生物技术通报 ›› 2024, Vol. 40 ›› Issue (7): 68-77.doi: 10.13560/j.cnki.biotech.bull.1985.2023-1054
侯文婷1,2(), 孙琳2(), 张艳军2, 董合忠1,2()
收稿日期:
2023-11-09
出版日期:
2024-07-26
发布日期:
2024-07-15
通讯作者:
孙琳,女,博士,研究方向:棉花分子生物学;E-mail: 15071329431@163.com;作者简介:
侯文婷,女,硕士研究生,研究方向:植物分子生物学;E-mail: skydtb@163.com
基金资助:
HOU Wen-ting1,2(), SUN Lin2(), ZHANG Yan-jun2, DONG He-zhong1,2()
Received:
2023-11-09
Published:
2024-07-26
Online:
2024-07-15
摘要:
棉花是全球重要的经济作物和纺织工业原料,选育优良新品种是提高棉花产量、品质和植棉效益的主要途径。然而,传统育种方法在改良作物遗传特性方面存在很大的局限性,而基因编辑技术为加快棉花种质创新和遗传改良提供了契机。基因编辑技术是一种利用人工设计的核苷酸酶,对生物体特定DNA序列的基因组片段进行删除、修改、插入或替换单个或多个核苷酸,从而实现对目标基因精确编辑的技术方法。本文首先综述了ZFNs、TALENs和CRISPR三种主要基因编辑系统的原理,以更好地理解如何利用基因编辑技术改良棉花的生长发育、抗逆性等性状;其次,重点评述了当前备受关注的CRISPR基因编辑系统在改良棉花抗逆性、纤维与种子品质性状等方面的应用;最后分析了基因编辑技术在应用过程中存在的不足和局限,并指出未来应进一步优化开发有知识产权的基因编辑系统,提高其精确性、安全性,促进其在棉花种质创新和遗传改良中的应用。
侯文婷, 孙琳, 张艳军, 董合忠. 基因编辑技术在棉花种质创新和遗传改良中的应用[J]. 生物技术通报, 2024, 40(7): 68-77.
HOU Wen-ting, SUN Lin, ZHANG Yan-jun, DONG He-zhong. Application of Gene-editing Technology for Germplasm Innovation and Genetic Improvement in Cotton[J]. Biotechnology Bulletin, 2024, 40(7): 68-77.
抗病类型 Type of disease resistance | 基因名称 Gene name | 参考文献 Reference |
---|---|---|
黄萎病 | GhLOX2 | [ |
GbMPK3 | [ | |
GbRVd | [ | |
GhODO1 | [ | |
GhNAC100 | [ | |
GaRPL18 | [ | |
GhHB12 | [ | |
GhOPR3 | [ | |
GhWRKY70D13 | [ | |
枯萎病 | GaGSTF9 | [ |
表1 棉花中抗病相关基因
Table 1 Genes related to disease resistance in cotton
抗病类型 Type of disease resistance | 基因名称 Gene name | 参考文献 Reference |
---|---|---|
黄萎病 | GhLOX2 | [ |
GbMPK3 | [ | |
GbRVd | [ | |
GhODO1 | [ | |
GhNAC100 | [ | |
GaRPL18 | [ | |
GhHB12 | [ | |
GhOPR3 | [ | |
GhWRKY70D13 | [ | |
枯萎病 | GaGSTF9 | [ |
[1] |
Pavletich NP, Pabo CO. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A[J]. Science, 1991, 252(5007): 809-817.
pmid: 2028256 |
[2] |
Chen KL, Gao CX. TALENs: customizable molecular DNA scissors for genome engineering of plants[J]. J Genet Genomics, 2013, 40(6): 271-279.
doi: 10.1016/j.jgg.2013.03.009 pmid: 23790626 |
[3] | Boch J, Bonas U. Xanthomonas AvrBs3 family-type III effectors: discovery and function[J]. Annu Rev Phytopathol, 2010, 48: 419-436. |
[4] |
Miller JC, Tan SY, Qiao GJ, et al. A TALE nuclease architecture for efficient genome editing[J]. Nat Biotechnol, 2011, 29(2): 143-148.
