生物技术通报 ›› 2021, Vol. 37 ›› Issue (1): 182-188.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0673
郭梅燕1,3,5(), 刘保友1,4, 李洋1, 张晓英2, 陈玉国5, 丁新华1()
收稿日期:
2020-06-01
出版日期:
2021-01-26
发布日期:
2021-01-15
作者简介:
郭梅燕,女,硕士研究生,研究方向:植物保护;E-mail: 基金资助:
GUO Mei-yan1,3,5(), LIU Bao-you1,4, LI Yang1, ZHANG Xiao-ying2, CEHN Yu-guo5, DING Xin-hua1()
Received:
2020-06-01
Published:
2021-01-26
Online:
2021-01-15
摘要:
免疫诱抗剂智能聪(ZNC)是一种宛氏拟青霉乙醇提取物,具有促进植物生长提高植物抗逆的能力。本文在烟草不同生长期喷施ZNC,分析其诱导烟草抗病效果及对烟草生长发育的影响。结果表明,3个浓度的ZNC均对病毒病表现出良好防效,且减轻了根茎类病害和后期叶斑类病害的发生程度,其中500 ng/mL ZNC抗病毒病、赤星病等病害的效果最好,抗病毒效果可达57.07%,表明该诱抗剂对烟草主要病害都有较好的诱抗效果。同时,50 ng/mL和500 ng/mL处理分别较CK增产6.00%和5.41%,且500 ng/mL还增加了总糖、还原糖、总氮、K2O等指标的含量,表现出了一定的增产提质效果。试验还表明,尽管1 000 ng/mL ZNC表现出抗病效果,但对烟草生长表现出显著的抑制作用,说明该诱抗剂在一定的剂量范围内对烟草有较好促生抗病效果,仍需要进一步试验来确定。
郭梅燕, 刘保友, 李洋, 张晓英, 陈玉国, 丁新华. 新型植物免疫诱抗剂ZNC对烟草的促生抗病效果[J]. 生物技术通报, 2021, 37(1): 182-188.
GUO Mei-yan, LIU Bao-you, LI Yang, ZHANG Xiao-ying, CEHN Yu-guo, DING Xin-hua. Application Effect of a Novel Plant Immune Inducer ZNC in Tobacco[J]. Biotechnology Bulletin, 2021, 37(1): 182-188.
处理 | 株高/cm | 茎围/cm | 有效叶片 数/片 | 最大叶面 积/cm2 |
---|---|---|---|---|
CK | 9.28±0.25b | 1.76±0.06 a | 6.28±0.17 a | 145.62±2.14 c |
50 ng/mL | 9.85±0.30 a | 1.76±0.07 a | 6.28±0.16 a | 155.83±2.72 a |
500 ng/mL | 9.25±0.56 b | 1.77±0.05 a | 6.33±0.10 a | 148.25±3.64 b |
1000 ng/mL | 8.95±0.20 c | 1.73±0.07 a | 6.23±0.17 a | 141.56±3.65 d |
表1 生根期ZNC对烟草生长的影响
处理 | 株高/cm | 茎围/cm | 有效叶片 数/片 | 最大叶面 积/cm2 |
---|---|---|---|---|
CK | 9.28±0.25b | 1.76±0.06 a | 6.28±0.17 a | 145.62±2.14 c |
50 ng/mL | 9.85±0.30 a | 1.76±0.07 a | 6.28±0.16 a | 155.83±2.72 a |
500 ng/mL | 9.25±0.56 b | 1.77±0.05 a | 6.33±0.10 a | 148.25±3.64 b |
1000 ng/mL | 8.95±0.20 c | 1.73±0.07 a | 6.23±0.17 a | 141.56±3.65 d |
处理 | 发病率/% | 平均病指 | 防效/% |
---|---|---|---|
CK | 12.70±1.56 | 3.89±0.39 | |
50 ng/mL | 11.25±1.25 | 2.36±0.14 | 39.33±8.85 c |
500 ng/mL | 7.50±1.44 | 1.67±0.39 | 57.07±6.06 a |
1000 ng/mL | 7.50±1.44 | 1.94±0.58 | 50.13±18.23 b |
表2 生根期ZNC对烟草病毒病的防效
处理 | 发病率/% | 平均病指 | 防效/% |
---|---|---|---|
CK | 12.70±1.56 | 3.89±0.39 | |
50 ng/mL | 11.25±1.25 | 2.36±0.14 | 39.33±8.85 c |
500 ng/mL | 7.50±1.44 | 1.67±0.39 | 57.07±6.06 a |
1000 ng/mL | 7.50±1.44 | 1.94±0.58 | 50.13±18.23 b |
