生物技术通报 ›› 2024, Vol. 40 ›› Issue (7): 78-89.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0020
张震宇1,2,3(), 靳莉武1,2,3, 王婧尊1,2,3, 田玲1,2,3, 乔自林1,2,4, 杨迪1,2,5, 阿依木古丽·阿不都热依木1,3()
收稿日期:
2024-01-05
出版日期:
2024-07-26
发布日期:
2024-07-30
通讯作者:
阿依木古丽·阿不都热依木,教授,研究方向:动物细胞工程(疫苗方向)、基础兽医学;E-mail: Ayimgul80@xbmu.edu.cn作者简介:
张震宇,男,硕士研究生,研究方向:动物细胞工程;E-mail: 375470311@qq.com
基金资助:
ZHANG Zhen-yu1,2,3(), JIN Li-wu1,2,3, WANG Jing-zun1,2,3, TIAN Ling1,2,3, QIAO Zi-lin1,2,4, YANG Di1,2,5, AYIMUGULI Abudureyimu1,3()
Received:
2024-01-05
Published:
2024-07-26
Online:
2024-07-30
摘要:
细胞永生化是指通过各种手段、方式来突破原代细胞衰老的限制,延长细胞寿命,实现细胞无限复制增殖,是当前生物医学领域研究的一个热点与难点。永生化细胞株/系可用于生物制品研发、衰老机制探索以延伸生命等;然而目前永生化细胞种类不多、永生化技术相对较难,肿瘤风险以及动物福利伦理等原因,还不能满足研发需求。目的细胞永生化不仅可以永久保存动物细胞遗传资源,还对多种疾病的诊断、治疗及细胞基质疫苗的研发等提供支持。本文就动物细胞永生化的原理、永生化机制及方法的研究最新进展进行综述,为未来的生物医学研究和应用提供参考。
张震宇, 靳莉武, 王婧尊, 田玲, 乔自林, 杨迪, 阿依木古丽·阿不都热依木. 动物细胞永生化研究进展[J]. 生物技术通报, 2024, 40(7): 78-89.
ZHANG Zhen-yu, JIN Li-wu, WANG Jing-zun, TIAN Ling, QIAO Zi-lin, YANG Di, AYIMUGULI Abudureyimu. Research Progress in the Immortalization of Animal Cells[J]. Biotechnology Bulletin, 2024, 40(7): 78-89.
物种 Species | 细胞系名称 Cell line name | 细胞系来源 Cell line source | 参考文献 Reference |
---|---|---|---|
兔 Rabbit | HIG-82 | 兔膝关节成纤维细胞 Rabbit knee joint fibroblasts | [ |
人 Human | ECV304 | 人脐静脉内皮细胞Human umbilical vein endothelial cells | [ |
兔 Rabbit | RCE1 | 兔角膜上皮细胞 Rabbit corneal epithelial cells | [ |
兔 Rabbit | iRCEC | 兔角膜内皮细胞 Rabbit corneal endothelial cells | [ |
鸡 Chicken | DF-1 | 鸡胚胎成纤维细胞 Chicken embryo fibroblasts | [ |
豚鼠 Guinea pig | GPK- si | 豚鼠肾细胞 Guinea pig kidney cells | [ |
表1 自发永生化细胞系
Table 1 Translation of spontaneously immortalized cell lines
物种 Species | 细胞系名称 Cell line name | 细胞系来源 Cell line source | 参考文献 Reference |
---|---|---|---|
兔 Rabbit | HIG-82 | 兔膝关节成纤维细胞 Rabbit knee joint fibroblasts | [ |
人 Human | ECV304 | 人脐静脉内皮细胞Human umbilical vein endothelial cells | [ |
兔 Rabbit | RCE1 | 兔角膜上皮细胞 Rabbit corneal epithelial cells | [ |
兔 Rabbit | iRCEC | 兔角膜内皮细胞 Rabbit corneal endothelial cells | [ |
鸡 Chicken | DF-1 | 鸡胚胎成纤维细胞 Chicken embryo fibroblasts | [ |
豚鼠 Guinea pig | GPK- si | 豚鼠肾细胞 Guinea pig kidney cells | [ |
细胞 Cells | 传代次数 Cell passages | 细胞系名称 Cell line name | 永生化方式 Immortalization method | 生物学特性 Biological characteristics |
---|---|---|---|---|
猪精原干细胞 Porcine spermatogonial stem cells | >35代 Over 35 passages | Ttag and Puro | SV40LT | 未出现形态改变及多核细胞[ |
人角膜干细胞 Human corneal stromal stem cells | >15代 Over 15 passages | SV40T-imCSSC | SV40LT | 保留干细胞特性,具有抗炎特性[ |
