |
Oliveira EMM, Martins AS, Carvajal E, et al. The role of the GATA factors Gln3p, Nil1p, Dal80p and the Ure2p on ASP3 regulation in Saccharomyces cerevisiae[J]. Yeast, 2003, 20(1): 31-37.
pmid: 12489124 |
[15] |
Hall GC, Ibaraki AY, Huang ER, et al. A meta-analysis of cultural adaptations of psychological interventions[J]. Behav Ther, 2016, 47(6): 993-1014.
doi: S0005-7894(16)30080-6 pmid: 27993346 |
[16] |
Ferreira RT, Silva ARC, Pimentel C, et al. Arsenic stress elicits cytosolic Ca(2+)bursts and Crz1 activation in Saccharomyces cerevisiae[J]. Microbiology, 2012, 158(Pt 9): 2293-2302.
doi: 10.1099/mic.0.059170-0 URL |
[17] |
Chen YL, Konieczka JH, Springer DJ, et al. Convergent evolution of calcineurin pathway roles in thermotolerance and virulence in Candida glabrata[J]. G3, 2012, 2(6): 675-691.
doi: 10.1534/g3.112.002279 URL |
[18] |
Borkovich KA, Farrelly FW, Finkelstein DB, et al. hsp82 is an essential protein that is required in higher concentrations for growth of cells at higher temperatures[J]. Mol Cell Biol, 1989, 9(9): 3919-3930.
doi: 10.1128/mcb.9.9.3919-3930.1989 pmid: 2674684 |
[19] |
Du TA. Post-translational modification: sweetening protein quality control[J]. Nat Rev Mol Cell Biol, 2014, 15(5): 295.
doi: 10.1038/nrm3787 |
[20] |
Techaparin A, Thanonkeo P, Klanrit P. Gene expression profiles of the thermotolerant yeast Saccharomyces cerevisiae strain KKU-VN8 during high-temperature ethanol fermentation using sweet sorghum juice[J]. Biotechnol Lett, 2017, 39(10): 1521-1527.
doi: 10.1007/s10529-017-2398-y pmid: 28721580 |
[21] |
Hottiger T, De Virgilio C, Bell W, et al. The 70-kilodalton heat-shock proteins of the SSA subfamily negatively modulate heat-shock-induced accumulation of trehalose and promote recovery from heat stress in the yeast, Saccharomyces cerevisiae[J]. Eur J Biochem, 1992, 210(1): 125-132.
pmid: 1446665 |
[22] |
Matsumoto R, Akama K, Rakwal R, et al. The stress response against denatured proteins in the deletion of cytosolic chaperones SSA1/2 is different from heat-shock response in Saccharomyces cerevisiae[J]. BMC Genomics, 2005, 6: 141.
pmid: 16209719 |
[23] |
Zid BM, O'Shea EK. Promoter sequences direct cytoplasmic localization and translation of mRNAs during starvation in yeast[J]. Nature, 2014, 514(7520): 117-121.
doi: 10.1038/nature13578 |
[24] |
Ishida Y, Nguyen TTM, Kitajima S, et al. Prioritized expression of BDH2 under bulk translational repression and its contribution to tolerance to severe vanillin stress in Saccharomyces cerevisiae[J]. Front Microbiol, 2016, 7: 1059.
doi: 10.3389/fmicb.2016.01059 pmid: 27458450 |
[25] |
Cherkasov V, Hofmann S, Druffel-Augustin S, et al. Coordination of translational control and protein homeostasis during severe heat stress[J]. Curr Biol, 2013, 23(24): 2452-2462.
doi: 10.1016/j.cub.2013.09.058 pmid: 24291094 |
[26] |
Panek AC, Vânia JJ, Paschoalin MF, et al. Regulation of trehalose metabolism in Saccharomyces cerevisiae mutants during temperature shifts[J]. Biochimie, 1990, 72(1): 77-79.
pmid: 2160289 |
[27] |
Salas-Navarrete PC, de Oca Miranda AIM, Martínez A, et al. Evolutionary and reverse engineering to increase Saccharomyces cerevisiae tolerance to acetic acid, acidic pH, and high temperature[J]. Appl Microbiol Biotechnol, 2022, 106(1): 383-399.
doi: 10.1007/s00253-021-11730-z pmid: 34913993 |
[28] |
Wang DM, Wu D, Yang XX, et al. Transcriptomic analysis of thermotolerant yeast Kluyveromyces marxianus in multiple inhibitors tolerance[J]. RSC Adv, 2018, 8(26): 14177-14192.
doi: 10.1039/C8RA00335A URL |
[29] |
Song L, Shi JY, Duan SF, et al. Improved redox homeostasis owing to the up-regulation of one-carbon metabolism and related pathways is crucial for yeast heterosis at high temperature[J]. Genome Res, 2021, 31(4): 622-634.
doi: 10.1101/gr.262055.120 pmid: 33722936 |
[30] |
Ha CW, Kim K, Chang YJ, et al. The β-1, 3-glucanosyltransferase Gas1 regulates Sir2-mediated rDNA stability in Saccharomyces cerevisiae[J]. Nucleic Acids Res, 2014, 42(13): 8486-8499.