处理 | 株高/cm | 茎围/cm | 节间距/cm | 有效叶片数/片 | 最大叶面积/cm2 |
---|---|---|---|---|---|
CK | 34.18±1.81 b | 8.80±0.28 a | 3.89±0.34 a | 10.60±0.71 a | 753.05±20.49 c |
50 ng/mL | 38.26±1.56 a | 8.68±0.44 a | 3.98±0.29 a | 10.38±0.30 a | 786.99±14.38 a |
500 ng/mL | 37.54±1.08 a | 8.58±0.56 a | 3.65±0.23 a | 10.68±0.82 a | 774.24±24.61 b |
1000 ng/mL | 31.93±2.01 c | 8.83±0.70 a | 3.28±0.21 a | 10.30±0.47 a | 723.20±23.06 d |
表3 团棵期ZNC对烟草生长的影响
处理 | 株高/cm | 茎围/cm | 节间距/cm | 有效叶片数/片 | 最大叶面积/cm2 |
---|---|---|---|---|---|
CK | 34.18±1.81 b | 8.80±0.28 a | 3.89±0.34 a | 10.60±0.71 a | 753.05±20.49 c |
50 ng/mL | 38.26±1.56 a | 8.68±0.44 a | 3.98±0.29 a | 10.38±0.30 a | 786.99±14.38 a |
500 ng/mL | 37.54±1.08 a | 8.58±0.56 a | 3.65±0.23 a | 10.68±0.82 a | 774.24±24.61 b |
1000 ng/mL | 31.93±2.01 c | 8.83±0.70 a | 3.28±0.21 a | 10.30±0.47 a | 723.20±23.06 d |
处理 | 发病率/% | 平均病指 | 防效/% |
---|---|---|---|
CK | 5.70±0.61 | 3.75±1.61 | |
50 ng/mL | 7.63±1.83 | 3.34±1.45 | 10.93±1.15 c |
500 ng/mL | 4.38±1.57 | 2.71±1.12 | 27.73±2.08 a |
1000 ng/mL | 5.00±1.77 | 3.09±0.91 | 17.59±1.53 b |
表4 团棵期ZNC对烟草根茎病害的防效
处理 | 发病率/% | 平均病指 | 防效/% |
---|---|---|---|
CK | 5.70±0.61 | 3.75±1.61 | |
50 ng/mL | 7.63±1.83 | 3.34±1.45 | 10.93±1.15 c |
500 ng/mL | 4.38±1.57 | 2.71±1.12 | 27.73±2.08 a |
1000 ng/mL | 5.00±1.77 | 3.09±0.91 | 17.59±1.53 b |
处理 | 株高/cm | 茎围/cm | 节间距/cm | 有效叶片数/片 | 最大叶面积/cm2 |
---|---|---|---|---|---|
CK | 123.80±0.93 a | 10.50±0.37 a | 6.03±0.20 a | 16.35±0.95 a | 1407.59±40.50 b |
50 ng/mL | 122.65±6.25 a | 10.15±0.75 a | 6.00±0.11 a | 16.55±0.97 a | 1567.38±58.46 a |
500 ng/mL | 123.50±2.10 a | 10.35±0.05 a | 6.08±0.23 a | 16.45±0.96 a | 1521.39±44.46 a |
1000 ng/mL | 118.20±3.99 b | 9.25±0.46 b | 5.94±0.34 a | 16.15±1.45 a | 1342.17±30.93 c |
表5 打顶期ZNC对烟草生长的影响
处理 | 株高/cm | 茎围/cm | 节间距/cm | 有效叶片数/片 | 最大叶面积/cm2 |
---|---|---|---|---|---|
CK | 123.80±0.93 a | 10.50±0.37 a | 6.03±0.20 a | 16.35±0.95 a | 1407.59±40.50 b |
50 ng/mL | 122.65±6.25 a | 10.15±0.75 a | 6.00±0.11 a | 16.55±0.97 a | 1567.38±58.46 a |
500 ng/mL | 123.50±2.10 a | 10.35±0.05 a | 6.08±0.23 a | 16.45±0.96 a | 1521.39±44.46 a |
1000 ng/mL | 118.20±3.99 b | 9.25±0.46 b | 5.94±0.34 a | 16.15±1.45 a | 1342.17±30.93 c |
处理 | 发病率/% | 平均病指 | 防效/% |