doi: 10.1038/nbt.1755 pmid: 21179091 |
[5] |
Sander JD, Cade L, Khayter C, et al. Targeted gene disruption in somatic zebrafish cells using engineered TALENs[J]. Nat Biotechnol, 2011, 29(8): 697-698.
doi: 10.1038/nbt.1934 pmid: 21822241 |
[6] |
Tesson L, Usal C, Ménoret S, et al. Knockout rats generated by embryo microinjection of TALENs[J]. Nat Biotechnol, 2011, 29(8): 695-696.
doi: 10.1038/nbt.1940 pmid: 21822240 |
[7] |
Li T, Liu B, Spalding MH, et al. High-efficiency TALEN-based gene editing produces disease-resistant rice[J]. Nat Biotechnol, 2012, 30(5): 390-392.
doi: 10.1038/nbt.2199 pmid: 22565958 |
[8] |
Char SN, Unger-Wallace E, Frame B, et al. Heritable site-specific mutagenesis using TALENs in maize[J]. Plant Biotechnol J, 2015, 13(7): 1002-1010.
doi: 10.1111/pbi.12344 pmid: 25644697 |
[9] |
Makarova KS, Haft DH, Barrangou R, et al. Evolution and classification of the CRISPR-Cas systems[J]. Nat Rev Microbiol, 2011, 9(6): 467-477.
doi: 10.1038/nrmicro2577 pmid: 21552286 |
[10] |
Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096): 816-821.
doi: 10.1126/science.1225829 pmid: 22745249 |
[11] |
Xie KB, Minkenberg B, Yang YN. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system[J]. Proc Natl Acad Sci USA, 2015, 112(11): 3570-3575.
doi: 10.1073/pnas.1420294112 pmid: 25733849 |
[12] | Wang PC, Zhang J, Sun L, et al. High efficient multisites genome editing in allotetraploid cotton(Gossypium hirsutum)using CRISPR/Cas9 system[J]. Plant Biotechnol J, 2018, 16(1): 137-150. |
[13] | Chen XG, Lu XK, Shu N, et al. Targeted mutagenesis in cotton(Gossypium hirsutum L.) using the CRISPR/Cas9 system[J]. Sci Rep, 2017, 7: 44304. |
[14] | Gao W, Long L, Tian XQ, et al. Genome editing in cotton with the CRISPR/Cas9 system[J]. Front Plant Science, 2017, 8: 1364. |
[15] | Li B, Fu CY, Zhou JW, et al. Highly Efficient Genome Editing Using Geminivirus-Based CRISPR/Cas9 System in Cotton Plant[J]. Cell, 2022, 11(18): 2-13. |
[16] | Lee ABC, Tan MH, Chai CLL. Small-molecule enhancers of CRISPR-induced homology-directed repair in gene therapy: A medicinal chemist's perspective[J]. Drug Discovery Today, 2022, 9(27): 2510-2525. |
[17] | Komor AC, Kim YB, Packer MS, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016, 533(7603): 420-424. |
[18] |
Zong Y, Wang YP, Li C, et al. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion[J]. Nat Biotechnol, 2017, 35(5): 438-440.
doi: 10.1038/nbt.3811 pmid: 28244994 |
[19] | Qin L, Li JY, Wang QQ, et al. High-efficient and precise base editing of C·G to T·A in the allotetraploid cotton(Gossypium hir-sutum)genome using a modified CRISPR/Cas9 system[J]. Plant Biotechnol J, 2020, 18(1): 45-56. |
[20] |
何晓玲, 刘鹏程, 马伯军, 等. 基于CRISPR/Cas9的基因编辑技术研究进展及其在植物中的应用[J]. 植物学报, 2022, 57(4): 508-531.
doi: 10.11983/CBB22020 |
He XL, Liu PC, Ma BJ, et al. Advance in gene-editing technology based on CRISPR/Cas9 and its application in plants[J]. Chin Bull Bot, 2022, 57(4): 508-531. | |
[21] | Gaudelli NM, Komor AC, Rees HA, et al. Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage[J]. Nature, 2017, 551(7681): 464-471. |
[22] |
Tan JT, Zeng DC, Zhao YC, et al. PhieABEs: a PAM-less/free high-efficiency adenine base editor toolbox with wide target scope in plants[J]. Plant Biotechnol J, 2022, 20(5): 934-943.
