生物技术通报 ›› 2024, Vol. 40 ›› Issue (4): 242-254.doi: 10.13560/j.cnki.biotech.bull.1985.2023-1071
王颢杰1(), 常栋2, 李俊营2, 孟颢光1, 蒋士君1, 周硕野3(), 崔江宽1()
收稿日期:
2023-11-14
出版日期:
2024-04-26
发布日期:
2024-04-30
通讯作者:
崔江宽,男,博士,副教授,研究方向:烟草抗病抗逆强化技术;E-mail: jk_cui@163.com;周硕野,男,硕士,农艺师,研究方向:烟叶生产管理;E-mail: 82109049@qq.com作者简介:
王颢杰,男,硕士研究生,研究方向:植物病理学;E-mail: whj_1917@163.com常栋为本文共同第一作者
基金资助:
WANG Hao-jie1(), CHANG Dong2, LI Jun-ying2, MENG Hao-guang1, JIANG Shi-jun1, ZHOU Shuo-ye3(), CUI Jiang-kuan1()
Received:
2023-11-14
Published:
2024-04-26
Online:
2024-04-30
摘要:
【目的】为解析三段式育苗对烟苗根际微生物多样性和抗逆酶活性的影响。【方法】以中烟100为供试品种,以常规漂浮育苗为对照,设置三段式育苗。通过监测工厂化四联体育苗大棚中烟苗的生长发育情况,系统分析了三段式育苗方式对育苗环境,育苗池、基质和根系微生物多样性,烟苗农艺性状和抗逆酶活性的影响。同时,追溯分析三段式育苗对于田间烟草根际土壤微生物多样性的影响。【结果】幼苗期,三段式育苗方式相对于漂浮育苗对照,改善了育苗池水体的理化性状,降低了育苗大棚内的温差和湿度水平,日均温差由19.23℃下降至17.95℃,日均湿度由75.17%RH下降至69.53%RH;成苗期,三段式育苗增加了育苗池水体中的短波单胞菌属(Brevundimonas)和赖氨酸芽孢杆菌属(Lysinibacillus)的丰度,分别为漂浮育苗的13.90倍和4.66倍。增加了烟苗的鲜重、根长、侧根数、CAT酶活性、SOD酶活性、POD酶活性、根活力和成苗率,较漂浮育苗对照分别提高了34.33%、34.37%、36.41%、31.91%、25.34%、58.07%、29.08%和10.91%,MDA含量降低了22.31%;大田期,提升了烟草根际土壤微生物子囊菌门和青梅属的丰度,创造了更有利的烟草生长环境。【结论】三段式育苗通过改善育苗环境,增加了烟苗根际有益菌群的丰度,显著提高了烟苗的成苗期农艺性状和抗逆酶活性,从而提升烟苗素质。
王颢杰, 常栋, 李俊营, 孟颢光, 蒋士君, 周硕野, 崔江宽. 不同生境下烤烟三段式育苗微生物群落变化及抗逆酶活分析[J]. 生物技术通报, 2024, 40(4): 242-254.
WANG Hao-jie, CHANG Dong, LI Jun-ying, MENG Hao-guang, JIANG Shi-jun, ZHOU Shuo-ye, CUI Jiang-kuan. Analysis of Microbial Community Changes and Stress-resistant Enzyme Activities of Flue-cured Tobacco Three-stage Seedling Raising in Different Habitats[J]. Biotechnology Bulletin, 2024, 40(4): 242-254.