小鼠肠平滑肌细胞 Mouse intestinal smooth muscle cells | 至50代 Up to 50 passages | ISMC- Hc | SV40LT | 与原代肠平滑肌细胞(ISMC)特征基本一致,增殖活性更强,且无致瘤性[ |
人牙髓干细胞 Human dental pulp stem cells | >15代 Over 15 passages | TERT | hTERT | 增殖速度增快,且维持干细胞特性[ |
胎牛皮肤成纤维细胞 Fetal bovine skin fibroblasts | >50代 Over 50 passages | hTERT-CSF | hTERT | 增殖速度更快,且无多核细胞[ |
猪耳、胎儿和肺组织源成纤维细胞 Primary fibroblasts prepared from pig ear, fetal and lung tissues | 30-45代 30-45 passages | Fibroblast cell line | hTERT | 无细胞特性改变,增值代次增加,但SLA I类基因略有上调[ |
猪肺源巨噬细胞 Porcine lung-derived monocyte-derived macrophages | >54代 Over 54 passages | IPLuM | SV40LT和pTERT | 保持巨噬细胞形态,对ASFV易感[ |
猪小肠巨噬细胞 Porcine intestinal macrophages | >50代 Over 50 passages | IPIM | SV40LT和pTERT | 保留巨噬细胞特征,对PRRSV敏感性增加[ |
牦牛瘤胃上皮细胞 Epithelial cells of the rumen stomach of yaks | >30代 Over 30 passages | SV40T-YREC-hTERT | SV40LT和hTERT | 保留上皮细胞特性,无多核细胞[ |
表2 导入SV40或TERT的永生化细胞系
Table 2 SV40, TERT-induced immortalized cell lines
细胞 Cells | 传代次数 Cell passages | 细胞系名称 Cell line name | 永生化方式 Immortalization method | 生物学特性 Biological characteristics |
---|---|---|---|---|
猪精原干细胞 Porcine spermatogonial stem cells | >35代 Over 35 passages | Ttag and Puro | SV40LT | 未出现形态改变及多核细胞[ |
人角膜干细胞 Human corneal stromal stem cells | >15代 Over 15 passages | SV40T-imCSSC | SV40LT | 保留干细胞特性,具有抗炎特性[ |
小鼠肠平滑肌细胞 Mouse intestinal smooth muscle cells | 至50代 Up to 50 passages | ISMC- Hc | SV40LT | 与原代肠平滑肌细胞(ISMC)特征基本一致,增殖活性更强,且无致瘤性[ |
人牙髓干细胞 Human dental pulp stem cells | >15代 Over 15 passages | TERT | hTERT | 增殖速度增快,且维持干细胞特性[ |
胎牛皮肤成纤维细胞 Fetal bovine skin fibroblasts | >50代 Over 50 passages | hTERT-CSF | hTERT | 增殖速度更快,且无多核细胞[ |
猪耳、胎儿和肺组织源成纤维细胞 Primary fibroblasts prepared from pig ear, fetal and lung tissues | 30-45代 30-45 passages | Fibroblast cell line | hTERT | 无细胞特性改变,增值代次增加,但SLA I类基因略有上调[ |
猪肺源巨噬细胞 Porcine lung-derived monocyte-derived macrophages | >54代 Over 54 passages | IPLuM | SV40LT和pTERT | 保持巨噬细胞形态,对ASFV易感[ |
猪小肠巨噬细胞 Porcine intestinal macrophages | >50代 Over 50 passages | IPIM | SV40LT和pTERT | 保留巨噬细胞特征,对PRRSV敏感性增加[ |
牦牛瘤胃上皮细胞 Epithelial cells of the rumen stomach of yaks | >30代 Over 30 passages | SV40T-YREC-hTERT | SV40LT和hTERT | 保留上皮细胞特性,无多核细胞[ |
[1] | Shay JW, Wright WE. Hayflick, his limit, and cellular ageing[J]. Nat Rev Mol Cell Biol, 2000, 1(1): 72-76. |
[2] | Yi WH, Yang DZ, Xu Z, et al. Immortalization of mouse primary astrocytes[J]. Gene, 2023, 865: 147327. |
[3] |
López-Otín C, Blasco MA, Partridge L, et al. Hallmarks of aging: an expanding universe[J]. Cell, 2023, 186(2): 243-278.
