生物技术通报 ›› 2024, Vol. 40 ›› Issue (3): 75-88.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0867
许沛冬1,2(), 易剑锋1,3, 陈迪1, 潘磊1, 谢丙炎1(), 赵文军1,2()
收稿日期:
2023-09-07
出版日期:
2024-03-26
发布日期:
2024-04-08
通讯作者:
赵文军,男,博士,研究员,研究方向:农业生物安全;E-mail: wenjunzhao@188.com;作者简介:
许沛冬,男,博士,助理研究员,研究方向:生防菌功能基因组学;E-mail: xuridongshengxpd@163.com易剑锋为本文共同第一作者
基金资助:
XU Pei-dong1,2(), YI Jian-feng1,3, CHEN Di1, PAN Lei1, XIE Bing-yan1(), ZHAO Wen-jun1,2()
Received:
2023-09-07
Published:
2024-03-26
Online:
2024-04-08
摘要:
贝莱斯芽孢杆菌(Bacillus velezensis)是生防芽孢杆菌中的重要代表,作为微生物农药的核心菌种,已被广泛应用于作物病害生物防治。贝莱斯芽孢杆菌具有植物内生性,其生防作用机制主要包括产生次级代谢产物对抗植物病原物;改善宿主植物根际微生物群落,促进宿主营养和生长;激发宿主植物产生防御反应,诱导植物获得系统抗性。其中,产生次级代谢产物是其最重要的生防作用机制。贝莱斯芽孢杆菌含有多个编码生物合成次级代谢产物的基因簇,其中包括编码聚酮化合物合酶(PKS)和非核糖体肽合成酶(NRPS)的基因簇,同时存在核糖体途径合成次级代谢产物基因簇。通过非核糖体途径可产生脂肽类化合物、聚酮类化合物、二肽和铁载体;通过核糖体途径产生小菌素、细菌素、羊毛硫抗生素。这些具有生物活性的次级代谢产物成为了天然新药和候选抗生素的储存库,对于解析生防菌作用机制具有重要意义。本文综述了贝莱斯芽孢杆菌的命名与更迭,产生次级代谢产物的类型、合成与调控基因以及靶标病原菌,以期为生防菌株的改良和生物农药的研发提供参考。
许沛冬, 易剑锋, 陈迪, 潘磊, 谢丙炎, 赵文军. 贝莱斯芽孢杆菌生防次级代谢产物研究进展[J]. 生物技术通报, 2024, 40(3): 75-88.
XU Pei-dong, YI Jian-feng, CHEN Di, PAN Lei, XIE Bing-yan, ZHAO Wen-jun. Research Progress in the Biocontrol Secondary Metabolites of Bacillus velezensis[J]. Biotechnology Bulletin, 2024, 40(3): 75-88.
类型 Type | 次级代谢产物 Secondary metabolite | 防控作用 Controlling effects | 靶标病原 Target pathogen | 参考文献 Reference |
---|---|---|---|---|
小菌素 Microcin | Plantazolicin | 革兰氏阳性细菌Gram-positive bacteria | Bacillus spp. | [ |
线虫Nematodes | [ | |||
Paenibacillus granivorans | [ | |||
Micrococcus luteus | ||||
Meloidogyne incognita | [ | |||
细菌素Bacteriocin | Amylocyclicin | 革兰氏阳性细菌Gram-positive bacteria | Bacillus spp. | [ |
Clavibacter michiganensis | ||||
Micrococcus luteus | ||||
Paenibacillus granivorans | ||||
Paenibacillus polymyxa | ||||
Staphylococcus aureus | [ | |||
羊毛硫抗生素 Lantibiotic | Mersacidin | 细菌Bacteria | Staphylococcus aureus | [ [ [ |
表1 B. velezensis核糖体途径产生次级代谢产物靶标病原菌
Table 1 Target pathogens controlled by ribosomal secondary metabolites of B. velezensis
类型 Type | 次级代谢产物 Secondary metabolite | 防控作用 Controlling effects | 靶标病原 Target pathogen | 参考文献 Reference |
---|---|---|---|---|
小菌素 Microcin | Plantazolicin | 革兰氏阳性细菌Gram-positive bacteria | Bacillus spp. | [ |
线虫Nematodes | [ | |||
Paenibacillus granivorans | [ | |||
Micrococcus luteus | ||||
Meloidogyne incognita | [ | |||
细菌素Bacteriocin | Amylocyclicin | 革兰氏阳性细菌Gram-positive bacteria | Bacillus spp. | [ |
Clavibacter michiganensis | ||||
Micrococcus luteus | ||||
Paenibacillus granivorans | ||||
Paenibacillus polymyxa | ||||
Staphylococcus aureus | [ | |||
羊毛硫抗生素 Lantibiotic | Mersacidin | 细菌Bacteria | Staphylococcus aureus | [ [ [ |
次级代谢产物Secondary metabolite | 防控作用Controlling effects | 靶标病原Target pathogen | 参考文献References |
---|---|---|---|
表面活性素 Surfactin | 真菌 | SFV, HSV-1, HSV-2, SHV-1, VSV, SIV, FCV, EMCV | [ |
Fungi | Pseudomonas syringae | [ | |
病毒 | Fusarium verticillioides | [ | |
Virus | Fusarium moniliforme | [ | |
线虫 | Magnaporthe oryzae | [ | |
Nematodes | Fusarium wilt | [ | |
Staphylococcus aureus | [ | ||
Plasmopara viticola | [ | ||
Propionibacterium acnes | [ | ||
Phytophthora infestans | [ | ||
Meloidogyne incognita | [ | ||
丰原素 Fengycin | 真菌 | Podosphaera fusca | [ |
Fungi | Fusarium oxysporum | [ | |
病毒 | Fusarium solani | [ | |
Virus | Verticillium dahliae Kleb | [ | |
细菌 | Phytophthora parasitica | [ | |
Bacteria | Fusarium graminearum | [ | |
Aspergillus flavus | [ | ||
Rhizomucor variabilis | [ | ||
Plasmopara viticola | [ | ||
Candida albicans | [ | ||
Sclerotinia sclerotiorum | [ | ||
Magnaporthe grisea | [ | ||
Botrytis cinerea | [ | ||
Phytophthora infestans | [ | ||
Xanthomonas axonopodis pv. vesicatoria | [ | ||
Pseudomonas aeruginosa | [ | ||
Gaeumannomyces graminis | [ | ||
Pyricularia oryzae | [ | ||
杆菌霉素D Bacillomycin-D | 真菌 | Aspergillus flavus | [ |
Fungi | Xanthomonas campestris pv. cucurbitae | [ | |
细菌 | Fusarium oxysporum f. sp. cucumerinum | [ | |
Bacteria | Fusarium graminearum, | [ | |
Staphylococcus spp. | [ | ||
Phytophthora infestans | [ | ||
Magnaporthe oryzae | [ | ||
Colletotrichum gloeosporioides | [ | ||
Pyricularia oryzae | [ | ||
Fusarium oxysporum f. sp. cubense | [ | ||
Pyricularia oryzae | [ | ||
Gaeumannomyces graminis | [ |
表2 B. velezensis非核糖体途径产生脂肽类次级代谢产物靶标病原菌
