生物技术通报 ›› 2024, Vol. 40 ›› Issue (8): 95-105.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0192
张晓英1,2(), 毛咪2, 王洪凤2, 丁新华3, 朱树伟2, 石磊1()
收稿日期:
2024-02-29
出版日期:
2024-08-26
发布日期:
2024-09-05
通讯作者:
石磊,男,博士,教授,研究方向:植物营养和逆境生物学;E-mail: leish@mail.hzau.edu.cn作者简介:
张晓英,女,博士研究生,研究方向:植物营养和逆境生物学;E-mail: xyzhxy@hotmail.com
基金资助:
ZHANG Xiao-ying1,2(), MAO Mi2, WANG Hong-feng2, DING Xin-hua3, ZHU Shu-wei2, SHI Lei1()
Received:
2024-02-29
Published:
2024-08-26
Online:
2024-09-05
摘要:
【目的】探究一种有效、安全的药剂防治小麦赤霉病,降低小麦赤霉病发病率及药剂自身对小麦产量和品质的影响。【方法】多菌灵和植物免疫诱抗剂(ZNC、氨基寡糖素)3种药剂,采用平板抑菌法探究不同药剂对小麦赤霉病病原菌禾谷镰刀菌的抑制效果;通过盆栽试验对不同药剂的防效进行验证;通过盆栽试验探究不同药剂对小麦生长的影响,之后在人工接种禾谷镰刀菌条件下探究不同药剂对小麦赤霉病的田间防效。【结果】多菌灵对禾谷镰刀菌生长具有显著抑制作用,且田间防效也显著高于ZNC和氨基寡糖素,防效达77.90%,ZNC、氨基寡糖素在平板抑菌试验中对禾谷镰刀菌无明显抑制效果,但在盆栽和田间防效试验中均表现出抑菌效果,并显著降低了田间病情指数,分别较CK降低47.59%、49.93%;多菌灵抑制了小麦的生长和小麦产量,相比于CK,小麦株高、茎粗、根长、根数、鲜重和干物质量分别降低8.69%、2.90%、21.28%、12.50%、12.83%和15.15%,小麦产量降低13.70%;ZNC则促进了小麦的生长,提高了小麦产量,相比CK,小麦产量提高7.96%,小麦籽粒蛋白质含量提高14.45%,小麦籽粒呕吐毒素(deoxynivalenol,DON)含量降低6.00%。【结论】ZNC在防治病害的同时能够促进小麦生长、提高小麦产量并改善小麦籽粒品质,植物免疫诱抗剂ZNC为防治小麦赤霉病提供新的选择。
张晓英, 毛咪, 王洪凤, 丁新华, 朱树伟, 石磊. 免疫诱抗剂ZNC对小麦赤霉病防治和产量的影响[J]. 生物技术通报, 2024, 40(8): 95-105.
ZHANG Xiao-ying, MAO Mi, WANG Hong-feng, DING Xin-hua, ZHU Shu-wei, SHI Lei. Effect of Immune Inducer ZNC on the Prevention and Control of Wheat Scab and the Yield of Wheat[J]. Biotechnology Bulletin, 2024, 40(8): 95-105.