---|---|---|---|
CK | 25.11±7.59 | 4.95±2.34 | |
50 ng/mL | 18.79±8.02 | 3.96±2.50 | 20.00±1.51 b |
500 ng/mL | 21.38±6.29 | 3.51±2.29 | 29.10±1.92 a |
1000 ng/mL | 18.57±6.46 | 4.04±2.17 | 18.38±1.72 b |
表6 打顶期ZNC对烟草叶斑类病害的防效
处理 | 发病率/% | 平均病指 | 防效/% |
---|---|---|---|
CK | 25.11±7.59 | 4.95±2.34 | |
50 ng/mL | 18.79±8.02 | 3.96±2.50 | 20.00±1.51 b |
500 ng/mL | 21.38±6.29 | 3.51±2.29 | 29.10±1.92 a |
1000 ng/mL | 18.57±6.46 | 4.04±2.17 | 18.38±1.72 b |
处理 | 产量/(kg·hm-2) | 总糖/% | 还原糖/% | 总氮/% | 烟碱/% | K2O/% | 氯/% |
---|---|---|---|---|---|---|---|
CK | 2356.68±78.66 b | 26.32±1.31 c | 21.99±1.09 b | 1.87±0.10 b | 2.91±0.35 a | 1.56±0.13 b | 0.20±0.04 a |
50 ng/mL | 2498.16±62.03 a | 26.45±1.42 c | 22.35±2.49ab | 1.83±0.21 b | 2.76±0.29 a | 1.56±0.05 b | 0.14±0.03 a |
500 ng/mL | 2484.24±71.22 a | 31.50±1.47 a | 26.33±1.08 a | 2.53±0.21 a | 2.66±0.20 a | 1.98±0.12 a | 0.27±0.06 a |
1000 ng/mL | 2109.46±77.41 c | 28.75±1.05 b | 24.27±0.88 a | 2.43±0.18 a | 2.74±0.24 a | 1.90±0.11 a | 0.19±0.05 a |
表7 ZNC对烟叶产量和品质的影响
处理 | 产量/(kg·hm-2) | 总糖/% | 还原糖/% | 总氮/% | 烟碱/% | K2O/% | 氯/% |
---|---|---|---|---|---|---|---|
CK | 2356.68±78.66 b | 26.32±1.31 c | 21.99±1.09 b | 1.87±0.10 b | 2.91±0.35 a | 1.56±0.13 b | 0.20±0.04 a |
50 ng/mL | 2498.16±62.03 a | 26.45±1.42 c | 22.35±2.49ab | 1.83±0.21 b | 2.76±0.29 a | 1.56±0.05 b | 0.14±0.03 a |
500 ng/mL | 2484.24±71.22 a | 31.50±1.47 a | 26.33±1.08 a | 2.53±0.21 a | 2.66±0.20 a | 1.98±0.12 a | 0.27±0.06 a |
1000 ng/mL | 2109.46±77.41 c | 28.75±1.05 b | 24.27±0.88 a | 2.43±0.18 a | 2.74±0.24 a | 1.90±0.11 a | 0.19±0.05 a |
[1] | 王志德, 张兴伟, 王元英, 刘艳华. 中国烟草种质资源目录(续编一)[M]. 北京: 中国农业科学技术出版社, 2018. |
Wang ZD, Zhang XW, Wang YY, Liu YH. Catalogue of tobacco germplasm resources in China[M]. Beijing: China Agricultural Science and Technology Press, 2018. | |
[2] | 罗熹, 王家忠, 赖东辉, 等. 烟草农药残留研究进展[J]. 山东化工, 2019,48(3):27-28. |
Luo X, Wang JZ, Lai DH, et al. Research progress on tobacco pesticide residues[J]. Shandong Chemical Industry, 2019,48(3):27-28. | |
[3] | Qiu DW, Dong YJ, Zhang Y, et al. Plant immunity inducer development and application[J]. Molecular Plant Microbe Interactions, 2017,30(5):355-360. |
[4] |
Jones JG, Dangl JL. The plant immune system[J]. Nature, 2006,444(7117):323-329.