Table2 Target pathogens controlled by non-ribosomal secondary lipopeptides metabolites of B. velezensis
次级代谢产物Secondary metabolite | 防控作用Controlling effects | 靶标病原Target pathogen | 参考文献References |
---|---|---|---|
表面活性素 Surfactin | 真菌 | SFV, HSV-1, HSV-2, SHV-1, VSV, SIV, FCV, EMCV | [ |
Fungi | Pseudomonas syringae | [ | |
病毒 | Fusarium verticillioides | [ | |
Virus | Fusarium moniliforme | [ | |
线虫 | Magnaporthe oryzae | [ | |
Nematodes | Fusarium wilt | [ | |
Staphylococcus aureus | [ | ||
Plasmopara viticola | [ | ||
Propionibacterium acnes | [ | ||
Phytophthora infestans | [ | ||
Meloidogyne incognita | [ | ||
丰原素 Fengycin | 真菌 | Podosphaera fusca | [ |
Fungi | Fusarium oxysporum | [ | |
病毒 | Fusarium solani | [ | |
Virus | Verticillium dahliae Kleb | [ | |
细菌 | Phytophthora parasitica | [ | |
Bacteria | Fusarium graminearum | [ | |
Aspergillus flavus | [ | ||
Rhizomucor variabilis | [ | ||
Plasmopara viticola | [ | ||
Candida albicans | [ | ||
Sclerotinia sclerotiorum | [ | ||
Magnaporthe grisea | [ | ||
Botrytis cinerea | [ | ||
Phytophthora infestans | [ | ||
Xanthomonas axonopodis pv. vesicatoria | [ | ||
Pseudomonas aeruginosa | [ | ||
Gaeumannomyces graminis | [ | ||
Pyricularia oryzae | [ | ||
杆菌霉素D Bacillomycin-D | 真菌 | Aspergillus flavus | [ |
Fungi | Xanthomonas campestris pv. cucurbitae | [ | |
细菌 | Fusarium oxysporum f. sp. cucumerinum | [ | |
Bacteria | Fusarium graminearum, | [ | |
Staphylococcus spp. | [ | ||
Phytophthora infestans | [ | ||
Magnaporthe oryzae | [ | ||
Colletotrichum gloeosporioides | [ | ||
Pyricularia oryzae | [ | ||
Fusarium oxysporum f. sp. cubense | [ | ||
Pyricularia oryzae | [ | ||
Gaeumannomyces graminis | [ |
次级代谢产物Secondary metabolite | 防控作用Controlling effects | 靶标病原Target pathogen | 参考文献Reference |
---|---|---|---|
Bacillaene | 细菌Bacteria | Termiomyces | [ |
真菌Fungi | Erwinia amylovora | [ | |
Campylobacter jejumi | [ | ||
大环内酯菌素Macrolactin | 细菌Bacteria | Staphylococcus aureus | [ |
Burkholdria cepaciat | [ | ||
Bacillus subrilis | [ | ||
Escherichia coli | [ | ||
Dickeya chrysanthemi | [ | ||
Agrobacterium tumefaciens | [ | ||
Botrytis cinerea | [ | ||
地非西丁Difficidin | 细菌Bacteria | Xanthomonas oryzae pv. oryzae | [ |
Xanthomonas oryzae pv. oryzicola | [ | ||
Ralstonia solanacearum | [ | ||
Enterococcus faecalis | [ | ||
Staphylococcus aureus | [ |
表3 B. velezensis非核糖体途径产生聚酮类次级代谢产物靶标病原菌
Table 3 Target pathogens controlled by non-ribosomal secondary polyketides metabolites of B. velezensis
次级代谢产物Secondary metabolite | 防控作用Controlling effects | 靶标病原Target pathogen | 参考文献Reference |
---|---|---|---|
Bacillaene | 细菌Bacteria | Termiomyces | [ |
真菌Fungi | Erwinia amylovora | [ | |
Campylobacter jejumi | [ | ||
大环内酯菌素Macrolactin | 细菌Bacteria | Staphylococcus aureus | [ |
Burkholdria cepaciat | [ | ||
Bacillus subrilis | [ | ||
Escherichia coli | [ | ||
Dickeya chrysanthemi | [ | ||
Agrobacterium tumefaciens | [ | ||
Botrytis cinerea | [ | ||
地非西丁Difficidin | 细菌Bacteria | Xanthomonas oryzae pv. oryzae | [ |
Xanthomonas oryzae pv. oryzicola | [ | ||
Ralstonia solanacearum | [ | ||
Enterococcus faecalis | [ | ||
Staphylococcus aureus | [ |
[1] |
McSpadden Gardener BB. Ecology of Bacillus and Paenibacillus spp. in agricultural systems[J]. Phytopathology, 2004, 94(11): 1252-1258.
doi: 10.1094/PHYTO.2004.94.11.1252 pmid: 18944463 |
[2] |
Zaid DS, Cai SY, Hu C, et al. Comparative genome analysis reveals phylogenetic identity of Bacillus velezensis HNA3 and genomic insights into its plant growth promotion and biocontrol effects[J]. Microbiol Spectr, 2022, 10(1): e0216921.
doi: 10.1128/spectrum.02169-21 URL |
[3] |
Dunlap CA, Kim SJ, Kwon SW, et al. Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. plantarum and ‘Bacillus oryzicola’ are later heterotypic synonyms of Bacillus velezensis based on phylogenomics[J]. Int J Syst Evol Microbiol, 2016, 66(3): 1212-1217.
doi: 10.1099/ijsem.0.000858 URL |
[4] | Fan B, Blom J, Klenk HP, et al. Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis form an operational group B. amyloliquefaciens within the B. subtilis species complex[J]. Front Microbiol, 2017, 8: 22. |
[5] |
Khan AR, Mustafa A, Hyder S, et al. Bacillus spp. as bioagents: uses and application for sustainable agriculture[J]. Biology, 2022, 11(12): 1763.