图1 不同杀菌剂对禾谷镰孢菌的平板抑制效果 不同小写字母表示P<0.05,下同
Fig. 1 Plate inhibition effects of different fungicides on Fusarium graminearum Different lowercase letters indicate significant difference at the level of 0.05, The same below
处理Treatment | 施用方式Application ways | 防治效果Control efficacy |
---|---|---|
CK | 叶面喷施 Foliar spraying | / |
Z | 58.63±1.41c | |
D | 90.29±0.62a | |
A | 41.16±2.26d | |
D+Z | 91.48±0.48a | |
A+Z | 67.57±0.89b |
表1 室内不同杀菌剂对小麦赤霉病防效的影响
Table 1 Effects of different indoor pesticides on the control of wheat scab
处理Treatment | 施用方式Application ways | 防治效果Control efficacy |
---|---|---|
CK | 叶面喷施 Foliar spraying | / |
Z | 58.63±1.41c | |
D | 90.29±0.62a | |
A | 41.16±2.26d | |
D+Z | 91.48±0.48a | |
A+Z | 67.57±0.89b |
图4 不同药剂对小麦生长的影响 A:小麦株高;B:小麦茎粗;C:小麦根长;D:小麦根毛数;E:小麦鲜重;F:小麦干重
Fig. 4 Effects of different pesticides on wheat growth A: Wheat plant height. B: Wheat stem thickness. C: Wheat root length. D: Number of wheat root hairs. E: Fresh weight of wheat. F: Wheat dry weight
图5 不同药剂对小麦抗氧化酶活性的影响 A:小麦中超氧化物歧化酶含量;B:小麦中过氧化物酶含量;C:小麦中过氧化氢酶含量
Fig. 5 Effects of different pesticides on the antioxidant enzyme activity in wheat A: Content of superoxide dismutase in wheat. B: Content of peroxidase in wheat. C: Content of catalase in wheat
图6 小麦赤霉病田间接种及发病情况 A-B:试验小区接种套袋保湿;C:不同药剂处理小麦麦穗发病情况
Fig. 6 Field inoculation and incidence of wheat scab A-B: Keeping moisture by bag in experimental plot; C: incidences of wheat ear disease treated with different pesticides
图7 不同杀菌剂对小麦赤霉病病情指数和相对防效的影响 A:不同杀菌剂对小麦赤霉病病情指数的影响;B:不同杀菌剂对小麦赤霉病相对防效的影响
Fig. 7 Effects of different fungicides on the disease index and relative control effects of wheat scab A: Effect of different fungicides on the disease index of wheat scab. B: Effect of different fungicides on the relative control of wheat scab
图8 不同杀菌剂对小麦产量及其构成因素的影响 A:小麦产量;B:小麦穗数;C:小麦穗粒数;D:小麦千粒重
Fig. 8 Effects of different fungicides on wheat yield and its constituent factors A: Wheat yield. B: Number of wheat ears. C: Number of grains per spike of wheat. D: 1 000 grain weight of wheat
图9 不同杀菌剂对小麦籽粒品质及籽粒中DON含量的影响 A:小麦籽粒中干物质含量;B:小麦籽粒中淀粉含量;C:小麦籽粒中蛋白质含量;D:小麦籽粒中呕吐毒素含量
Fig. 9 Effect of different fungicides on wheat grain quality and DON content in grains A: Dry matter content in wheat grains. B: Starch content in wheat grains. C: Protein content in wheat grains. D: Content of vomitoxin in wheat grains
[1] | Cendoya E, Nichea MJ, Monge MDP, et al. Effect of fungicides commonly used for Fusarium head blight management on growth and fumonisin production by Fusarium proliferatum[J]. Rev Argent Microbiol, 2021, 53(1): 64-74. |
[2] | Mengesha GG, Abebe SM, Lera ZT, et al. Integration of host resistance, fungicides, and spray frequencies for managing Fusarium head blight of bread wheat under field conditions in southern Ethiopia[J]. Heliyon, 2021, 7(9): e07938. |
[3] | Zhang L, Wang F, Song HQ, et al. Effects of projected climate change on winter wheat yield in Henan, China[J]. J Clean Prod, 2022, 379: 134734. |
[4] | Hu SY, Qiao BW, Yang YH, et al. Optimizing nitrogen rates for synergistically achieving high yield and high nitrogen use efficiency with low environmental risks in wheat production-Evidences from a long-term experiment in the North China Plain[J]. Eur J Agron, 2023, 142: 126681. |
[5] | Miao J, Zhang GP, Zhang SJ, et al. The orange wheat blossom midge promotes fusarium head blight disease, posing a risk to wheat production in Northern China[J]. Acta Ecol Sin, 2023, 43(1): 112-116. |
[6] | Pirgozliev SR, Edwards SG, Hare MC, et al. Strategies for the control of Fusarium head blight in cereals[M]// Epidemiology of Mycotoxin Producing Fungi. Dordrecht: Springer, 2003: 731-742. |
[7] | Drakopoulos D, Kägi A, Six J, et al. The agronomic and economic viability of innovative cropping systems to reduce Fusarium head blight and related mycotoxins in wheat[J]. Agric Syst, 2021, 192: 103198. |
[8] |
Lacey E. The role of the cytoskeletal protein, tubulin, in the mode of action and mechanism of drug resistance to benzimidazoles[J]. Int J Parasitol, 1988, 18(7): 885-936.