doi: 10.1111/pbi.13774 pmid: 34984801 |
[23] | Wang GY, Xu ZP, Wang FQ, et al. Development of an efficient and precise adenine base editor(ABE)with expanded target range in allotetraploid cotton(Gossypium hirsutum)[J]. BMC Biol, 2022, 20(1): 45. |
[24] |
Zhan XQ, Lu YM, Zhu JK, et al. Genome editing for plant research and crop improvement[J]. J Integr Plant Biol, 2021, 63(1): 3-33.
doi: 10.1111/jipb.13063 |
[25] |
Zetsche B, Gootenberg JS, Abudayyeh OO, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system[J]. Cell, 2015, 163(3): 759-771.
doi: 10.1016/j.cell.2015.09.038 pmid: 26422227 |
[26] | Zaidi SSEA, Mahfouz MM, Mansoor S. CRISPR-Cpf1: a new tool for plant genome editing[J]. Trends Plant Sci, 2017, 22(7): 550-553. |
[27] | Li B, Rui HP, Li YJ, et al. Robust CRISPR/Cpf1(Cas12a)-mediated genome editing in allotetraploid cotton(Gossypium hirsu-tum)[J]. Plant Biotechnol J, 2019, 17(10): 1862-1864. |
[28] |
Yang H, Gao P, Rajashankar KR, et al. PAM-dependent target DNA recognition and cleavage by C2c1 CRISPR-cas endonuclease[J]. Cell, 2016, 167(7): 1814-1828.e12.
doi: S0092-8674(16)31665-8 pmid: 27984729 |
[29] | Wang QQ, Alariqi M, Wang FQ, et al. The application of a heat-inducible CRISPR/Cas12b(C2c1)genome editing system in tetraploid cotton(G. hirsutum)plants[J]. Plant Biotechnol J, 2020, 18(12): 2436-2443. |
[30] | Bi MX, Wang ZJ, Cheng KY, et al. Construction of transcription factor mutagenesis population in tomato using a pooled CRISPR/Cas9 plasmid library[J]. Plant Physiol Biochem, 2023, 205: 108094. |
[31] | Wu YY, Xiao N, Cai Y, et al. CRISPR-Cas9-mediated editing of the OsHPPD 3' UTR confers enhanced resistance to HPPD-inhibiting herbicides in rice[J]. Plant Commun, 2023, 4(5): 100605. |
[32] | Ma WD, Yang J, Ding JQ, et al. CRISPR/Cas9-mediated deletion of large chromosomal segments identifies a minichromosome modulating the Colletotrichum graminicola virulence on maize[J]. Int J Biol Macromol, 2023, 245: 125462. |
[33] | Fradin EF, Abd-El-Haliem A, Masini L, et al. Interfamily transfer of tomato Ve1 mediates Verticillium resistance in Arabidopsis[J]. Plant Physiol, 2011, 156(4): 2255-2265. |
[34] | Zhang ZN, Ge XY, Luo XL, et al. Simultaneous editing of two copies of Gh14-3-3d confers enhanced transgene-clean plant defense against Verticillium dahliae in allotetraploid upland cotton[J]. Front Plant Sci, 2018, 9: 842. |
[35] | Binyameen B, Khan Z, Khan SH, et al. Using multiplexed CRISPR/Cas9 for suppression of cotton leaf curl virus[J]. Int J Mol Sci, 2021, 22(22): 12543. |
[36] | Liu SM, Zhang XJ, Xiao SH, et al. A single-nucleotide mutation in a GLUTAMATE RECEPTOR-LIKE gene confers resistance to Fusarium wilt in Gossypium hirsutum[J]. Adv Sci, 2021, 8(7): 2002723. |
[37] | Mubarik MS, Wang XK, Khan SH, et al. Engineering broad-spectrum resistance to cotton leaf curl disease by CRISPR-Cas9 based multiplex editing in plants[J]. GM Crops Food, 2021, 12(2): 647-658. |
[38] | Shaban M, Khan AH, Noor E, et al. A 13-Lipoxygenase, GhLOX2, positively regulates cotton tolerance against Verticillium dahliae through JA-mediated pathway[J]. Gene, 2021, 796/797: 145797. |
[39] | Long L, Xu FC, Zhao JR, et al. GbMPK3 overexpression increases cotton sensitivity to Verticillium dahliae by regulating salicylic acid signaling[J]. Plant Sci, 2020, 292: 110374. |