图1 不同育苗方式对温湿度的影响 A:温度;B:湿度。图中数据展示为平均值
Fig. 1 Effects of different seedling raising methods on temperature and humidity A: Temperature; B: humidity. The data in the figure is shown as the average
图2 不同育苗方式对水体理化性状的影响 A:pH;B:溶解氧含量;C:电导率。数据展示为平均值±标准误差
Fig. 2 Effects of different seedling raising methods on water quality physicochemical properties A: pH; B: dissolved oxygen concentration; C: electric conductivity. The data are presented as mean ± standard error
处理Treatment | 株高 Plant height/cm | 鲜重 Fresh weight/g | 根长 Root length/cm | 侧根数 Number of lateral roots | 最大叶面积 Maximum leaf area/cm2 | 成苗率 Seedling rate/% |
---|---|---|---|---|---|---|
三段式育苗 | 8.22 ± 1.71 a | 6.26 ± 1.21 a | 10.40 ± 2.01 a | 133.08 ± 26.15 a | 50.27 ± 7.51 a | 96.18 ± 2.02 a |
漂浮育苗 | 8.08 ± 1.98 a | 4.66 ± 0.97 b | 7.74 ± 1.91 b | 97.56 ± 16.87 b | 40.53 ± 6.94 b | 85.27 ± 4.18 b |
表1 不同育苗方式对烟苗农艺性状的影响
Table 1 Effects of different seedling raising methods on the agronomic traits of tobacco seedlings
处理Treatment | 株高 Plant height/cm | 鲜重 Fresh weight/g | 根长 Root length/cm | 侧根数 Number of lateral roots | 最大叶面积 Maximum leaf area/cm2 | 成苗率 Seedling rate/% |
---|---|---|---|---|---|---|
三段式育苗 | 8.22 ± 1.71 a | 6.26 ± 1.21 a | 10.40 ± 2.01 a | 133.08 ± 26.15 a | 50.27 ± 7.51 a | 96.18 ± 2.02 a |
漂浮育苗 | 8.08 ± 1.98 a | 4.66 ± 0.97 b | 7.74 ± 1.91 b | 97.56 ± 16.87 b | 40.53 ± 6.94 b | 85.27 ± 4.18 b |
图3 不同育苗方式对烟苗酶活性和根活力的影响 A:CAT酶活性;B:POD酶活性;C:SOD酶活性;D:MDA含量;E:根活力。柱形图中数据展示为均值±标准误差。*表示在0.05水平上差异显著,**表示在0.01水平上差异显著,下同
Fig. 3 Effects of different seedling raising methods on the enzyme activities and root vitalities of tobacco seedlings A: CAT enzyme activity; B: POD enzyme activity; C: SOD enzyme activity; D: MDA content; E: root vitality. The data in the column chart is shown as mean ± standard error. * indicates a significant difference at the 0.05 level, and ** indicates a significant difference at the 0.01 level. The same below
图4 微生物群落的alpha多样性分析 A:真菌ACE指数;B:真菌Chao指数;C:真菌Simpson指数;D:真菌Shannon指数;E:细菌ACE指数;F:细菌Chao指数;G:细菌Simpson指数;H:细菌Shannon指数
Fig. 4 Analysis of alpha diversity in microbial communities A: Fungal ACE index; B: fungal Chao index; C: fungal Simpson index; D: fungal Shannon index; E: bacterial ACE index; F: bacterial Chao index; G: bacterial Simpson index; H: bacterial Shannon index
图5 微生物群落的PCA分析 A:真菌PCA分析;B:细菌PCA分析。a:三段式育苗池水体;b:漂浮育苗池水体;c:三段式育苗苗盘基质;d:漂浮育苗苗盘基质;e:三段式育苗烟苗根系;f:漂浮育苗烟苗根系
Fig. 5 PCA analysis of microbial communities A: Fungal PCA analysis; B: bacterial PCA analysis. a: Three-stage seedling raising pool water; b: floating seedling raising pool water; c: three-stage seedling raising tray matrix; d: floating seedling raising tray matrix; e: three-stage seedling raising tobacco seedling root; f: floating seedling raising tobacco seedling root
图6 不同育苗方式对微生物群落丰度的影响 A:真菌门水平;B:细菌门水平;C:真菌属水平;D:细菌属水平。a:三段式育苗池水体;b:漂浮育苗池水体;c:三段式育苗苗盘基质;d:漂浮育苗苗盘基质;e:三段式育苗烟苗根系;f:漂浮育苗烟苗根系
Fig. 6 Effects of seedling raising methods on the abundance of microbial community A: Fungal phylum level; B: bacterial phylum level; C: fungal genus level; D: bacterial genus level. a: Three-stage seedling raising pool water; b: floating seedling raising pool water; c: three-stage seedling raising tray matrix; d: floating seedling raising tray matrix; e: three-stage seedling raising tobacco seedling root; f: floating seedling raising tobacco seedling root