doi: 10.1093/nar/gku570 URL |
[31] |
Zhang MM, Xiong L, Tang YJ, et al. Enhanced acetic acid stress tolerance and ethanol production in Saccharomyces cerevisiae by modulating expression of the de novo purine biosynthesis genes[J]. Biotechnol Biofuels, 2019, 12: 116.
doi: 10.1186/s13068-019-1456-1 |
[32] |
Avrahami-Moyal L, Braun S, Engelberg D. Overexpression of PDE2 or SSD1-V in Saccharomyces cerevisiae W303-1A strain renders it ethanol-tolerant[J]. FEMS Yeast Res, 2012, 12(4): 447-455.
doi: 10.1111/j.1567-1364.2012.00795.x pmid: 22380741 |
[33] |
Albertyn J, Hohmann S, Thevelein JM, et al. GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway[J]. Mol Cell Biol, 1994, 14(6): 4135-4144.
doi: 10.1128/mcb.14.6.4135-4144.1994 pmid: 8196651 |
[34] | Jun SM, Takagi H. Stress-tolerance of baker's-yeast(Saccharo-myces cerevisiae)cells: stress-protective molecules and genes involved in stress tolerance[J]. Biotechnol Appl Biochem, 2009, 53(Pt 3): 155-164. |
[1] | 徐发迪, 徐康, 孙东明, 李萌蕾, 赵建志, 鲍晓明. 基于杨木(Populus sp.)的二代燃料乙醇技术研究进展[J]. 生物技术通报, 2023, 39(9): 27-39. |
[2] | 成婷, 苑帅, 张晓元, 林良才, 李欣, 张翠英. 酿酒酵母异丁醇合成途径调控的研究进展[J]. 生物技术通报, 2023, 39(7): 80-90. |
[3] | 刘辉, 卢扬, 叶夕苗, 周帅, 李俊, 唐健波, 陈恩发. 外源硫诱导苦荞镉胁迫响应的比较转录组学分析[J]. 生物技术通报, 2023, 39(5): 177-191. |
[4] | 李昕悦, 周明海, 樊亚超, 廖莎, 张风丽, 刘晨光, 孙悦, 张霖, 赵心清. 基于转运蛋白工程提升微生物菌株耐受性和生物制造效率的研究进展[J]. 生物技术通报, 2023, 39(11): 123-136. |
[5] | 晏雄鹰, 王振, 王霞, 杨世辉. 微生物硫代谢与抗逆性[J]. 生物技术通报, 2023, 39(11): 150-167. |
[6] | 祝瑛萱, 李克景, 何敏, 郑道琼. 酵母模型揭示胁迫因子驱动基因组变异的研究进展[J]. 生物技术通报, 2023, 39(11): 191-204. |
[7] | 唐瑞琪, 赵心清, 朱笃, 汪涯. 大肠杆菌对木质纤维素水解液抑制物的胁迫耐受性[J]. 生物技术通报, 2023, 39(11): 205-216. |
[8] | 王文韬, 冯颀, 刘晨光, 白凤武, 赵心清. 氧化还原敏感型基因元件增强酵母木质纤维素水解液抑制物胁迫耐受性[J]. 生物技术通报, 2023, 39(11): 360-372. |
[9] | 崔新刚, 孙雅欣, 崔晓静, 邓雁文, 孙恩浩, 王俊芳, 崔红晶. 酿酒酵母TAP42基因在细胞壁应激反应中的作用[J]. 生物技术通报, 2021, 37(10): 57-62. |
[10] | 顾翰琦, 邵玲智, 刘冉, 刘晓光, 李玲, 刘倩, 李洁, 张雅丽. 酿酒酵母酚类抑制物耐受性脂质组学研究[J]. 生物技术通报, 2021, 37(1): 15-23. |
[11] | 吴宇, 王金华, 赵筱. GLN1基因过表达对提高酿酒酵母糠醛耐受性的研究[J]. 生物技术通报, 2020, 36(8): 69-78. |
[12] | 顾翰琦, 刘冉, 邵玲智, 徐岩岩, 王东岩, 张冬梅, 李洁. 酿酒酵母对酚类抑制物耐受性研究[J]. 生物技术通报, 2020, 36(6): 136-142. |
[13] | 陈永灿, 张建志, 司同. 酿酒酵母中基于CRISPR/dCás9的基因转录调控工具的开发与应用[J]. 生物技术通报, 2020, 36(4): 1-12. |
[14] | 李佳秀, 蔡倩茹, 吴杰群. 萜类化合物在酿酒酵母中的合成生物学研究进展[J]. 生物技术通报, 2020, 36(12): 199-207. |
[15] | 曹文妍, 王心凝, 沈煜, 李在禄, 鲍晓明. 酿酒酵母关联多药耐受性转录因子Yrr1p的研究进展[J]. 生物技术通报, 2020, 36(11): 148-154. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||