[40] | Yang J, Ma Q, Zhang Y, et al. Molecular cloning and functional analysis of GbRVd, a gene in Gossypium barbadense that plays an important role in conferring resistance to Verticillium wilt[J]. Gene, 2016, 575(2 Pt 3): 687-694. |
[41] | Zhu YT, Hu XQ, Wang P, et al. GhODO1, an R2R3-type MYB transcription factor, positively regulates cotton resistance to Verti-cillium dahliae via the lignin biosynthesis and jasmonic acid signaling pathway[J]. Int J Biol Macromol, 2022, 201: 580-591. |
[42] | Hu G, Lei Y, Liu JF, et al. The ghr-miR164 and GhNAC100 modulate cotton plant resistance against Verticillium dahlia[J]. Plant Sci, 2020, 293: 110438. |
[43] | Gong Q, Yang ZE, Wang XQ, et al. Salicylic acid-related cotton(Gossypium arboreum)ribosomal protein GaRPL18 contributes to resistance to Verticillium dahliae[J]. BMC Plant Biol, 2017, 17(1): 59. |
[44] | He X, Wang TY, Zhu W, et al. GhHB12, a HD-ZIP I transcription factor, negatively regulates the cotton resistance to Verticillium dahliae[J]. Int J Mol Sci, 2018, 19(12): 3997. |
[45] | Hu Q, Zhu LF, Zhang XN, et al. GhCPK33 negatively regulates defense against Verticillium dahliae by phosphorylating GhOP-R3[J]. Plant Physiol, 2018, 178(2): 876-889. |
[46] | Xiong XP, Sun SC, Zhang XY, et al. GhWRKY70D13 regulates resistance to Verticillium dahliae in cotton through the ethylene and jasmonic acid signaling pathways[J]. Front Plant Sci, 2020, 11: 69. |
[47] |
Du XM, Huang G, He SP, et al. Resequencing of 243 diploid cotton accessions based on an updated A genome identifies the genetic basis of key agronomic traits[J]. Nat Genet, 2018, 50(6): 796-802.
doi: 10.1038/s41588-018-0116-x pmid: 29736014 |
[48] | 吴新海, 孙景合, 王秀萍, 等. 耐盐鉴定基质对棉花种子萌发的影响[J]. 安徽农业科学, 2011, 39(6): 3206-3207, 3209. |
Wu XH, Sun JH, Wang XP, et al. Effects of testing substrates on cotton seed germination in identification of salt tolerance[J]. J Anhui Agric Sci, 2011, 39(6): 3206-3207, 3209. | |
[49] | Su Y, Guo AH, Huang Y, et al. GhCIPK6a increases salt tolerance in transgenic upland cotton by involving in ROS scavenging and MAPK signaling pathways[J]. BMC Plant Biol, 2020, 20(1): 421. |
[50] | Chinnusamy V, Zhu JH, Zhu JK. Salt stress signaling and mechanisms of plant salt tolerance[M]//Genetic Engineering:Principles and Methods. Boston: Kluwer Academic Publishers, 2006: 141-177. |
[51] | Santosh Kumar VV, Verma RK, Yadav SK, et al. CRISPR-Cas9 mediated genome editing of drought and salt tolerance(OsDST)gene in indica mega rice cultivar MTU1010[J]. Physiol Mol Biol Plants, 2020, 26(6): 1099-1110. |
[52] | Sun ZW, Li HL, Zhang Y, et al. Identification of SNPs and candidate genes associated with salt tolerance at the seedling stage in cotton(Gossypium hirsutum L.)[J]. Front Plant Sci, 2018, 9: 1011. |
[53] | Turner NC, Hearn AB, Begg JE, et al. Cotton(Gossypium hirsutum L.): physiological and morphological responses to water deficits and their relationship to yield[J]. Field Crops Res, 1986, 14: 153-170. |
[54] | Yu L, Li ZS, Ding X, et al. Developing an efficient CRISPR-dCas9-TV-derived transcriptional activation system to create three novel cotton germplasm materials[J]. Plant Commun, 2023, 4(4): 100600. |
[55] |
Pasapula V, Shen GX, Kuppu S, et al. Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene(AVP1)in cotton improves drought- and salt tolerance and increases fibre yield in the field conditions[J]. Plant Biotechnol J, 2011, 9(1): 88-99.