图7 土壤微生物群落的alpha多样性分析 A:真菌ACE指数;B:真菌Chao指数;C:真菌Simpson指数;D:真菌Shannon指数;E:细菌ACE指数;F:细菌Chao指数;G:细菌Simpson指数;H:细菌Shannon指数
Fig. 7 Analysis of alpha diversity of soil microbial communities A: Fungal ACE index; B: fungal Chao index; C: fungal Simpson index; D: fungal Shannon index; E: bacterial ACE index; F: bacterial Chao index; G: bacterial Simpson index; H: bacterial Shannon index
图8 土壤微生物群落的PCA分析 A:真菌PCA分析;B:细菌PCA分析。a:三段式育苗烟草根际土壤;b:漂浮育苗烟草根际土壤
Fig. 8 PCA analysis of soil microbial communities A: Fungal PCA analysis; B: bacterial PCA analysis. a: Tobacco root soil by three-stage seedling raising ; b: tobacco root soil by floating seedling raising
图9 不同育苗方式对土壤微生物群落丰度的影响 A:真菌门水平;B:细菌门水平;C:真菌属水平;D:细菌属水平。a:三段式育苗烟草根际土壤;b:漂浮育苗烟草根际土壤。
Fig. 9 Effects of different nursery methods on soil microbial community abundance A: Fungal phylum level; B: bacterial phylum level; C: fungal genus level; D: bacterial genus level. a: Tobacco root soil by three-stage seedling raising; B: tobacco root soil by floating seedling raising
[1] | 崔江宽, 常栋, 万笑迎, 等. 烟草漂浮育苗有害藻类致病机制及其防治研究进展[J]. 中国烟草学报, 2021, 27(4): 106-113. |
Cui JK, Chang D, Wan XY, et al. Research progress on pathogenic mechanism and controlling of the algae in tobacco floating seedling[J]. Acta Tabacaria Sin, 2021, 27(4): 106-113. | |
[2] | 万笑迎, 康晓博, 黄微微, 等. 烟草漂浮育苗小球藻和颤藻的防治药剂筛选[J]. 农药, 2021, 60(12): 913-916, 920. |
Wan XY, Kang XB, Huang WW, et al. Screening of algicides for controlling Chlorella and oscillatoriales of the algae in tobacco floating seedling in Henan Province[J]. Agrochemicals, 2021, 60(12): 913-916, 920. | |
[3] | 常栋, 孟颢光, 周博, 等. 药剂灌根防治隐性感染烟苗根腐病田间效果[J]. 中国植保导刊, 2021, 41(7): 88-91. |
Chang D, Meng HG, Zhou B, et al. Field effect of chemical root irrigation on controlling root rot of recessive infected tobacco seedlings[J]. China Plant Prot, 2021, 41(7): 88-91. | |
[4] | 王新月, 张阳, 蔡奇, 等. 育苗盘孔径、微生物菌剂和移栽叶龄对烤烟生长发育的影响[J]. 中国烟草科学, 2023, 44(5): 18-26. |
Wang XY, Zhang Y, Cai Q, et al. Effects of float seedling tray size, microbial agents and transplanting leaf age on growth of flue-cured tobacco[J]. Chin Tob Sci, 2023, 44(5): 18-26. | |
[5] | Jiang HL, Li NJ, Xu AD, et al. Development of closed-type transplant production system and discussion of its application mode for flue-cured tobacco[J]. Aust J Crop Sci, 2014, 8: 1566-1570. |
[6] | 王颢杰, 李俊营, 何晓冰, 等. 不同育苗方式和移栽方式对烤烟田间抗病抗逆性的影响[J/OL]. 河南农业大学学报, 2023, 57(6): 996-1007. |
Wang HJ, Li JY, He XB, et al. Effects of seedling raising and transplanting cultivation methods on tobacco field resistance to disease and stress[J/OL]. Journal of Henan Agricultural University, 2023, 57(6): 996-1007. | |
[7] | 许跃奇, 王颢杰, 常栋, 等. 烤烟不同育苗方式对烟草苗期抗病抗逆性的影响[J]. 植物医学, 2023, 2(4): 28-38. |
Xu YQ, Wang HJ, Chang D, et al. Effects of different seedling breeding methods on disease and stress resistance of flue-cured tobacco at seedling stage[J]. Plant Health Med, 2023, 2(4): 28-38. | |