doi: 10.1016/0020-7519(88)90175-0 pmid: 3066771 |
[9] | Zhang JB, Li HP, Dang FJ, et al. Determination of the trichothecene mycotoxin chemotypes and associated geographical distribution and phylogenetic species of the Fusarium graminearum clade from China[J]. Mycol Res, 2007, 111(Pt 8): 967-975. |
[10] | Keller MD, Bergstrom GC, Shields EJ. The aerobiology of Fusarium graminearum[J]. Aerobiologia, 2014, 30(2): 123-136. |
[11] | Wegulo SN, Baenziger PS, Hernandez Nopsa J, et al. Management of Fusarium head blight of wheat and barley[J]. Crop Prot, 2015, 73: 100-107. |
[12] |
Zhang YJ, Fan PS, Zhang X, et al. Quantification of Fusarium graminearum in harvested grain by real-time polymerase chain reaction to assess efficacies of fungicides on Fusarium head blight, deoxynivalenol contamination, and yield of winter wheat[J]. Phytopathology, 2009, 99(1): 95-100.
doi: 10.1094/PHYTO-99-1-0095 pmid: 19055440 |
[13] | Palacios SA, Del Canto A, Erazo J, et al. Fusarium cerealis causing Fusarium head blight of durum wheat and its associated mycotoxins[J]. Int J Food Microbiol, 2021, 346: 109161. |
[14] | 陈宏州, 韩凯, 杨红福, 等. 不同杀菌剂在麦穗中的消解动态及对小麦赤霉病防效评估[J]. 麦类作物学报, 2022, 42(4): 504-511. |
Chen HZ, Han K, Yang HF, et al. Analysis of dynamic degradation of different fungicides in wheat spikes and their control efficacy on Fusarium head blight[J]. J Triticeae Crops, 2022, 42(4): 504-511. | |
[15] |
Sevastos A, Kalampokis IF, Panagiotopoulou A, et al. Implication of Fusarium graminearum primary metabolism in its resistance to benzimidazole fungicides as revealed by 1H NMR metabolomics[J]. Pestic Biochem Physiol, 2018, 148: 50-61.
doi: S0048-3575(17)30395-4 pmid: 29891377 |
[16] | Yang Y, Li MX, Duan YB, et al. A new point mutation in β-tubulin confers resistance to carbendazim in Fusarium asiaticum[J]. Pestic Biochem Physiol, 2018, 145: 15-21. |
[17] |
Chen Y, Zhou MG. Characterization of Fusarium graminearum isolates resistant to both carbendazim and a new fungicide JS399-19[J]. Phytopathology, 2009, 99(4): 441-446.