doi: 10.1111/j.1467-7652.2010.00535.x pmid: 20492547 |
[56] | Mittal A, Gampala SSL, Ritchie GL, et al. Related to ABA-Insensitive3(ABI3)/Viviparous1 and AtABI5 transcription factor coexpression in cotton enhances drought stress adaptation[J]. Plant Biotechnol J, 2014, 12(5): 578-589. |
[57] | Liu GZ, Li XL, Jin SX, et al. Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton[J]. PLoS One, 2014, 9(1): e86895. |
[58] | Shen GX, Wei J, Qiu XY, et al. Co-overexpression of AVP1 and AtNHX1 in cotton further improves drought and salt tolerance in transgenic cotton plants[J]. Plant Mol Biol Report, 2015, 33(2): 167-177. |
[59] | Yu LH, Wu SJ, Peng YS, et al. Arabidopsis EDT1/HDG11 improves drought and salt tolerance in cotton and poplar and increases cotton yield in the field[J]. Plant Biotechnol J, 2016, 14(1): 72-84. |
[60] | Li YL, Chen M, Khan AH, et al. Histone H3 lysine 27 trimethylation suppresses jasmonate biosynthesis and signaling to affect male fertility under high temperature in cotton[J]. Plant Commun, 2023, 4(6): 100660. |
[61] | Sun L, Alariqi M, Wang YX, et al. Construction of host plant insect-resistance mutant library by high-throughput CRISPR/Cas9 system and identification of A broad-spectrum insect resistance gene[J]. Adv Sci, 2024, 11(4): e2306157. |
[62] | Akhtar S, Shahid AA, Shakoor S, et al. Tissue specific expression of bacterial cellulose synthase(Bcs)genes improves cotton fiber length and strength[J]. Plant Sci, 2023, 328: 111576. |
[63] |
McGaughey WH, Whalon ME. Managing insect resistance to Bacil-lus thuringiensis toxins[J]. Science, 1992, 258(5087): 1451-1455.
pmid: 17755107 |
[64] | Chen ZJ, Scheffler BE, Dennis E, et al. Toward sequencing cotton(Gossypium)genomes[J]. Plant Physiol, 2007, 145(4): 1303-1310. |
[65] | Zhu SH, Li YJ, Zhang XY, et al. GhAlaRP, a cotton alanine rich protein gene, involves in fiber elongation process[J]. Crop J, 2021, 9(2): 313-324. |
[66] | Chen YZ, Fu MC, Li H, et al. High-oleic acid content, nontransgenic allotetraploid cotton(Gossypium hirsutum L.) generated by knockout of GhFAD2 genes with CRISPR/Cas9 system[J]. Plant Biotechnol J, 2021, 19(3): 424-426. |
[67] | Dowd MK, Boykin DL, Meredith WRJ, et al. Fatty acid profiles of cottonseed genotypes from the national cotton variety trials[J]. The Journal of Cotton Science, 2010, 14(2): 64-73. |
[68] |
刘丽, 王玉美, 赵彦朋, 等. 棉花脂肪酸合成酶基因GhKAR和GhENR表达载体构建及其功能初探[J]. 棉花学报, 2016, 28(6): 527-537.
doi: 10.11963/issn.1002-7807.201606002 |
Liu L, Wang YM, Zhao YP, et al. Construction of expression vectors and a preliminarily functional analysis of fatty acid synthetase genes of GhKAR and GhENR in upland cotton[J]. Cotton Sci, 2016, 28(6): 527-537.