doi: 10.3390/biology11121763 URL |
[6] |
Balderas-Ruíz KA, Bustos P, Santamaria RI, et al. Bacillus velezensis 83 a bacterial strain from mango phyllosphere, useful for biological control and plant growth promotion[J]. AMB Express, 2020, 10(1): 163.
doi: 10.1186/s13568-020-01101-8 pmid: 32894363 |
[7] | Radchenko VV, Vasilyev IY, Ilnitskaya EV, et al. Draft genome sequence of the plant growth-promoting bacterium Bacillus subtilis strain BZR 517, isolated from winter wheat, now reclassified as Bacillus velezensis strain BZR 517[J]. Microbiol Resour Announc, 2020, 9(40): e00853-e00820. |
[8] |
Rabbee MF, Ali MS, Choi J, et al. Bacillus velezensis: A valuable member of bioactive molecules within plant microbiomes[J]. Molecules, 2019, 24(6): 1046.
doi: 10.3390/molecules24061046 URL |
[9] |
Chen XH, Vater J, Piel J, et al. Structural and functional characterization of three polyketide synthase gene clusters in Bacillus am-yloliquefaciens FZB 42[J]. J Bacteriol, 2006, 188(11): 4024-4036.
doi: 10.1128/JB.00052-06 URL |
[10] |
Chowdhury SP, Hartmann A, Gao XW, et al. Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42 - a review[J]. Front Microbiol, 2015, 6: 780.
doi: 10.3389/fmicb.2015.00780 pmid: 26284057 |
[11] |
Khalid F, Khalid A, Fu YC, et al. Potential of Bacillus velezensis as a probiotic in animal feed: a review[J]. J Microbiol, 2021, 59(7): 627-633.
doi: 10.1007/s12275-021-1161-1 |
[12] |
Tsotetsi T, Nephali L, Malebe M, et al. Bacillus for plant growth promotion and stress resilience: what have we learned?[J]. Plants, 2022, 11(19): 2482.
doi: 10.3390/plants11192482 URL |
[13] |
Fritze D. Taxonomy of the genus bacillus and related genera: the aerobic endospore-forming bacteria[J]. Phytopathology, 2004, 94(11): 1245-1248.
doi: 10.1094/PHYTO.2004.94.11.1245 pmid: 18944461 |
[14] |
Ruiz-García C, Béjar V, Martínez-Checa F, et al. Bacillus velezensis sp. nov., a surfactant-producing bacterium isolated from the river Vélez in Málaga, southern Spain[J]. Int J Syst Evol Microbiol, 2005, 55(Pt 1): 191-195.
doi: 10.1099/ijs.0.63310-0 URL |
[15] |
Borriss R, Chen XH, Rueckert C, et al. Relationship of Bacillus amyloliquefaciens clades associated with strains DSM 7T and FZB42T: a proposal for Bacillus amyloliquefaciens subsp. amyloliquefaciens subsp. nov. and Bacillus amyloliquefaciens subsp. plantarum subsp. nov. based on complete genome sequence comparisons[J]. Int J Syst Evol Microbiol, 2011, 61(Pt 8): 1786-1801.
doi: 10.1099/ijs.0.023267-0 URL |
[16] |
Dunlap CA, Kim SJ, Kwon SW, et al. Phylogenomic analysis shows that Bacillus amyloliquefaciens subsp. plantarum is a later heterotypic synonym of Bacillus methylotrophicus[J]. Int J Syst Evol Microbiol, 2015, 65(7): 2104-2109.
doi: 10.1099/ijs.0.000226 URL |
[17] |
Xu PD, Xie SQ, Liu WB, et al. Comparative genomics analysis provides new strategies for bacteriostatic ability of Bacillus velezensis HAB-2[J]. Front Microbiol, 2020, 11: 594079.
doi: 10.3389/fmicb.2020.594079 URL |
[18] | Borriss R. Use of plant-associated Bacillus strains as biofertilizers and biocontrol agents in agriculture[M]//Bacteria in Agrobiology:Plant Growth Responses. Berlin, Heidelberg: Springer, 2011: 41-76. |
[19] | Bai XF, Li Q, Zhang D, et al. Bacillus velezensis strain HN-Q-8 induced resistance to Alternaria solani and stimulated growth of potato plant[J]. Biology,(Basel), 2023, 12(6): 856. |
[20] | Kiesewalter HT, Lozano-Andrade CN, Wibowo M, et al. Genomic and chemical diversity of Bacillus subtilis secondary metabolites against plant pathogenic fungi[J]. mSystems, 2021, 6(1): e00770-e00720. |
[21] |
Poulaki EG, Tjamos SE. Bacillus species: factories of plant protective volatile organic compounds[J]. J Appl Microbiol, 2023, 134(3): lxad037.
doi: 10.1093/jambio/lxad037 URL |
[22] |
Salazar B, Ortiz A, Keswani C, et al. Bacillus spp. as bio-factories for antifungal secondary metabolites: innovation beyond whole organism formulations[J]. Microb Ecol, 2023, 86(1): 1-24.
doi: 10.1007/s00248-022-02044-2 |
[23] |
Compant S, Duffy B, Nowak J, et al. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects[J]. Appl Environ Microbiol, 2005, 71(9): 4951-4959.
doi: 10.1128/AEM.71.9.4951-4959.2005 URL |
[24] | Sharifi R, Ryu CM. Are bacterial volatile compounds poisonous odors to a fungal pathogen Botrytis cinerea, alarm signals to Arabidopsis seedlings for eliciting induced resistance, or both?[J]. Front Microbiol, 2016, 7: 196. |
[25] |
Tahir HAS, Gu Q, Wu HJ, et al. Bacillus volatiles adversely affect the physiology and ultra-structure of Ralstonia solanacearum and induce systemic resistance in tobacco against bacterial wilt[J]. Sci Rep, 2017, 7: 40481.
doi: 10.1038/srep40481 |
[26] |
Rahman A, Uddin W, Wenner NG. Induced systemic resistance responses in perennial ryegrass against Magnaporthe oryzae elicited by semi-purified surfactin lipopeptides and live cells of Bacillus amyloliquefaciens[J]. Mol Plant Pathol, 2015, 16(6): 546-558.
doi: 10.1111/mpp.2015.16.issue-6 URL |
[27] |
Han X, Shen D, Xiong Q, et al. The plant-beneficial rhizobacterium Bacillus velezensis FZB42 controls the soybean pathogen Phytophthora sojae due to bacilysin production[J]. Appl Environ Microbiol, 2021, 87(23): e0160121.