doi: 10.1016/j.cell.2022.11.001 pmid: 36599349 |
[4] | eBioMedicine. The 3Rs of animal research[J]. EBioMedicine, 2022, 76: 103900. |
[5] |
Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains[J]. Exp Cell Res, 1961, 25: 585-621.
pmid: 13905658 |
[6] |
Martínez-Cué C, Rueda N. Cellular senescence in neurodegenerative diseases[J]. Front Cell Neurosci, 2020, 14: 16.
doi: 10.3389/fncel.2020.00016 pmid: 32116562 |
[7] | Morgan RG, Donato AJ, Walker AE. Telomere uncapping and vascular aging[J]. Am J Physiol Heart Circ Physiol, 2018, 315(1): H1-H5. |
[8] | Shao XX, Zhang MZ, Chen YX, et al. Exosome-mediated delivery of superoxide dismutase for anti-aging studies in Caenorhabditis elegans[J]. Int J Pharm, 2023, 641: 123090. |
[9] |
Chaib S, Tchkonia T, Kirkland JL. Cellular senescence and senolytics: the path to the clinic[J]. Nat Med, 2022, 28(8): 1556-1568.
doi: 10.1038/s41591-022-01923-y pmid: 35953721 |
[10] | Di Micco R, Krizhanovsky V, Baker D, et al. Cellular senescence in ageing: from mechanisms to therapeutic opportunities[J]. Nat Rev Mol Cell Biol, 2021, 22(2): 75-95. |
[11] |
Donato AJ, Machin DR, Lesniewski LA. Mechanisms of dysfunction in the aging vasculature and role in age-related disease[J]. Circ Res, 2018, 123(7): 825-848.
doi: 10.1161/CIRCRESAHA.118.312563 pmid: 30355078 |
[12] | Gao P, Zou XJ, Sun X, et al. Cellular senescence in metabolic-associated kidney disease: an update[J]. Cells, 2022, 11(21): 3443. |
[13] |
Iglesias-Pedraz JM, Comai L. Measurements of hydrogen peroxide and oxidative DNA damage in a cell model of premature aging[J]. Methods Mol Biol, 2020, 2144: 245-257.
doi: 10.1007/978-1-0716-0592-9_22 pmid: 32410041 |
[14] |
Wiley CD, Campisi J. The metabolic roots of senescence: mechanisms and opportunities for intervention[J]. Nat Metab, 2021, 3(10): 1290-1301.
doi: 10.1038/s42255-021-00483-8 pmid: 34663974 |
[15] |
Sutanto SSI, McLennan SV, Keech AC, et al. Shortening of telomere length by metabolic factors in diabetes: protective effects of fenofibrate[J]. J Cell Commun Signal, 2019, 13(4): 523-530.
doi: 10.1007/s12079-019-00521-x pmid: 31203557 |
[16] | Geiller HEB, Harvey A, Jones RE, et al. ATRX modulates the escape from a telomere crisis[J]. PLoS Genet, 2022, 18(11): e1010485. |
[17] |
Maqsood MI, Matin MM, Bahrami AR, et al. Immortality of cell lines: challenges and advantages of establishment[J]. Cell Biol Int, 2013, 37(10): 1038-1045.
doi: 10.1002/cbin.10137 pmid: 23723166 |
[18] | Lee C, Kim JK. Chromatin regulators in retinoblastoma: biological roles and therapeutic applications[J]. J Cell Physiol, 2021, 236(4): 2318-2332. |
[19] |
Giacinti C, Giordano A. RB and cell cycle progression[J]. Oncogene, 2006, 25(38): 5220-5227.
doi: 10.1038/sj.onc.1209615 pmid: 16936740 |
[20] |
Tsutsui T, Kumakura SI, Yamamoto A, et al. Association of p16(INK4a)and pRb inactivation with immortalization of human cells[J]. Carcinogenesis, 2002, 23(12): 2111-2117.