doi: 10.1094/PHYTO-99-4-0441 pmid: 19271986 |
[18] | 付刘元, 陈金鹏, 王栓, 等. 禾谷镰孢菌对苯醚甲环唑的敏感性基线及与其他杀菌剂敏感性的相关性分析[J]. 农药学学报, 2021, 23(4): 694-702. |
Fu LY, Chen JP, Wang S, et al. Baseline sensitivity of Fusarium graminearum to difenoconazole and sensitivity correlation to other fungicides[J]. Chinese Journal of Pesticide Science, 2021, 23(4): 694-702. | |
[19] | Duan YB, Zhang XK, Ge CY, et al. Development and application of loop-mediated isothermal amplification for detection of the F167Y mutation of carbendazim-resistant isolates in Fusarium graminearum[J]. Sci Rep, 2014, 4: 7094. |
[20] | 邱德文. 我国植物免疫诱导技术的研究现状与趋势分析[J]. 植物保护, 2016, 42(5): 10-14. |
Qiu DW. Research status and trend analysis of plant immune induction technology in China[J]. Plant Prot, 2016, 42(5): 10-14. | |
[21] | Bacon WC, White J. Microbial endophytes[M]. Taylor and Francis; CRC Press: 2000-02-25. |
[22] | Rojas EC, Jensen B, Jørgensen HJL, et al. Selection of fungal endophytes with biocontrol potential against Fusarium head blight in wheat[J]. Biol Contr, 2020, 144: 104222. |
[23] |
Mousa WK, Raizada MN. The diversity of anti-microbial secondary metabolites produced by fungal endophytes: an interdisciplinary perspective[J]. Front Microbiol, 2013, 4: 65.
doi: 10.3389/fmicb.2013.00065 pmid: 23543048 |
[24] | Kusari S, Hertweck C, Spiteller M. Chemical ecology of endophytic fungi: origins of secondary metabolites[J]. Chem Biol, 2012, 19(7): 792-798. |
[25] |
Kusari S, Singh S, Jayabaskaran C. Biotechnological potential of plant-associated endophytic fungi: hope versus hype[J]. Trends Biotechnol, 2014, 32(6): 297-303.
doi: 10.1016/j.tibtech.2014.03.009 pmid: 24703621 |
[26] | Hong CE, Jeong H, Jo SH, et al. A leaf-inhabiting endophytic bacterium, Rhodococcus sp. KB6, enhances sweet potato resistance to black rot disease caused by Ceratocystis fimbriata[J]. J Microbiol Biotechnol, 2016, 26(3): 488-492. |
[27] | Ding T, Su B, Chen XJ, et al. An endophytic bacterial strain isolated from Eucommia ulmoides inhibits southern corn leaf blight[J]. Front Microbiol, 2017, 8: 903. |
[28] | Verma SK, Kingsley KL, Bergen MS, et al. Fungal disease prevention in seedlings of rice(Oryza sativa)and other grasses by growth-promoting seed-associated endophytic bacteria from invasive Phragmites australis[J]. Microorganisms, 2018, 6(1): 21. |
[29] |
Shabanamol S, Sreekumar J, Jisha MS. Bioprospecting endophytic diazotrophic Lysinibacillus sphaericus as biocontrol agents of rice sheath blight disease[J]. 3 Biotech, 2017, 7(5): 337.
doi: 10.1007/s13205-017-0956-6 pmid: 28955634 |
[30] |
Feksa HR, Do Couto HTZ, Garozi R, et al. Pre- and postinfection application of strobilurin-triazole premixes and single fungicides for control of fusarium head blight and deoxynivalenol mycotoxin in wheat[J]. Crop Prot, 2019, 117: 128-134.
doi: 10.1016/j.cropro.2018.12.003 |
[31] |
Robinson MW, McFerran N, Trudgett A, et al. A possible model of benzimidazole binding to beta-tubulin disclosed by invoking an inter-domain movement[J]. J Mol Graph Model, 2004, 23(3): 275-284.
pmid: 15530823 |
[32] |
Sevastos A, Markoglou A, Labrou NE, et al. Molecular characterization, fitness and mycotoxin production of Fusarium graminearum laboratory strains resistant to benzimidazoles[J]. Pestic Biochem Physiol, 2016, 128: 1-9.