doi: 10.1128/AEM.01601-21 URL |
[28] |
Wu GW, Liu YP, Xu Y, et al. Exploring elicitors of the beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 to induce plant systemic resistance and their interactions with plant signaling pathways[J]. Mol Plant Microbe Interact, 2018, 31(5): 560-567.
doi: 10.1094/MPMI-11-17-0273-R URL |
[29] |
Walsh CT. Polyketide and nonribosomal peptide antibiotics: modularity and versatility[J]. Science, 2004, 303(5665): 1805-1810.
doi: 10.1126/science.1094318 pmid: 15031493 |
[30] |
Chen XH, Koumoutsi A, Scholz R, et al. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42[J]. Nat Biotechnol, 2007, 25(9): 1007-1014.
doi: 10.1038/nbt1325 |
[31] | Zhang LL, Sun CM. Fengycins, cyclic lipopeptides from marine Bacillus subtilis strains, kill the plant-pathogenic fungus Magnaporthe grisea by inducing reactive oxygen species production and chromatin condensation[J]. Appl Environ Microbiol, 2018, 84(18): e00445-18. |
[32] | Chen XH, Koumoutsi A, Scholz R, et al. More than anticipated - production of antibiotics and other secondary metabolites by Bacillus amyloliquefaciens FZB42[J]. J Mol Microbiol Biotechnol, 2009, 16(1-2): 14-24. |
[33] |
Chen XH, Scholz R, Borriss M, et al. Difficidin and bacilysin produced by plant-associated Bacillus amyloliquefaciens are efficient in controlling fire blight disease[J]. J Biotechnol, 2009, 140(1-2): 38-44.
doi: 10.1016/j.jbiotec.2008.10.015 pmid: 19061923 |
[34] |
Scholz R, Molohon KJ, Nachtigall J, et al. Plantazolicin, a novel microcin B17/streptolysin S-like natural product from Bacillus amyloliquefaciens FZB42[J]. J Bacteriol, 2011, 193(1): 215-224.
doi: 10.1128/JB.00784-10 pmid: 20971906 |
[35] |
Scholz R, Vater J, Budiharjo A, et al. Amylocyclicin, a novel circular bacteriocin produced by Bacillus amyloliquefaciens FZB42[J]. J Bacteriol, 2014, 196(10): 1842-1852.
doi: 10.1128/JB.01474-14 pmid: 24610713 |
[36] | Li B, Li Q, Xu ZH, et al. Responses of beneficial Bacillus amyloliquefaciens SQR9 to different soilborne fungal pathogens through the alteration of antifungal compounds production[J]. Front Microbiol, 2014, 5: 636. |
[37] |
Chen L, Heng JY, Qin SY, et al. A comprehensive understanding of the biocontrol potential of Bacillus velezensis LM2303 against Fusarium head blight[J]. PLoS One, 2018, 13(6): e0198560.
doi: 10.1371/journal.pone.0198560 URL |
[38] |
Liang LQ, Fu YJ, Deng SS, et al. Genomic, antimicrobial, and aphicidal traits of Bacillus velezensis ATR2, and its biocontrol potential against ginger rhizome rot disease caused by Bacillus pumilus[J]. Microorganisms, 2021, 10(1): 63.
doi: 10.3390/microorganisms10010063 URL |
[39] |
Zhang YH, Zhao MX, Chen W, et al. Multi-omics techniques for analysis antifungal mechanisms of lipopeptides produced by Bacillus velezensis GS-1 against Magnaporthe oryzae in vitro[J]. Int J Mol Sci, 2022, 23(7): 3762.
doi: 10.3390/ijms23073762 URL |
[40] |
Kalyon B, Helaly SE, Scholz R, et al. Plantazolicin A and B: structure elucidation of ribosomally synthesized thiazole/oxazole peptides from Bacillus amyloliquefaciens FZB42[J]. Org Lett, 2011, 13(12): 2996-2999.
doi: 10.1021/ol200809m pmid: 21568297 |
[41] |
Liu ZZ, Budiharjo A, Wang PF, et al. The highly modified microcin peptide plantazolicin is associated with nematicidal activity of Bacillus amyloliquefaciens FZB42[J]. Appl Microbiol Biotechnol, 2013, 97(23): 10081-10090.
doi: 10.1007/s00253-013-5247-5 URL |
[42] |
Lee J, Hao Y, Blair PM, et al. Structural and functional insight into an unexpectedly selective N-methyltransferase involved in plantazolicin biosynthesis[J]. Proc Natl Acad Sci USA, 2013, 110(32): 12954-12959.
doi: 10.1073/pnas.1306101110 pmid: 23878226 |
[43] |
Haft DH, Basu MK, Mitchell DA. Expansion of ribosomally produced natural products: a nitrile hydratase- and Nif11-related precursor family[J]. BMC Biol, 2010, 8: 70.
doi: 10.1186/1741-7007-8-70 pmid: 20500830 |
[44] |
Mülner P, Schwarz E, Dietel K, et al. Profiling for bioactive peptides and volatiles of plant growth promoting strains of the Bacillus subtilis complex of industrial relevance[J]. Front Microbiol, 2020, 11: 1432.
doi: 10.3389/fmicb.2020.01432 URL |
[45] |
Molohon KJ, Melby JO, Lee J, et al. Structure determination and interception of biosynthetic intermediates for the plantazolicin class of highly discriminating antibiotics[J]. ACS Chem Biol, 2011, 6(12): 1307-1313.
doi: 10.1021/cb200339d pmid: 21950656 |
[46] |
Kurata A, Yamaguchi T, Kira M, et al. Characterization and heterologous expression of an antimicrobial peptide from Bacillus amyloliquefaciens CMW1[J]. Biotechnol Biotechnol Equip, 2019, 33(1): 886-893.
doi: 10.1080/13102818.2019.1627246 URL |
[47] |
Dunlap CA. Taxonomy of registered Bacillus spp. strains used as plant pathogen antagonists[J]. Biol Contr, 2019, 134: 82-86.
doi: 10.1016/j.biocontrol.2019.04.011 URL |
[48] |
Chatterjee S, Chatterjee DK, Jani RH, et al. Mersacidin, a new antibiotic from Bacillus in vitro and in vivo antibacterial activity[J]. J Antibiot, 1992, 45(6): 839-845.
pmid: 1500348 |
[49] |
Bierbaum G, Brötz H, Koller KP, et al. Cloning, sequencing and production of the lantibiotic mersacidin[J]. FEMS Microbiol Lett, 1995, 127(1-2): 121-126.
pmid: 7737474 |
[50] |
Altena K, Guder A, Cramer C, et al. Biosynthesis of the lantibiotic mersacidin: organization of a type B lantibiotic gene cluster[J]. Appl Environ Microbiol, 2000, 66(6): 2565-2571.