pmid: 12507935 |
[21] | Gerasymchuk M, Robinson GI, Kovalchuk O, et al. Modeling of the senescence-associated phenotype in human skin fibroblasts[J]. Int J Mol Sci, 2022, 23(13): 7124. |
[22] | Su ZY, Kon N, Yi JJ, et al. Specific regulation of BACH1 by the hotspot mutant p53R175H reveals a distinct gain-of-function mechanism[J]. Nat Cancer, 2023, 4(4): 564-581. |
[23] |
Serrano M, Lin AW, McCurrach ME, et al. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a[J]. Cell, 1997, 88(5): 593-602.
doi: 10.1016/s0092-8674(00)81902-9 pmid: 9054499 |
[24] |
Satyanarayana A, Greenberg RA, Schaetzlein S, et al. Mitogen stimulation cooperates with telomere shortening to activate DNA damage responses and senescence signaling[J]. Mol Cell Biol, 2004, 24(12): 5459-5474.
pmid: 15169907 |
[25] |
Dakic A, DiVito K, Fang S, et al. ROCK inhibitor reduces Myc-induced apoptosis and mediates immortalization of human keratinocytes[J]. Oncotarget, 2016, 7(41): 66740-66753.
doi: 10.18632/oncotarget.11458 pmid: 27556514 |
[26] |
Kim H, You S, Kim IJ, et al. Increased mitochondrial-encoded gene transcription in immortal DF-1 cells[J]. Exp Cell Res, 2001, 265(2): 339-347.
pmid: 11302700 |
[27] | Dwyer J, Li H, Xu DK, et al. Transcriptional regulation of telomerase activity: roles of the the Ets transcription factor family[J]. Ann N Y Acad Sci, 2007, 1114: 36-47. |
[28] | Chen DL, Shan J, Zhu WG, et al. Transcription-independent ARF regulation in oncogenic stress-mediated p53 responses[J]. Nature, 2010, 464(7288): 624-627. |
[29] | Georgescu HI, Mendelow D, Evans CH. HIG-82: an established cell line from rabbit periarticular soft tissue, which retains the “activatable” phenotype[J]. In Vitro Cell Dev Biol, 1988, 24(10): 1015-1022. |
[30] | Takahashi K, Sawasaki Y, Hata J, et al. Spontaneous transformation and immortalization of human endothelial cells[J]. In Vitro Cell Dev Biol, 1990, 26(3 Pt 1): 265-274. |
[31] | Castro-Muñozledo F. Development of a spontaneous permanent cell line of rabbit corneal epithelial cells that undergoes sequential stages of differentiation in cell culture[J]. J Cell Sci, 1994, 107(Pt 8): 2343-2351. |
[32] |
Kageyama T, Hayashi R, Hara S, et al. Spontaneous acquisition of infinite proliferative capacity by a rabbit corneal endothelial cell line with maintenance of phenotypic and physiological characteristics[J]. J Tissue Eng Regen Med, 2017, 11(4): 1057-1064.
doi: 10.1002/term.2005 pmid: 25758102 |
[33] | Song D, Liu F, Tao WJ, et al. Protective effect of phloretin against hydrogen peroxide-induced oxidative damage by enhancing autophagic flux in DF-1 cells[J]. Oxid Med Cell Longev, 2022, 2022: 8359118. |
[34] | Shioda M, Shiokawa M, Aoki H. Establishment of guinea pig kidney cell lines with potential application in the production of a classical swine fever live GPE- vaccine[J]. J Vet Med Sci, 2023, 85(3): 308-317. |
[35] |
Wazer DE, Chu Q, Liu XL, et al. Loss of p53 protein during radiation transformation of primary human mammary epithelial cells[J]. Mol Cell Biol, 1994, 14(4): 2468-2478.
doi: 10.1128/mcb.14.4.2468-2478.1994 pmid: 7511207 |
[36] | Tsutsui T, Tanaka Y, Matsudo Y, et al. Extended lifespan and immortalization of human fibroblasts induced by X-ray irradiation[J]. Mol Carcinog, 1997, 18(1): 7-18. |
[37] | Genoud V, Marinari E, Nikolaev SI, et al. Responsiveness to anti-PD-1 and anti-CTLA-4 immune checkpoint blockade in SB28 and GL261 mouse glioma models[J]. Oncoimmunology, 2018, 7(12): e1501137. |
[38] |
Stampfer MR, Bartley JC. Induction of transformation and continuous cell lines from normal human mammary epithelial cells after exposure to benzo[a]pyrene[J]. Proc Natl Acad Sci USA, 1985, 82(8): 2394-2398.