[8] | 张义志, 孔凡玉, 黄建, 等. 水旱两段式育苗技术对烤烟成苗素质的影响[J]. 江苏农业科学, 2015, 43(1): 67-69. |
Zhang YZ, Kong FY, Huang J, et al. Effect of two-stage seedling raising technology of flood and drought on seedling quality of flue-cured tobacco[J]. Jiangsu Agric Sci, 2015, 43(1): 67-69. | |
[9] | 陈千思, 方明, 李泽锋, 等. 烟草抗冷相关基因在两种不同育苗方式下的低温应答差异分析[J]. 烟草科技, 2022, 55(9): 19-28. |
Chen QS, Fang M, Li ZF, et al. Differential analysis of low temperature gene responses related to cold resistance in tobacco under two seedling cultivation methods[J]. Tob Sci Technol, 2022, 55(9): 19-28. | |
[10] | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 烟草集约化育苗技术规程第1部分:漂浮育苗: GB/T 25241.1—2010[S]. 北京: 中国标准出版社, 2011. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Rules for tobacco intensive seedling production-Part 1: Seedling with float system:GB/T 25241.1-2010[S]. Beijing: Standards Press of China, 2011. | |
[11] | 国家烟草专卖局. 烟草农艺性状调查测量方法: YC/T 142—2010[S]. 北京: 中国标准出版社, 2010. |
State Tobacco Monopoly Bureau of the People's Republic of China. Investigating and measuring methods of agronomical character of tobacco: YC/T 142—2010[S]. Beijing: Standards Press of China, 2010. | |
[12] |
Zhang JT, Mu CS. Effects of saline and alkaline stresses on the germination, growth, photosynthesis, ionic balance and anti-oxidant system in an alkali-tolerant leguminous forageLathyrus quinquenervius[J]. Soil Sci Plant Nutr, 2009, 55(5): 685-697.
doi: 10.1111/j.1747-0765.2009.00411.x URL |
[13] |
Chen Y, Wen Y, Cheng J, et al. Effects of dissolved oxygen on extracellular enzymes activities and transformation of carbon sources from plant biomass: implications for denitrification in constructed wetlands[J]. Bioresour Technol, 2011, 102(3): 2433-2440.
doi: 10.1016/j.biortech.2010.10.122 URL |
[14] | Hasanuzzaman M, Nahar K, Fujita M. Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages[M]// Ecophysiology and Responses of Plants under Salt Stress. New York: Springer, 2013: 25-87. |
[15] |
Hossain ST, Sugimoto H, Yamashita J. Effect of topdressing on individual leaf photosynthesis at different position in direct-sown rice with non-woven fabric mulch system[J]. Photosynthetica, 2007, 45(4): 576-581.
doi: 10.1007/s11099-007-0099-9 URL |
[16] |
Ma HZ, Liu C, Li ZX, et al. ZmbZIP4 contributes to stress resistance in maize by regulating ABA synthesis and root development[J]. Plant Physiol, 2018, 178(2): 753-770.
doi: 10.1104/pp.18.00436 pmid: 30126870 |
[17] |
Raza A, Charagh S, Zahid Z, et al. Jasmonic acid: a key frontier in conferring abiotic stress tolerance in plants[J]. Plant Cell Rep, 2021, 40(8): 1513-1541.
doi: 10.1007/s00299-020-02614-z pmid: 33034676 |
[18] | Zhou R, Kong LP, Yu XQ, et al. Oxidative damage and antioxidant mechanism in tomatoes responding to drought and heat stress[J]. Acta Physiol Plant, 2019, 41(2): 20. |
[19] |
李琬婷, 宁朋, 王菲, 等. 外源脱落酸对干旱胁迫下滇润楠幼苗生长及生理特性的影响[J]. 应用生态学报, 2020, 31(5):1543-1550.
doi: 10.13287/j.1001-9332.202005.009 |
Li WT, Ning P, Wang F, et al. Effects of exogenous abscisic acid on growth and physiological characteristics of seedlings of Dian Runnan under drought stress[J]. Chinese Journal of Applied Ecology, 2020, 31(5): 1543-1550.