doi: 10.1128/AEM.66.6.2565-2571.2000 URL |
[51] |
Guder A, Schmitter T, Wiedemann I, et al. Role of the single regulator MrsR1 and the two-component system MrsR2/K2 in the regulation of mersacidin production and immunity[J]. Appl Environ Microbiol, 2002, 68(1): 106-113.
doi: 10.1128/AEM.68.1.106-113.2002 URL |
[52] |
Herzner AM, Dischinger J, Szekat C, et al. Expression of the lantibiotic mersacidin in Bacillus amyloliquefaciens FZB42[J]. PLoS One, 2011, 6(7): e22389.
doi: 10.1371/journal.pone.0022389 URL |
[53] |
Viel JH, Jaarsma AH, Kuipers OP. Heterologous expression of mersacidin in Escherichia coli elucidates the mode of leader processing[J]. ACS Synth Biol, 2021, 10(3): 600-608.
doi: 10.1021/acssynbio.0c00601 URL |
[54] |
Rungsirivanich P, Parlindungan E, O'Connor PM, et al. Simultaneous production of multiple antimicrobial compounds by Bacillus velezensis ML122-2 isolated from Assam tea leaf[Camellia sinensis var. assamica(J.W.Mast.)kitam.[J]. Front Microbiol, 2021, 12: 789362.
doi: 10.3389/fmicb.2021.789362 URL |
[55] |
Brötz H, Bierbaum G, Leopold K, et al. The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid II[J]. Antimicrob Agents Chemother, 1998, 42(1): 154-160.
pmid: 9449277 |
[56] |
Sass P, Jansen A, Szekat C, et al. The lantibiotic mersacidin is a strong inducer of the cell wall stress response of Staphylococcus aureus[J]. BMC Microbiol, 2008, 8: 186.
doi: 10.1186/1471-2180-8-186 |
[57] |
Arima K, Kakinuma A, Tamura G. Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation[J]. Biochem Biophys Res Commun, 1968, 31(3): 488-494.
doi: 10.1016/0006-291X(68)90503-2 URL |
[58] | Beltran-Gracia E, Macedo-Raygoza G, Villafaña-Rojas J, et al. Production of lipopeptides by fermentation processes: endophytic bacteria, fermentation strategies and easy methods for bacterial selection[M]// Fermentation Processes: InTech, 2017. |
[59] |
Zhou DY, Hu FX, Lin JZ, et al. Genome and transcriptome analysis of Bacillus velezensis BS-37, an efficient surfactin producer from glycerol, in response to D-/L-leucine[J]. MicrobiologyOpen, 2019, 8(8): e00794.
doi: 10.1002/mbo3.v8.8 URL |
[60] |
Bartal A, Huynh T, Kecskeméti A, et al. Identifications of surfactin-type biosurfactants produced by Bacillus species isolated from rhizosphere of vegetables[J]. Molecules, 2023, 28(3): 1172.
doi: 10.3390/molecules28031172 URL |
[61] |
Singh P, Cameotra SS. Potential applications of microbial surfactants in biomedical sciences[J]. Trends Biotechnol, 2004, 22(3): 142-146.
pmid: 15036865 |
[62] |
Nakano MM, Magnuson R, Myers A, et al. srfA is an operon required for surfactin production, competence development, and efficient sporulation in Bacillus subtilis[J]. J Bacteriol, 1991, 173(5): 1770-1778.
pmid: 1847909 |
[63] |
Comella N, Grossman AD. Conservation of genes and processes controlled by the quorum response in bacteria: characterization of genes controlled by the quorum-sensing transcription factor ComA in Bacillus subtilis[J]. Mol Microbiol, 2005, 57(4): 1159-1174.
doi: 10.1111/mmi.2005.57.issue-4 URL |
[64] |
López D, Fischbach MA, Chu F, et al. Structurally diverse natural products that cause potassium leakage trigger multicellularity in Bacillus subtilis[J]. Proc Natl Acad Sci USA, 2009, 106(1): 280-285.
doi: 10.1073/pnas.0810940106 URL |
[65] |
Omer Bendori S, Pollak S, Hizi D, et al. The RapP-PhrP quorum-sensing system of Bacillus subtilis strain NCIB3610 affects biofilm formation through multiple targets, due to an atypical signal-insensitive allele of RapP[J]. J Bacteriol, 2015, 197(3): 592-602.
doi: 10.1128/JB.02382-14 pmid: 25422306 |
[66] |
Bais HP, Fall R, Vivanco JM. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production[J]. Plant Physiol, 2004, 134(1): 307-319.
doi: 10.1104/pp.103.028712 URL |
[67] |
Snook ME, Mitchell T, Hinton DM, et al. Isolation and characterization of leu7-surfactin from the endophytic bacterium Bacillus mojavensis RRC 101, a biocontrol agent for Fusarium verticillioides[J]. J Agric Food Chem, 2009, 57(10): 4287-4292.
doi: 10.1021/jf900164h URL |
[68] |
Xiong HQ, Li YT, Cai YF, et al. Isolation of Bacillus amyloliq-uefaciens JK6 and identification of its lipopeptides surfactin for suppressing tomato bacterial wilt[J]. RSC Adv, 2015, 5(100): 82042-82049.
doi: 10.1039/C5RA13142A URL |
[69] |
Li HY, Han X, Zhang J, et al. An effective strategy for identification of highly unstable bacillaenes[J]. J Nat Prod, 2019, 82(12): 3340-3346.
doi: 10.1021/acs.jnatprod.9b00609 pmid: 31773959 |
[70] |
Krishnan N, Velramar B, Velu RK. Investigation of antifungal activity of surfactin against mycotoxigenic phytopathogenic fungus Fusarium moniliforme and its impact in seed germination and mycotoxicosis[J]. Pestic Biochem Physiol, 2019, 155: 101-107.
doi: 10.1016/j.pestbp.2019.01.010 URL |
[71] |
Fira D, Dimkić I, Berić T, et al. Biological control of plant pathogens by Bacillus species[J]. J Biotechnol, 2018, 285: 44-55.
doi: 10.1016/j.jbiotec.2018.07.044 URL |
[72] |
Nadeem H, Niazi P, Asif M, et al. Bacterial strains integrated with surfactin molecules of Bacillus subtilis MTCC441 enrich nematocidal activity against Meloidogyne incognita[J]. Plant Biol, 2021, 23(6): 1027-1036.
doi: 10.1111/plb.v23.6 URL |
[73] |
Vanittanakom N, Loeffler W, Koch U, et al. Fengycin—a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3[J]. J Antibiot, 1986, 39(7): 888-901.