doi: 10.1016/j.pestbp.2015.10.004 pmid: 26969433 |
[33] | Lu CC, Wang QB, Jiang YK, et al. Discovery of a novel nucleoside immune signaling molecule 2'-deoxyguanosine in microbes and plants[J]. J Adv Res, 2023, 46: 1-15. |
[34] | Lu CC, Liu HF, Jiang DP, et al. Paecilomyces variotii extracts(ZNC)enhance plant immunity and promote plant growth[J]. Plant Soil, 2019, 441(1): 383-397. |
[35] | Guo XR, Xu JY, He DY, et al. Combining Paecilomyces variotii extracts and biochar for the remediation of alkaline Cd-contaminated soil[J]. Biomass Convers Biorefin, 2022. |
[36] | Cui XS, Liu SJ, Zhang LN, et al. Endophytic extract Zhinengcong alleviates heat stress-induced reproductive defect in Solanum lycopersicum[J]. Front Plant Sci, 2022, 13: 977881. |
[37] | 王庆彬, 刘治国, 聂振田, 等. 宛氏拟青霉提取物(ZNC)提高小白菜抗盐碱胁迫能力[J]. 植物生理学报, 2021, 57(6): 1291-1299. |
Wang QB, Liu ZG, Nie ZT, et al. Paecilomyces variotii extracts(ZNC)improves the salinity-alkalinity resistance of pakchoi[J]. Plant Physiol J, 2021, 57(6): 1291-1299. | |
[38] |
王庆彬, 刘治国, 彭春娥, 等. 宛氏拟青霉提取物诱导小白菜抗低温胁迫的作用机理[J]. 核农学报, 2022, 36(2): 473-480.
doi: 10.11869/j.issn.100-8551.2022.02.0473 |
Wang qb, Liu zg, Peng ce, et al. Mechanism of Paecilomyces variotli extract in inducing Pakchoi resistance to low-temperature stress[J]. Journal of Nuclear Agricultural Sciences, 2022, 36(2): 473-480. | |
[39] | 王晓琪, 姚媛媛, 陈宝成, 等. 宛氏拟青霉提取物增强水稻抗低温胁迫的最佳施用水平[J]. 植物营养与肥料学报, 2019, 25(12): 2133-2141. |
Wang XQ, Yao YY, Chen BC, et al. Optimum levels of Paecilomyces variotii extracts in regulating resistance of rice seedlings to low temperature stress[J]. J Plant Nutr Fertil, 2019, 25(12): 2133-2141. | |
[40] | 秦瑞劼, 张民, 刘之广, 等. 植物诱抗剂对尿素氮利用率和小麦产量的影响[J]. 水土保持学报, 2018, 32(4): 327-332, 345. |
Qin RJ, Zhang M, Liu ZG, et al. Effects of plant inducer on nitrogen use efficiency of urea and wheat yield[J]. J Soil Water Conserv, 2018, 32(4): 327-332, 345. | |
[41] | Chen Q, Li ZL, Qu ZM, et al. Maize yield and root morphological characteristics affected by controlled-release diammonium phosphate and Paecilomyces variotii extracts[J]. Field Crops Res, 2020, 255: 107862. |
[42] | 赵洪猛, 杨贵婷, 刘之广, 等. 聚氨酯包膜和喷涂诱抗剂提高滨海盐化潮土玉米产量和磷肥利用率的协同效应[J]. 植物营养与肥料学报, 2019, 25(12): 2189-2196. |