doi: 10.13287/j.1001-9332.202005.009 |
|
[20] | 束胜, 胡晓辉, 王玉. 蔬菜作物逆境生理与抗逆栽培研究进展[J]. 南京农业大学学报, 2022, 45(6): 1087-1098. |
Shu S, Hu XH, Wang Y, et al. Research progress on stress physiology and stress tolerance cultivation of vegetable crops[J]. Journal of Nanjing Agricultural University, 2022, 45(6): 1087-1098. | |
[21] |
周闪闪, 黄远龙, 黄建忠, 等. 溶杆菌中活性天然产物的研究进展[J]. 生物技术通报, 2023, 39(10): 41-49.
doi: 10.13560/j.cnki.biotech.bull.1985.2023-0655 |
Zhou SS, Huang YL, Huang JZ, et al. Research progress in bioactive natural products from Lysobacter[J]. Biotechnol Bull, 2023, 39(10): 41-49. | |
[22] | Kumar M, Giri VP, Pandey S, et al. Plant-growth-promoting rhizobacteria emerging as an effective bioinoculant to improve the growth, production, and stress tolerance of vegetable crops[J]. Int J Mol Sci, 2021, 22(22): 12245. |
[23] |
李俊领, 马晓寒, 张豫丹, 等. 土壤微生物与烟草青枯病发生关系的研究进展[J]. 生物技术通报, 2020, 36(9): 88-99.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-1268 |
Li JL, Ma XH, Zhang YD, et al. Research progress on the relationship between soil microorganism and tobacco bacterial wilt[J]. Biotechnol Bull, 2020, 36(9): 88-99. | |
[24] |
徐扬, 张冠初, 丁红, 等. 土壤类型对花生根际土壤细菌群落多样性和产量的影响[J]. 生物技术通报, 2022, 38(6): 221-234.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-0912 |
Xu Y, Zhang GC, Ding H, et al. Effects of soil types on bacterial community diversity on the rhizosphere soil of Arachis hypogaea and yield[J]. Biotechnol Bull, 2022, 38(6): 221-234. | |
[25] | Goyal D, Prakash O, Pandey J. Rhizospheric microbial diversity: an important component for abiotic stress management in crop plants toward sustainable agriculture[M]// New and Future Developments in Microbial Biotechnology and Bioengineering. Amsterdam: Elsevier, 2019: 115-134. |
[26] | Liu WX, Zhang R, Shu R, et al. Study of the relationship between microbiome and colorectal cancer susceptibility using 16S rRNA sequencing[J]. Biomed Res Int, 2020: 7828392. |
[27] | Okungbowa FI, Shittu HO. Fusarium wilts: An overview[J]. Environ Res J, 2012, 6(2): 83-102 |
[28] | Emenike CU, Agamuthu P, Fauziah SH. Blending Bacillus sp., Lysinibacillus sp. and Rhodococcus sp. for optimal reduction of heavy metals in leachate contaminated soil[J]. Environ Earth Sci, 2015, 75(1): 26. |
[29] | Omer A. Biovalorization of olive mill wastewater using phenol degrading bacteria to produce biofertilizer[J]. Egypt J Chem, 2023. |
[30] |
Ravi S, Sevugapperumal N, Nallusamy S, et al. Differential bacterial endophytome in Foc-resistant banana cultivar displays enhanced antagonistic activity against Fusarium oxysporum f.sp. cubense(Foc)[J]. Environ Microbiol, 2022, 24(6): 2701-2715.
doi: 10.1111/emi.v24.6 URL |
[31] |
Andreolli M, Lampis S, Zapparoli G, et al. Diversity of bacterial endophytes in 3 and 15 year-old grapevines of Vitis vinifera cv. Corvina and their potential for plant growth promotion and phytopathogen control[J]. Microbiol Res, 2016, 183: 42-52.
doi: 10.1016/j.micres.2015.11.009 pmid: 26805617 |
[32] |
Devi R, Kaur T, Kour D, et al. Beneficial fungal communities from different habitats and their roles in plant growth promotion and soil health[J]. Microb Biosyst, 2020, 5(1): 21-47.
doi: 10.21608/mb.2020.32802.1016 URL |
[33] | Altaf MM, Imran M, Abulreesh HH, et al. Diversity and applications of Penicillium spp. in plant-growth promotion[M]// New and Future Developments in Microbial Biotechnology and Bioengineering. Amsterdam: Elsevier, 2018: 261-276. |
[34] | Moreira BC, Prates Júnior P, Dell B, et al. Roots and beneficial interactions with soil microbes[M]// Subsoil Constraints for Crop Production. Cham: Springer, 2022: 263-287. |
[35] |
Aqeel M, Ran JZ, Hu WG, et al. Plant-soil-microbe interactions in maintaining ecosystem stability and coordinated turnover under changing environmental conditions[J]. Chemosphere, 2023, 318: 137924.