pmid: 3093430 |
[74] |
Yang H, Li X, Li X, et al. Identification of lipopeptide isoforms by MALDI-TOF-MS/MS based on the simultaneous purification of iturin, fengycin, and surfactin by RP-HPLC[J]. Anal Bioanal Chem, 2015, 407(9): 2529-2542.
doi: 10.1007/s00216-015-8486-8 pmid: 25662934 |
[75] |
Ongena M, Jacques P. Bacillus lipopeptides: versatile weapons for plant disease biocontrol[J]. Trends Microbiol, 2008, 16(3): 115-125.
doi: 10.1016/j.tim.2007.12.009 pmid: 18289856 |
[76] |
Romero D, de Vicente A, Rakotoaly RH, et al. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca[J]. Mol Plant Microbe Interact, 2007, 20(4): 430-440.
doi: 10.1094/MPMI-20-4-0430 URL |
[77] |
Zihalirwa Kulimushi P, Argüelles Arias A, Franzil L, et al. Stimulation of fengycin-type antifungal lipopeptides in Bacillus amyloliquefaciens in the presence of the maize fungal pathogen Rhizomucor variabilis[J]. Front Microbiol, 2017, 8: 850.
doi: 10.3389/fmicb.2017.00850 pmid: 28555132 |
[78] |
Kim K, Lee Y, Ha A, et al. Chemosensitization of Fusarium graminearum to chemical fungicides using cyclic lipopeptides produced by Bacillus amyloliquefaciens strain JCK-12[J]. Front Plant Sci, 2017, 8: 2010.
doi: 10.3389/fpls.2017.02010 URL |
[79] |
Toral L, Rodríguez M, Béjar V, et al. Antifungal activity of lipopeptides from Bacillus XT1 CECT 8661 against Botrytis cinerea[J]. Front Microbiol, 2018, 9: 1315.
doi: 10.3389/fmicb.2018.01315 URL |
[80] |
Hanif A, Zhang F, Li PP, et al. Fengycin produced by Bacillus amyloliquefaciens FZB42 inhibits Fusarium graminearum growth and mycotoxins biosynthesis[J]. Toxins, 2019, 11(5): 295.
doi: 10.3390/toxins11050295 URL |
[81] |
Gong AD, Li HP, Yuan QS, et al. Antagonistic mechanism of iturin A and plipastatin A from Bacillus amyloliquefaciens S76-3 from wheat spikes against Fusarium graminearum[J]. PLoS One, 2015, 10(2): e0116871.
doi: 10.1371/journal.pone.0116871 URL |
[82] |
Medeot DB, Fernandez M, Morales GM, et al. Fengycins from Bacillus amyloliquefaciens MEP218 exhibit antibacterial activity by producing alterations on the cell surface of the pathogens Xanthomonas axonopodis pv. vesicatoria and Pseudomonas aeruginosa PA01[J]. Front Microbiol, 2020, 10: 3107.
doi: 10.3389/fmicb.2019.03107 URL |
[83] |
Lam VB, Meyer T, Arias AA, et al. Bacillus cyclic lipopeptides iturin and fengycin control rice blast caused by Pyricularia oryzae in potting and acid sulfate soils by direct antagonism and induced systemic resistance[J]. Microorganisms, 2021, 9(7): 1441.
doi: 10.3390/microorganisms9071441 URL |
[84] |
Koumoutsi A, Chen XH, Vater J, et al. DegU and YczE positively regulate the synthesis of bacillomycin D by Bacillus amyloliquefaciens strain FZB42[J]. Appl Environ Microbiol, 2007, 73(21): 6953-6964.
doi: 10.1128/AEM.00565-07 URL |
[85] |
Moyne AL, Shelby R, Cleveland TE, et al. Bacillomycin D: an iturin with antifungal activity against Aspergillus flavus[J]. J Appl Microbiol, 2001, 90(4): 622-629.
pmid: 11309075 |
[86] |
Zeriouh H, Romero D, Garcia-Gutierrez L, et al. The iturin-like lipopeptides are essential components in the biological control arsenal of Bacillus subtilis against bacterial diseases of cucurbits[J]. Mol Plant Microbe Interact, 2011, 24(12): 1540-1552.
doi: 10.1094/MPMI-06-11-0162 URL |
[87] |
Xu ZH, Shao JH, Li B, et al. Contribution of bacillomycin D in Bacillus amyloliquefaciens SQR9 to antifungal activity and biofilm formation[J]. Appl Environ Microbiol, 2013, 79(3): 808-815.
doi: 10.1128/AEM.02645-12 URL |
[88] | Gu Q, Yang Y, Yuan QM, et al. Bacillomycin D produced by Bacillus amyloliquefaciens is involved in the antagonistic interaction with the plant-pathogenic fungus Fusarium graminearum[J]. Appl Environ Microbiol, 2017, 83(19): e01075-e01017. |
[89] |
Jin PF, Wang HN, Tan Z, et al. Antifungal mechanism of bacillomycin D from Bacillus velezensis HN-2 against Colletotrichum gloeosporioides penz[J]. Pestic Biochem Physiol, 2020, 163: 102-107.
doi: 10.1016/j.pestbp.2019.11.004 URL |
[90] |
Patel PS, Huang S, Fisher S, et al. Bacillaene, a novel inhibitor of procaryotic protein synthesis produced by Bacillus subtilis: production, taxonomy, isolation, physico-chemical characterization and biological activity[J]. J Antibiot, 1995, 48(9): 997-1003.
pmid: 7592068 |
[91] | Miao S, Liang JH, Xu Y, et al. Bacillaene, sharp objects consist in the arsenal of antibiotics produced by Bacillus[J]. J Cell Physiol, 2023. DOI: 10.1002/jcp.30974. |
[92] |
Butcher RA, Schroeder FC, Fischbach MA, et al. The identification of bacillaene, the product of the PksX mega complex in Bacillus subtilis[J]. Proc Natl Acad Sci USA, 2007, 104(5): 1506-1509.
doi: 10.1073/pnas.0610503104 URL |
[93] |
Um S, Fraimout A, Sapountzis P, et al. The fungus-growing termite Macrotermes natalensis harbors bacillaene-producing Bacillus sp. that inhibit potentially antagonistic fungi[J]. Sci Rep, 2013, 3: 3250.
doi: 10.1038/srep03250 |
[94] |
Jaruchoktaweechai C, Suwanborirux K, Tanasupawatt S, et al. New macrolactins from a marine Bacillus sp. Sc026[J]. J Nat Prod, 2000, 63(7): 984-986.