Zhao HM, Yang GT, Liu ZG, et al. Synergism of polyureathane coating and elicitor spraying to increase phosphorus efficiency and maize yield in coastal salinized flavo-aquic soil[J]. J Plant Nutr Fertil, 2019, 25(12): 2189-2196. | |
[43] | Wang XQ, Yao YY, Liu ZG, et al. Highly active biostimulant Paecilomyces variotii extracts reduced controlled-release urea application while maintaining rice yield[J]. J Sci Food Agric, 2022, 102(5): 1883-1893. |
[44] | Chen HZ, Wu QY, Zhang G, et al. Carbendazim-resistance of Gibberella zeae associated with fusarium head blight and its management in Jiangsu Province, China[J]. Crop Prot, 2019, 124: 104866. |
[45] | 宋益民, 丛国林, 陈怀谷. 多菌灵及其复配制剂防治小麦赤霉病的应用效果[J]. 植物保护学报, 2018, 45(2): 352-358. |
Song YM, Cong GL, Chen HG. Efficacy of carbendazim and its mixtures for controlling wheat scab[J]. J Plant Prot, 2018, 45(2): 352-358. |
[1] | 刘灿, 闫晓阳, 曾焱, 欧祥龙, 廖永洪. 增加革兰阴性菌外膜囊泡产量的研究进展[J]. 生物技术通报, 2024, 40(3): 100-108. |
[2] | 徐扬, 张瑞英, 戴良香, 张冠初, 丁红, 张智猛. 盐胁迫下氮素对花生种子萌发和种子际细菌菌群结构的调控[J]. 生物技术通报, 2024, 40(2): 253-265. |
[3] | 常泸尹, 王中华, 李凤敏, 高梓源, 张辉红, 王祎, 李芳, 韩燕来, 姜瑛. 玉米根际多功能促生菌的筛选及其对冬小麦-夏玉米轮作体系产量提升效果[J]. 生物技术通报, 2024, 40(1): 231-242. |
[4] | 张道磊, 甘雨军, 乐亮, 普莉. 玉米产量性状的表观遗传调控机制和育种应用[J]. 生物技术通报, 2023, 39(8): 31-42. |
[5] | 江美彦, 周杨, 刘仁浪, 姚菲, 杨云舒, 侯凯, 冯冬菊, 吴卫. 白芷根际促生菌的筛选及其促生效果研究[J]. 生物技术通报, 2022, 38(8): 167-178. |
[6] | 李毅丹, 单晓辉. 赤霉素代谢调控与绿色革命[J]. 生物技术通报, 2022, 38(2): 195-204. |
[7] | 山琦, 贾惠舒, 姚文博, 刘伟灿, 李海燕. 植物miR396-GRF模块的生物学功能及其潜在应用价值[J]. 生物技术通报, 2022, 38(10): 34-44. |
[8] | 李和平, 李积铭, 李爱国, 武军艳, 宋聪敏, 申彦平, 杨莉. 播期对河北省超采水区白菜型冬油菜越冬率及产量的影响[J]. 生物技术通报, 2021, 37(4): 35-46. |
[9] | 雒丽丽, 张昊, 杨美欣, 王云飞, 许景升, 徐进, 姚强, 冯洁. 黄淮与东北麦区小麦赤霉菌温度相关的致病力分化研究[J]. 生物技术通报, 2021, 37(4): 47-55. |
[10] | 郭梅燕, 刘保友, 李洋, 张晓英, 陈玉国, 丁新华. 新型植物免疫诱抗剂ZNC对烟草的促生抗病效果[J]. 生物技术通报, 2021, 37(1): 182-188. |
[11] | 宫伟, 余健源, 张曦, 单晓昳. 硝酸根调控植物开花和产量分子机制的研究进展[J]. 生物技术通报, 2020, 36(8): 162-172. |
[12] | 田露, 薛仁政, 张志敏, 薛春仙, 沈兰芳, 龚国利. 抗癌药物埃博霉素的生产及工艺发展[J]. 生物技术通报, 2019, 35(10): 198-204. |
[13] | 王文秀, 王磊. 玉米矮杆基因研究进展[J]. 生物技术通报, 2018, 34(11): 22-26. |
[14] | 闫栋,罗振华,胡有良,汪军成,司二静,任盼荣,姚立蓉,李葆春,马小乐,孟亚雄,王化俊,. 不同除草剂对青稞田野燕麦的防除及对青稞生长的影响[J]. 生物技术通报, 2017, 33(9): 166-171. |
[15] | 王俊刚, 赵婷婷, 杨本鹏, 蔡文伟, 张树珍. 甘蔗脱毒健康种苗中单糖转运蛋白基因差异表达分析[J]. 生物技术通报, 2015, 31(3): 115-120. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||