doi: 10.1038/nature05286 URL pmid: 17108957 |
[5] | 邱德文. 植物免疫诱抗剂的研究进展与应用前景[J]. 中国农业科技导报, 2014,16(1):39-45. |
Qiu DW. Progress and prospect of plant immunity inducer[J]. Journal of Agricultural Science and Technology, 2014,16(1):39-45. | |
[6] | 刘权, 李广悦, 曾洪梅, 等. 微生物蛋白激发子PeaT1的获得及诱导水稻抗旱性的初步研究[J]. 中国农业科技导报, 2009,11(3):51-55. |
Liu Q, Li GY, Zeng HM, et al. Acquisition of microbial protein elicitor PeaT1 and preliminary research on inducing drought resistance of rice[J]. Journal of Agricultural Science and Technology, 2009,11(3):51-55. | |
[7] | 张薇, 杨秀芬, 邱德文, 等. 激活蛋白PeaT1诱导烟草对TMV的系统抗性[J]. 植物病理学报, 2010,40(3):290-299. |
Zhang W, Yang XF, Qiu DW, et al. Activator protein PeaT1 induced systemic resistance to tobacco mosaic virus in tobacco[J]. Acta Phytopathologica Sinica, 2010,40(3):290-299. | |
[8] | 张微. PeaT1诱导烟草系统获得抗病性及其作用机理的研究[D]. 北京:中国农业科学院, 2010. |
Zhang W. Induction of systemic acquired resistance to TMV with PeaT1 and the mechanism in tobacco[D]. Beijing:Chinese Academy of Agricultural Sciences, 2010. | |
[9] | Mahesh K, Liu H, Zhang YL, et al. Hrip1, a novel protein elicitor from necrotrophic fungus, Alternaria tenuissima, elicits cell death, expression of defence-related genes and systemic acquired resistance in tobacco[J]. Plant, Cell & Environment, 2012,35(12):2104-2120. |
[10] |
Aziz A, Benoit P, Xavier D, et al. Laminarin elicits defense responses in grapevine and induces protection against Botrytis cinerea and Plasmopara viticola[J]. Molecular Plant Microbe Interactions, 2003,16(12):1118.
doi: 10.1094/MPMI.2003.16.12.1118 URL pmid: 14651345 |
[11] | 商文静, 吴云锋, 赵小明, 等. 壳寡糖诱导烟草抗烟草花叶病毒的超微结构研究[J]. 植物病理学报, 2007,37(1):56-61. |
Shang WJ, Wu YF, Zhao XM, et al. Ultrastructure of induced resistance of tobacco to tobacco mosaic virus by chitooligosaccharides[J]. Acta Phytopathologica Sinica, 2007,37(1):56-61. | |
[12] | 李堆淑, 胡景江. 寡聚糖激发子对杨树防御酶系活性的影响[J]. 西北林学院学报, 2012,27(2):26-29. |
Li DS, Hu JJ. Effect of the activities of defense enzymes on poplar by oligosaccharides elicitors[J]. Journal of Northwest Forestry University, 2012,27(2):26-29. | |
[13] | Phuntumart V, Marro P, Jean-Pierre M, et al. A novel cucumber gene associated with systemic acquired resistance[J]. Plant Science, 2006,171(5):555-564. |
[14] |
Radwan DM, Lu GQ, Fayez KA, et al. Protective action of salicylic acid against bean yellow mosaic virus infection in Vicia faba leaves[J]. Journal of Plant Physiology, 2008,165(8):845-857.