pmid: 10924180 |
[95] |
Schneider K, Chen XH, Vater J, et al. Macrolactin is the polyketide biosynthesis product of the pks2 cluster of Bacillus amyloliquefaciens FZB42[J]. J Nat Prod, 2007, 70(9): 1417-1423.
pmid: 17844999 |
[96] |
Romero-Tabarez M, Jansen R, Sylla M, et al. 7-O-malonyl macrolactin A, a new macrolactin antibiotic from Bacillus subtilis active against methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, and a small-colony variant of Burkholderia cepacia[J]. Antimicrob Agents Chemother, 2006, 50(5): 1701-1709.
doi: 10.1128/AAC.50.5.1701-1709.2006 pmid: 16641438 |
[97] |
Sohn MJ, Zheng CJ, Kim WG. Macrolactin S, a new antibacterial agent with FabG-inhibitory activity from Bacillus sp. AT28[J]. J Antibiot, 2008, 61(11): 687-691.
doi: 10.1038/ja.2008.98 |
[98] |
Chen L, Wang XH, Liu YP. Contribution of macrolactin in Bacillus velezensis CLA178 to the antagonistic activities against Agrobac-terium tumefaciens C58[J]. Arch Microbiol, 2021, 203(4): 1743-1752.
doi: 10.1007/s00203-020-02141-1 pmid: 33471134 |
[99] |
Ni J, Yu L, Li F, et al. Macrolactin R from Bacillus siamensis and its antifungal activity against Botrytis cinerea[J]. World J Microbiol Biotechnol, 2023, 39(5): 117.
doi: 10.1007/s11274-023-03563-x |
[100] |
Wilson KE, Flor JE, Schwartz RE, et al. Difficidin and oxydifficidin: novel broad spectrum antibacterial antibiotics produced by Bacillus subtilis. II. Isolation and physico-chemical characterization[J]. J Antibiot, 1987, 40(12): 1682-1691.
pmid: 3429336 |
[101] |
Liu N, Sun HW, Tang ZY, et al. Transcription factor Spo0A regulates the biosynthesis of difficidin in Bacillus amyloliquefaciens[J]. Microbiol Spectr, 2023, 11(4): e0104423.
doi: 10.1128/spectrum.01044-23 URL |
[102] |
Tolibia SEM, Pacheco AD, Balbuena SYG, et al. Engineering of global transcription factors in Bacillus, a genetic tool for increasing product yields: a bioprocess overview[J]. World J Microbiol Biotechnol, 2022, 39(1): 12.
doi: 10.1007/s11274-022-03460-9 |
[103] | Wu LM, Wu HJ, Qiao JQ, et al. Novel routes for improving biocontrol activity of Bacillus based bioinoculants[J]. Front Microbiol, 2015, 6: 1395. |
[104] |
Im SM, Yu NH, Joen HW, et al. Biological control of tomato bacterial wilt by oxydifficidin and difficidin-producing Bacillus methylotrophicus DR-08[J]. Pestic Biochem Physiol, 2020, 163: 130-137.
doi: 10.1016/j.pestbp.2019.11.007 URL |
[105] |
Chakraborty K, Kizhakkekalam VK, Joy M, et al. Difficidin class of polyketide antibiotics from marine macroalga-associated Bacillus as promising antibacterial agents[J]. Appl Microbiol Biotechnol, 2021, 105(16-17): 6395-6408.
doi: 10.1007/s00253-021-11390-z pmid: 34415389 |
[106] |
Parker JB, Walsh CT. Action and timing of BacC and BacD in the late stages of biosynthesis of the dipeptide antibiotic bacilysin[J]. Biochemistry, 2013, 52(5): 889-901.
doi: 10.1021/bi3016229 pmid: 23317005 |
[107] |
Walker JE, Abraham EP. The structure of bacilysin and other products of Bacillus subtilis[J]. Biochem J, 1970, 118(4): 563-570.
pmid: 4991476 |
[108] |
Wu LM, Wu HJ, Chen LN, et al. Bacilysin from Bacillus amyloliquefaciens FZB42 has specific bactericidal activity against harmful algal bloom species[J]. Appl Environ Microbiol, 2014, 80(24): 7512-7520.
doi: 10.1128/AEM.02605-14 URL |
[109] |
Islam T, Rabbee MF, Choi J, et al. Biosynthesis, molecular regulation, and application of bacilysin produced by Bacillus species[J]. Metabolites, 2022, 12(5): 397.
doi: 10.3390/metabo12050397 URL |
[110] |
Abdulmalek HW, Yazgan-Karataş A. Improvement of bacilysin production in Bacillus subtilis by CRISPR/Cas9-mediated editing of the 5'-untranslated region of the bac operon[J]. J Microbiol Biotechnol, 2023, 33(3): 410-418.
doi: 10.4014/jmb.2209.09035 URL |
[111] | Rizzi A, Roy S, Bellenger JP, et al. Iron homeostasis in Bacillus subtilis requires siderophore production and biofilm formation[J]. Appl Environ Microbiol, 2019, 85(3): e02439-18. |
[112] |
Fukushima T, Allred BE, Sia AK, et al. Gram-positive siderophore-shuttle with iron-exchange from Fe-siderophore to apo-siderophore by Bacillus cereus YxeB[J]. Proc Natl Acad Sci USA, 2013, 110(34): 13821-13826.
doi: 10.1073/pnas.1304235110 pmid: 23924612 |
[113] |
Fazle Rabbee M, Baek KH. Antimicrobial activities of lipopeptides and polyketides of Bacillus velezensis for agricultural applications[J]. Molecules, 2020, 25(21): 4973.
doi: 10.3390/molecules25214973 URL |
[114] |
Dimopoulou A, Theologidis I, Benaki D, et al. Direct antibiotic activity of bacillibactin broadens the biocontrol range of Bacillus amyloliquefaciens MBI600[J]. mSphere, 2021, 6(4): e0037621.
doi: 10.1128/mSphere.00376-21 URL |
[115] |
Chakraborty K, Kizhakkekalam VK, Joy M, et al. Bacillibactin class of siderophore antibiotics from a marine symbiotic Bacillus as promising antibacterial agents[J]. Appl Microbiol Biotechnol, 2022, 106(1): 329-340.
doi: 10.1007/s00253-021-11632-0 pmid: 34913995 |
[116] |
Nalli Y, Singh S, Gajjar A, et al. Bacillibactin class siderophores produced by the endophyte Bacillus subtilis NPROOT3 as antimycobacterial agents[J]. Lett Appl Microbiol, 2023, 76(2): ovac026.