doi: 10.1073/pnas.82.8.2394 pmid: 3857588 |
[39] |
Cheng JW, DeCaprio JA, Fluck MM, et al. Cellular transformation by Simian Virus 40 and Murine Polyoma Virus T antigens[J]. Semin Cancer Biol, 2009, 19(4): 218-228.
doi: 10.1016/j.semcancer.2009.03.002 pmid: 19505649 |
[40] | de Bardet JC, Cardentey CR, González BL, et al. Cell immortalization: in vivo molecular bases and in vitro techniques for obtention[J]. BioTech(Basel), 2023, 12(1): 14. |
[41] | Ji X, Lyu PC, Hu R, et al. Generation of an enteric smooth muscle cell line from the pig ileum[J]. J Anim Sci, 2020, 98(4): skaa102. |
[42] | Pillai VV, Koganti PP, Kei TG, et al. Efficient induction and sustenance of pluripotent stem cells from bovine somatic cells[J]. Biol Open, 2021, 10(10): bio058756. |
[43] |
Seridi N, Hamidouche M, Belmessabih N, et al. Immortalization of primary sheep embryo kidney cells[J]. In Vitro Cell Dev Biol Anim, 2021, 57(1): 76-85.
doi: 10.1007/s11626-020-00520-y pmid: 33415664 |
[44] | Liu X, Xia FP, Wu X, et al. Isolation of primary mouse pulmonary microvascular endothelial cells and generation of an immortalized cell line to obtain sufficient extracellular vesicles[J]. Front Immunol, 2021, 12: 759176. |
[45] |
Radna RL, Caton Y, Jha KK, et al. Growth of immortal Simian virus 40 tsA-transformed human fibroblasts is temperature dependent[J]. Mol Cell Biol, 1989, 9(7): 3093-3096.
doi: 10.1128/mcb.9.7.3093-3096.1989 pmid: 2779555 |
[46] |
Abboodi F, Buckhaults P, Altomare D, et al. HPV-inactive cell populations arise from HPV16-transformed human keratinocytes after p53 knockout[J]. Virology, 2021, 554: 9-16.
doi: 10.1016/j.virol.2020.12.005 pmid: 33321328 |
[47] | Gru AA, Haverkos BH, Freud AG, et al. The epstein-barr virus(EBV)in T cell and NK cell lymphomas: time for a reassessment[J]. Curr Hematol Malig Rep, 2015, 10(4): 456-467. |
[48] |
Bodnar AG, Ouellette M, Frolkis M, et al. Extension of life-span by introduction of telomerase into normal human cells[J]. Science, 1998, 279(5349): 349-352.
doi: 10.1126/science.279.5349.349 pmid: 9454332 |
[49] | Marinaccio J, Micheli E, Udroiu I, et al. TERT extra-telomeric roles: antioxidant activity and mitochondrial protection[J]. Int J Mol Sci, 2023, 24(5): 4450. |
[50] |
Piñeiro-Ramil M, Sanjurjo-Rodríguez C, Rodríguez-Fernández S, et al. Generation of human immortalized chondrocytes from osteoarthritic and healthy cartilage: a new tool for cartilage pathophysiology studies[J]. Bone Joint Res, 2023, 12(1): 46-57.
doi: 10.1302/2046-3758.121.BJR-2022-0207.R1 pmid: 36647698 |
[51] |
Takenouchi T, Kitani H, Suzuki S, et al. Immortalization and characterization of porcine macrophages that had been transduced with lentiviral vectors encoding the SV40 large T antigen and porcine telomerase reverse transcriptase[J]. Front Vet Sci, 2017, 4: 132.