doi: 10.11963/issn.1002-7807.201606002 |
|
[69] | Lin JL, Fang X, Li JX, et al. Dirigent gene editing of gossypol enantiomers for toxicity-depleted cotton seeds[J]. Nat Plants, 2023, 9(4): 605-615. |
[70] |
Wang YL, Meng ZG, Liang CZ, et al. Increased lateral root formation by CRISPR/Cas9-mediated editing of arginase genes in cotton[J]. Sci China Life Sci, 2017, 60(5): 524-527.
doi: 10.1007/s11427-017-9031-y pmid: 28527115 |
[71] | Ma HH, Wu YL, Lv RL, et al. Cytochrome P450 mono-oxygenase CYP703A2 plays a central role in sporopollenin formation and ms5ms6 fertility in cotton[J]. J Integr Plant Biol, 2022, 64(10): 2009-2025. |
[72] |
Zhu XQ, Xu ZP, Wang GY, et al. Single-cell resolution analysis reveals the preparation for reprogramming the fate of stem cell niche in cotton lateral meristem[J]. Genome Biol, 2023, 24(1): 194.
doi: 10.1186/s13059-023-03032-6 pmid: 37626404 |
[73] |
Bisaria N, Jarmoskaite I, Herschlag D. Lessons from enzyme kinetics reveal specificity principles for RNA-guided nucleases in RNA interference and CRISPR-based genome editing[J]. Cell Syst, 2017, 4(1): 21-29.
doi: S2405-4712(16)30420-3 pmid: 28125791 |
[74] |
Wu XB, Scott DA, Kriz AJ, et al. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells[J]. Nat Biotechnol, 2014, 32(7): 670-676.
doi: 10.1038/nbt.2889 pmid: 24752079 |
[75] | Kawamata M, Suzuki HI, Kimura R, et al. Optimization of Cas9 activity through the addition of cytosine extensions to single-guide RNAs[J]. Nature Biomedical Engineering, 2023, 5(7):672-691. |
[76] | Latella MC, Di Salvo MT, Cocchiarella F, et al. In vivo Editing of the Human Mutant Rhodopsin Gene by Electroporation of Plasmid-based CRISPR/Cas9 in the Mouse Retina[J]. Mol Ther Nucleic Acids, 2016, 5(11): e389. |
[77] | Tang XF, Wang Z, Zhang Y, et al. Non-viral nanocarriers for CRISPR-Cas9 gene editing system delivery[J]. Chem Eng J, 2022, 435: 135116. |
[78] | Yang ZX, Fu YW, Zhao JJ, et al. Superior fidelity and distinct editing outcomes of SaCas9 compared to SpCas9 in genome editing[J]. Genomics Proteomics Bioinformatics, 2022: S1672-S0229(22)00168-1. |
[79] | Hu JH, Miller SM, Geurts MH, et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity[J]. Nature, 2018, 556(7699): 57-63. |
[80] | Waltz E. Gene-edited CRISPR mushroom escapes US regulation[J]. Nature, 2016, 532(7599): 293. |
[81] |
Zhang DB, Hussain A, Manghwar H, et al. Genome editing with the CRISPR-Cas system: an art, ethics and global regulatory perspective[J]. Plant Biotechnol J, 2020, 18(8): 1651-1669.
doi: 10.1111/pbi.13383 pmid: 32271968 |
[82] | 中华人民共和国农业农村部. 农业用基因编辑植物安全评价指南(试行)[EB/OL].(2022-01-24). http://www.moa.gov.cn/ztzl/zjyqwgz/sbzn/202201/t20220124_6387561.htm. |
Ministry of Agriculture and Ruaral Affairs of the People's Republic of China. Guidelines for safety evaluation of gene-edited plants for agricultural use(Trial)[EB/OL].(2022-01-24). http://www.moa.gov.cn/ztzl/zjyqwgz/sbzn/202201/t20220124_6387561.htm. | |
[83] |
Ji X, Yang B, Wang DW. Achieving plant genome editing while bypassing tissue culture[J]. Trends Plant Sci, 2020, 25(5): 427-429.
doi: S1360-1385(20)30060-1 pmid: 32304655 |
[84] |
Ge XY, Xu JT, Yang ZE, et al. Efficient genotype-independent cotton genetic transformation and genome editing[J]. J Integr Plant Biol, 2023, 65(4): 907-917.