doi: 10.1016/j.chemosphere.2023.137924 URL |
[1] | 李灿, 蒋湘宁, 盖颖. 日本落叶松LkF3H2基因克隆及调控类黄酮代谢功能研究[J]. 生物技术通报, 2024, 40(2): 245-252. |
[2] | 杨志晓, 侯骞, 刘国权, 卢志刚, 曹毅, 芶剑渝, 王轶, 林英超. 不同抗性烟草品系Rubisco及其活化酶对赤星病胁迫的响应[J]. 生物技术通报, 2023, 39(9): 202-212. |
[3] | 刘珍银, 段郅臻, 彭婷, 王童欣, 王健. 基于三角梅的病毒诱导基因沉默体系的建立与优化[J]. 生物技术通报, 2023, 39(7): 123-130. |
[4] | 李文辰, 刘鑫, 康越, 李伟, 齐泽铮, 于璐, 王芳. TRV病毒诱导大豆基因沉默体系优化及应用[J]. 生物技术通报, 2023, 39(7): 143-150. |
[5] | 张路阳, 韩文龙, 徐晓雯, 姚健, 李芳芳, 田效园, 张智强. 烟草TCP基因家族的鉴定及表达分析[J]. 生物技术通报, 2023, 39(6): 248-258. |
[6] | 王羽, 尹铭绅, 尹晓燕, 奚家勤, 杨建伟, 牛秋红. 烟草甲体内烟碱降解菌的筛选、鉴定及降解特性[J]. 生物技术通报, 2023, 39(6): 308-315. |
[7] | 申云鑫, 施竹凤, 周旭东, 李铭刚, 张庆, 冯路遥, 陈齐斌, 杨佩文. 三株具生防功能芽孢杆菌的分离鉴定及其生物活性研究[J]. 生物技术通报, 2023, 39(3): 267-277. |
[8] | 余世洲, 曹领改, 王世泽, 刘勇, 边文杰, 任学良. 烟草种质基因分型核心SNP标记的开发[J]. 生物技术通报, 2023, 39(3): 89-100. |
[9] | 杜清洁, 周璐瑶, 杨思震, 张嘉欣, 陈春林, 李娟起, 李猛, 赵士文, 肖怀娟, 王吉庆. 过表达CaCP1提高转基因烟草对盐胁迫的敏感性[J]. 生物技术通报, 2023, 39(2): 172-182. |
[10] | 汪格格, 邱诗蕊, 张琳晗, 杨国伟, 徐小云, 汪爱羚, 曾淑华, 刘雅洁. 异源三倍体普通烟草(SST)减数分裂期的分子细胞学研究[J]. 生物技术通报, 2023, 39(2): 183-192. |
[11] | 车永梅, 刘广超, 郭艳苹, 叶青, 赵方贵, 刘新. 一种耐盐复合菌剂的制备和促生作用研究[J]. 生物技术通报, 2023, 39(11): 217-225. |
[12] | 尹国英, 刘畅, 常永春, 羽王洁, 王兵, 张盼, 郭玉双. 烟草半胱氨酸蛋白酶家族和相应miRNAs的鉴定及其对PVY的响应[J]. 生物技术通报, 2023, 39(10): 184-196. |
[13] | 刘广超, 叶青, 车永梅, 李雅华, 安东, 刘新. 烟草根际高效解磷菌的筛选鉴定及促生作用研究[J]. 生物技术通报, 2022, 38(8): 179-187. |
[14] | 张昊鑫, 王中华, 牛兵, 郭慷, 刘璐, 姜瑛, 张仕祥. 产IAA兼具溶磷解钾高效促生菌的筛选、鉴定及其广谱性应用[J]. 生物技术通报, 2022, 38(5): 100-111. |
[15] | 付偲僮, 司未佳, 刘颖, 程堂仁, 王佳, 张启翔, 潘会堂. TRV介导的小报春基因沉默技术体系的建立[J]. 生物技术通报, 2022, 38(4): 295-302. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||