doi: 10.3389/fvets.2017.00132 pmid: 28871285 |
[52] | Zhang ZH, Han Z, Guo Y, et al. Establishment of an efficient immortalization strategy using HMEJ-based b TERT insertion for bovine cells[J]. Int J Mol Sci, 2021, 22(22): 12540. |
[53] | Yasumura Y, Teshima T, Nagashima T, et al. Immortalized canine adipose-derived mesenchymal stem cells as a novel candidate cell source for mesenchymal stem cell therapy[J]. Int J Mol Sci, 2023, 24(3): 2250. |
[54] | Zheng Y, Feng TY, Zhang PF, et al. Establishment of cell lines with porcine spermatogonial stem cell properties[J]. J Anim Sci Biotechnol, 2020, 11: 33. |
[55] | Dos Santos A, Lyu N, Balayan A, et al. Generation of functional immortalized human corneal stromal stem cells[J]. Int J Mol Sci, 2022, 23(21): 13399. |
[56] | Chen HL, Li XL, Gao LP, et al. Construction and identification of an immortalized rat intestinal smooth muscle cell line[J]. Neurogastroenterol Motil, 2022, 34(8): e14359. |
[57] | Orimoto A, Kyakumoto S, Eitsuka T, et al. Efficient immortalization of human dental pulp stem cells with expression of cell cycle regulators with the intact chromosomal condition[J]. PLoS One, 2020, 15(3): e0229996. |
[58] | Ren SH, Yang X, Peng TY, et al. Establishment of a fetal cow(Bos Borus)skin fibroblasts cell line with immortalized characterization through human telomerase reverse transcriptase(hTERT)ectopic expression[J]. J Virol Methods, 2022, 309: 114605. |
[59] | Le QVC, Youk S, Choi M, et al. Development of an immortalized porcine fibroblast cell panel with different swine leukocyte antigen genotypes[J]. Front Genet, 2022, 13: 815328. |
[60] | Takenouchi T, Masujin K, Suzuki S, et al. Establishment and characterization of the immortalized porcine lung-derived mononuclear phagocyte cell line[J]. Front Vet Sci, 2022, 9: 1058124. |
[61] | Takenouchi T, Masujin K, Miyazaki A, et al. Isolation and immortalization of macrophages derived from fetal porcine small intestine and their susceptibility to porcine viral pathogen infections[J]. Front Vet Sci, 2022, 9: 919077. |
[62] | Wang JM, Hu R, Wang ZS, et al. Establishment of immortalized yak ruminal epithelial cell lines by lentivirus-mediated SV40T and hTERT gene transduction[J]. Oxid Med Cell Longev, 2022, 2022: 8128028. |
[63] | Hu X, Li L, Yu XY, et al. CRISPR/Cas9-mediated reversibly immortalized mouse bone marrow stromal stem cells(BMSCs)retain multipotent features of mesenchymal stem cells(MSCs)[J]. Oncotarget, 2017, 8(67): 111847-111865. |
[64] |
Yang K, Chen J, Jiang W, et al. Conditional immortalization establishes a repertoire of mouse melanocyte progenitors with distinct melanogenic differentiation potential[J]. J Invest Dermatol, 2012, 132(10): 2479-2483.
doi: S0022-202X(15)35471-3 pmid: 22592154 |
[65] | Meng FY, Liu L, Yang FH, et al. Reversible immortalization of human hepatocytes mediated by retroviral transfer and site-specific recombination[J]. World J Gastroenterol, 2014, 20(36): 13119-13126. |
[66] | An K, Liu HP, Zhong XL, et al. hTERT-immortalized bone mesenchymal stromal cells expressing rat galanin via a single tetracycline-inducible lentivirus system[J]. Stem Cells Int, 2017, 2017: 6082684. |
[67] |
Behrstock SP, Anantharam V, Thompson KW, et al. Conditionally-immortalized astrocytic cell line expresses GAD and secretes GABA under tetracycline regulation[J]. J Neurosci Res, 2000, 60(3): 302-310.
pmid: 10797532 |
[68] |
Hasan SM, Vugler AA, Miljan EA, et al. Immortalized human fetal retinal cells retain progenitor characteristics and represent a potential source for the treatment of retinal degenerative disease[J]. Cell Transplant, 2010, 19(10): 1291-1306.
doi: 10.3727/096368910X505477 pmid: 20447347 |
[69] |
Chapman S, Liu XF, Meyers C, et al. Human keratinocytes are efficiently immortalized by a Rho kinase inhibitor[J]. J Clin Invest, 2010, 120(7): 2619-2626.
doi: 10.1172/JCI42297 pmid: 20516646 |
[70] |
Suprynowicz FA, Upadhyay G, Krawczyk E, et al. Conditionally reprogrammed cells represent a stem-like state of adult epithelial cells[J]. Proc Natl Acad Sci USA, 2012, 109(49): 20035-20040.
doi: 10.1073/pnas.1213241109 pmid: 23169653 |
[71] |
Wu XX, Wang SP, Li MX, et al. Conditional reprogramming: next generation cell culture[J]. Acta Pharm Sin B, 2020, 10(8): 1360-1381.