doi: 10.1111/jipb.13427 |
[1] | 隆静, 陈婧敏, 刘霄, 张一凡, 周利斌, 杜艳. 植物DNA双链断裂修复机制及其在重离子诱变和基因编辑中的作用[J]. 生物技术通报, 2024, 40(7): 55-67. |
[2] | 朱恬仪, 孔桂美, 焦红梅, 郭停停, 乌日汗, 刘翠翠, 高成凤, 李国才. CRISPR/Cas9介导的adeG基因敲除大肠杆菌细菌模型的建立[J]. 生物技术通报, 2024, 40(2): 55-64. |
[3] | 高登科, 马白荣, 郭怡莹, 刘薇, 刘田, 靳亚平, 江舟, 陈华涛. 利用CRISPR/Cas9技术构建Quaking敲除的小鼠胚胎成纤维细胞株[J]. 生物技术通报, 2024, 40(2): 65-72. |
[4] | 张宏民, 龙雯, 劳筱清, 陈雯妍, 商雪梅, 王洪连, 王丽, 粟宏伟, 沈宏萍, 沈宏春. 利用CRISPR/Cas9技术构建Pmepa1基因敲除的TCMK1小鼠肾小管上皮细胞系[J]. 生物技术通报, 2024, 40(2): 73-79. |
[5] | 杨帅朋, 屈子啸, 朱向星, 唐冬生. DNA碱基编辑技术的研究进展及在猪基因修饰中的应用[J]. 生物技术通报, 2024, 40(1): 127-144. |
[6] | 娄慧, 朱金成, 杨洋, 张薇. 抗、感品种棉花根系分泌物对尖孢镰刀菌生长及基因表达的影响[J]. 生物技术通报, 2023, 39(9): 156-167. |
[7] | 陈小玲, 廖东庆, 黄尚飞, 陈英, 芦志龙, 陈东. 利用CRISPR/Cas9系统改造酿酒酵母的研究进展[J]. 生物技术通报, 2023, 39(8): 148-158. |
[8] | 杨玉梅, 张坤晓. 应用CRISPR/Cas9技术建立ERK激酶相分离荧光探针定点整合的稳定细胞株[J]. 生物技术通报, 2023, 39(8): 159-164. |
[9] | 石佳鑫, 刘凯, 朱金洁, 祁显涛, 谢传晓, 刘昌林. 基因编辑技术改良玉米株型增加杂交种产量[J]. 生物技术通报, 2023, 39(8): 62-69. |
[10] | 施炜涛, 姚春鹏, 魏文康, 王蕾, 房元杰, 仝钰洁, 马晓姣, 蒋文, 张晓爱, 邵伟. 利用CRISPR/Cas9技术构建MDH2敲除细胞株及抗呕吐毒素效应研究[J]. 生物技术通报, 2023, 39(7): 307-315. |
[11] | 杨洋, 朱金成, 娄慧, 韩泽刚, 张薇. 海岛棉与枯萎病菌的互作转录组分析[J]. 生物技术通报, 2023, 39(6): 259-273. |
[12] | 刘晓燕, 祝振亮, 史广宇, 华梓宇, 杨晨, 张涌, 刘军. 乳腺生物反应器的表达优化策略[J]. 生物技术通报, 2023, 39(5): 77-91. |
[13] | 程静雯, 曹磊, 张艳敏, 叶倩, 陈敏, 谭文松, 赵亮. CHO细胞多基因工程改造策略的建立及应用[J]. 生物技术通报, 2023, 39(2): 283-291. |
[14] | 黄文莉, 李香香, 周炆婷, 罗莎, 姚维嘉, 马杰, 张芬, 沈钰森, 顾宏辉, 王建升, 孙勃. 利用CRISPR/Cas9技术靶向编辑青花菜BoZDS[J]. 生物技术通报, 2023, 39(2): 80-87. |
[15] | 王兵, 赵会纳, 余婧, 陈杰, 骆梅, 雷波. 利用CRISPR/Cas9系统研究REVOLUTA参与烟草叶芽发育的调控[J]. 生物技术通报, 2023, 39(10): 197-208. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||