doi: 10.1093/lambio/ovac026 URL |
[117] |
Andrić S, Rigolet A, Argüelles Arias A, et al. Plant-associated Bacillus mobilizes its secondary metabolites upon perception of the siderophore pyochelin produced by a Pseudomonas competitor[J]. ISME J, 2023, 17(2): 263-275.
doi: 10.1038/s41396-022-01337-1 URL |
[118] |
Iqbal S, Begum F, Rabaan AA, et al. Classification and multifaceted potential of secondary metabolites produced by Bacillus subtilis group: a comprehensive review[J]. Molecules, 2023, 28(3): 927.
doi: 10.3390/molecules28030927 URL |
[119] |
Das PP, Singh KR, Nagpure G, et al. Plant-soil-microbes: a tripartite interaction for nutrient acquisition and better plant growth for sustainable agricultural practices[J]. Environ Res, 2022, 214(Pt 1): 113821.
doi: 10.1016/j.envres.2022.113821 URL |
[120] |
Fan B, Wang C, Song XF, et al. Bacillus velezensis FZB42 in 2018: the gram-positive model strain for plant growth promotion and biocontrol[J]. Front Microbiol, 2018, 9: 2491.
doi: 10.3389/fmicb.2018.02491 URL |
[121] |
Gao SF, Wu HJ, Yu XF, et al. Swarming motility plays the major role in migration during tomato root colonization by Bacillus subtilis SWR01[J]. Biol Contr, 2016, 98: 11-17.
doi: 10.1016/j.biocontrol.2016.03.011 URL |
[122] |
Lugtenberg B, Kamilova F. Plant-growth-promoting rhizobacteria[J]. Annu Rev Microbiol, 2009, 63: 541-556.
doi: 10.1146/annurev.micro.62.081307.162918 pmid: 19575558 |
[123] |
Lin D, Qu LJ, Gu H, et al. A 3.1-kb genomic fragment of Bacillus subtilis encodes the protein inhibiting growth of Xanthomonas oryzae pv. oryzae[J]. J Appl Microbiol, 2001, 91(6): 1044-1050.
pmid: 11851812 |
[124] |
Harirchi S, Sar T, Ramezani M, et al. Bacillales: from taxonomy to biotechnological and industrial perspectives[J]. Microorganisms, 2022, 10(12): 2355.
doi: 10.3390/microorganisms10122355 URL |
[125] |
Ribeiro LDS, de Camargo ER, et al. The potential of nanomaterials associated with plant growth-promoting bacteria in agriculture[J]. 3 Biotech, 2021, 11(7): 318.
doi: 10.1007/s13205-021-02870-0 pmid: 34194902 |
[126] | Kumar S, Diksha, Sindhu SS, et al. Biofertilizers: an ecofriendly technology for nutrient recycling and environmental sustainability[J]. Curr Res Microb Sci, 2021, 3: 100094. |
[1] | 王俊芳, 黄秋斌, 张飘丹, 张彭湃. Surfactin的结构、生物合成及其在生物防治中的作用[J]. 生物技术通报, 2024, 40(1): 100-112. |
[2] | 褚睿, 李昭轩, 张学青, 杨东亚, 曹行行, 张雪艳. 黄瓜枯萎病拮抗芽孢杆菌的筛选、鉴定及其生防潜力[J]. 生物技术通报, 2023, 39(8): 262-271. |
[3] | 马俊秀, 吴皓琼, 姜威, 闫更轩, 胡基华, 张淑梅. 蔬菜软腐病菌广谱拮抗细菌菌株筛选鉴定及防效研究[J]. 生物技术通报, 2023, 39(7): 228-240. |
[4] | 任沛东, 彭健玲, 刘圣航, 姚姿婷, 朱桂宁, 陆光涛, 李瑞芳. 沙福芽孢杆菌GX-H6的分离鉴定及对水稻细菌性条斑病的防病效果[J]. 生物技术通报, 2023, 39(5): 243-253. |
[5] | 章乐乐, 王冠, 柳凤, 胡汉桥, 任磊. 芒果炭疽病拮抗菌分离、鉴定及生防机制研究[J]. 生物技术通报, 2023, 39(4): 277-287. |
[6] | 易希, 廖红东, 郑井元. 植物内生真菌防治根结线虫研究进展[J]. 生物技术通报, 2023, 39(3): 43-51. |
[7] | 王伟宸, 赵进, 黄薇颐, 郭芯竹, 李婉颖, 张卓. 芽胞杆菌代谢产物防治三种常见植物病原真菌的研究进展[J]. 生物技术通报, 2023, 39(3): 59-68. |
[8] | 杨东亚, 祁瑞雪, 李昭轩, 林薇, 马慧, 张雪艳. 黄瓜茄病镰刀菌拮抗芽孢杆菌的筛选、鉴定及促生效果[J]. 生物技术通报, 2023, 39(2): 211-220. |
[9] | 和梦颖, 刘文彬, 林震鸣, 黎尔彤, 汪洁, 金小宝. 一株抗革兰阳性菌的戈登氏菌WA4-43全基因组测序与分析[J]. 生物技术通报, 2023, 39(2): 232-242. |
[10] | 罗宁, 焦阳, 茆振川, 李惠霞, 谢丙炎. 木霉菌对根结线虫和孢囊线虫防治机理研究进展[J]. 生物技术通报, 2023, 39(2): 35-50. |
[11] | 张林林, 沈虎生, 杨冰, 何梦菡, 朴凤植, 申顺善. 生防细菌HK11-9对黄瓜棒孢叶斑病的防病能力及其鉴定[J]. 生物技术通报, 2023, 39(12): 209-218. |
[12] | 李莹, 宋新颖, 何康, 郭志青, 于静, 张霞. 贝莱斯芽孢杆菌ZHX-7的分离鉴定及抑菌促生效果[J]. 生物技术通报, 2023, 39(12): 229-236. |
[13] | 马赛买, 李同源, 马燕军, 韩富军, 彭海, 孔维宝. 几丁质酶在农作物病虫害生物防治中的研究进展[J]. 生物技术通报, 2023, 39(10): 29-40. |
[14] | 祖雪, 周瑚, 朱华珺, 任佐华, 刘二明. 枯草芽孢杆菌K-268的分离鉴定及对水稻稻瘟病的防病效果[J]. 生物技术通报, 2022, 38(6): 136-146. |
[15] | 严聪文, 苏代发, 代庆忠, 张振荣, 田云霞, 董琼娥, 周文星, 陈杉艳, 童江云, 崔晓龙. 草莓病害的生物防治研究进展[J]. 生物技术通报, 2022, 38(12): 73-87. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||