doi: 10.1016/j.apsb.2020.01.011 pmid: 32963937 |
[72] |
Alitalo K, Kuismanen E, Myllylä R, et al. Extracellular matrix proteins of human epidermal keratinocytes and feeder 3T3 cells[J]. J Cell Biol, 1982, 94(3): 497-505.
pmid: 6182145 |
[73] | Ligaba SB, Khurana A, Graham G, et al. Multifactorial analysis of conditional reprogramming of human keratinocytes[J]. PLoS One, 2015, 10(2): e0116755. |
[74] |
Ichikawa H, Nakata N, Abo Y, et al. Gene pathway analysis of the mechanism by which the Rho-associated kinase inhibitor Y-27632 inhibits apoptosis in isolated thawed human embryonic stem cells[J]. Cryobiology, 2012, 64(1): 12-22.
doi: 10.1016/j.cryobiol.2011.11.005 pmid: 22133891 |
[75] | Terunuma A, Limgala RP, Park CJ, et al. Efficient procurement of epithelial stem cells from human tissue specimens using a Rho-associated protein kinase inhibitor Y-27632[J]. Tissue Eng Part A, 2010, 16(4): 1363-1368. |
[76] |
Wilson MH, Gottschalk S. Expect the unexpected: piggyBac and lymphoma[J]. Blood, 2021, 138(16): 1379-1380.
doi: 10.1182/blood.2021012349 pmid: 34673949 |
[77] |
Choi W, Kim E, Yum SY, et al. Efficient PRNP deletion in bovine genome using gene-editing technologies in bovine cells[J]. Prion, 2015, 9(4): 278-291.
doi: 10.1080/19336896.2015.1071459 pmid: 26217959 |
[78] | Stojiljković A, Gaschen V, Forterre F, et al. Novel immortalization approach defers senescence of cultured canine adipose-derived mesenchymal stromal cells[J]. GeroScience, 2022, 44(3): 1301-1323. |
[1] | 陈中元, 王玉红, 代为俊, 张艳敏, 叶倩, 刘旭平, 谭文松, 赵亮. 柠檬酸铁铵对悬浮HEK293细胞转染的影响机制探究[J]. 生物技术通报, 2023, 39(9): 311-318. |
[2] | 胡冬冬, 赵亮, 范里, 刘旭平, 邓献存, 缪仕伟, 谭文松. 酵母抽提物对CHO细胞生长及抗体表达的影响[J]. 生物技术通报, 2017, 33(6): 162-169. |
[3] | 张鑫涛,唐红萍,赵亮,范里,刘旭平,缪仕伟,谭文松. 金属离子对CHO细胞抗体表达及抗体电荷分布的影响[J]. 生物技术通报, 2016, 32(8): 233-241. |
[4] | 谷瑞增;刘艳;林峰;刘文颖;马涛;蔡木易;. 蛋白水解物在动物细胞培养中的应用研究进展[J]. , 2012, 0(09): 21-27. |
[5] | 陈平;胡涛;薛敬礼;杜春燕;章金涛;朱奎成;金树兴;王纯耀;. 利用慢病毒载体快速建立表达外源基因的哺乳动物细胞系[J]. , 2011, 0(07): 210-213. |
[6] | 王旭静. 生产药物蛋白的替代方法仍在缓慢发展[J]. , 2002, 0(06): 42-43. |
[7] | 吴丹;仇华吉;童光志. 几种表达系统的比较[J]. , 2002, 0(02): 30-34. |
[8] | . 国外动态[J]. , 2001, 0(06): 40-45. |
[9] | 胡显文;肖成祖;高丽华;李佐虎. 用多孔微载体大规模长期培养动物细胞的方法[J]. , 2001, 0(01): 45-48. |
[10] | 马永红;乔军. 端粒生物学与细胞衰老[J]. , 2000, 0(04): 54-56. |
[11] | 高红亮;丛威;欧阳藩. 体外培养的哺乳动物细胞的葡萄糖和谷氨酰胺代谢[J]. , 2000, 0(02): 17-22. |
[12] | Sally S Seaver;庄思全;. 单克隆抗体:利用新技术缩短开发时间[J]. , 1997, 0(04): 40-42. |
[13] | . 动物细胞培养及单克隆抗体[J]. , 1996, 0(06): 52-56. |
[14] | . 动物细胞培养及单克隆抗体[J]. , 1996, 0(05): 59-64. |
[15] | . 动物细胞培养及单克隆抗体[J]. , 1996, 0(04): 54-59. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||