doi: 10.1016/j.jplph.2007.07.012 URL pmid: 17920158 |
[15] | Lu CC, Liu HF, Jiang DP, et al. Paecilomyces variotii extracts(ZNC)enhance plant immunity and promote plant growth[J]. Plant and Soil, 2019,441(1-2):383-397. |
[16] | 赵鹏, 王洪凤, 刘娟, 等. 含氨基酸水溶肥料(智能聪)对马铃薯性状和产量的影响[J]. 现代农业科技, 2018(21):67-69. |
Zhao P, Wang HF, Liu J, et al. Effect of amino acid-containing water-soluble fertilizer(ZhiNengCong)on potato traits and yield[J]. XianDai NongYe Keji, 2018(21):67-69. | |
[17] | 齐林锁. 水稻应用智能聪水溶肥料试验效果[J]. 现代化农业, 2016(3):39-40. |
Qi LS. Experimental effect of applying water-soluble fertilizer ZhiNengCong to rice[J]. Modernizing Agriculture, 2016(3):39-40. | |
[18] | 范志金, 刘秀峰, 刘凤丽, 等. 植物抗病激活剂诱导植物抗病性的研究进展[J]. 植物保护学报, 2005,32(1):87-92. |
Fan ZJ, Liu XF, Liu FL, et al. Progress of researches on induced resistance of plant activator[J]. Journal of Plant Protection, 2005,32(1):87-92. | |
[19] | 余清, 刘勇, 莫笑晗, 等. 氨基寡糖素在烟草上的应用[J]. 中国生物防治, 2002,18(3):128-131. |
Yu Q, Liu Y, Mo XH, et al. Applying amino-oligosaccharin on tobacco for controlling tobacco virus disease[J]. Chinese Journal of Biological Control, 2002,18(3):128-131. | |
[20] | 苏小记, 贾丽娜. 2. 0%氨基寡糖素水剂防治烟草病毒病药效试验[J]. 陕西农业科学, 2005(3):55-56. |
Su XJ, Jia LN. Control effect of 2. 0% amino-oligosaccharin AS on tobacco virus[J]. Shanxi Journal of Agricultural Sciences, 2005(3):55-56. | |
[21] | 罗刚, 高华军, 韦忠, 等. 氨基寡糖素和钾营养调节剂对烟草普通花叶病毒病的防治效果[J]. 作物研究, 2018,32(2):140-143. |
Luo G, Gao HJ, Wei Z, et al. The control efficiency of amino-oligosaccharins and potassium nutrition regulator on tobacco mosaic virus disease[J]. Crop Research, 2018,32(2):140-143. | |
[22] | 沈晗, 杨凯, 任伟, 等. 影响上部烟叶感官质量的主要化学成分分析[J]. 中国烟草学报, 2019,5(6):18-26. |
Shen H, Yang K, Ren W, et al. Analysis of essential chemical components affecting sensory quality of upper tobacco leaves[J]. Acta Tabacaria Sinica, 2019,25(6):18-26. | |
[23] | Peterson RL, Wagg C, Pautler M. Associations between microfungal endophytes and roots:Do structural features indicate function?[J] Botany, 2008,86:445-456. |
[24] | Della Mónica IF, Saparrat MC, Godeas AM, et al. The co-existence between DSE and AMF symbionts affects plant P pools through P mineralization and solubilization processes[J]. Fungal Ecology, 2015,17:10-17. |
[25] |
Nguyen TT, Paul NC, Lee HB. Characterization of Paecilomyces variotii and Talaromyces amestolkiae in Korea based on the morphological characteristics and multigene phylogenetic analyses[J]. Mycobiology, 2016,44:248-259.
URL pmid: 28154482 |
[26] | Nakajima M, Itoi K, Takamatsu Y, et al. Cornexistin:A new fungal metabolite with herbicidal activity[J]. Journal of Antibiotics, 1991,44:1065-1072. |
[27] | Song X, Zhang LH, Peng AT, et al. First report of Paecilomyces variotii isolated from Citrus Psyllid(Diaphorina citri), the vector of Huanglongbing of Citrus, in China[J]. Plant Disease, 2016,100:2526. |
[28] | Huang WK, Cui JK, Liu SM, et al. Testing various biocontrol agents against the root-knot nematode(Meloidogyne incognita)in cucumber plants identifies a combination of Syncephalastrum racemosum and Paecilomyces lilacinus as being most effective[J]. Boil Control, 2016,92:31-37. |
[29] | Moreno-Gavíra A, Diánez F, Sánchez-Montesinos B, et al. Paecilomyces variotii as a plant-growth promoter in horticulture[J]. Agronomy, 2020,10:597. |
[30] |
Peng C, Zhang A, Wang Q, et al. Ultrahigh-activity immune inducer from endophytic fungi induces tobacco resistance to virus by SA pathway and RNA silencing[J]. BMC Plant Biology, 2020. DOI: 10. 1186/s12870-020-02386-4.
URL pmid: 33451304 |
[1] | 杨志晓, 侯骞, 刘国权, 卢志刚, 曹毅, 芶剑渝, 王轶, 林英超. 不同抗性烟草品系Rubisco及其活化酶对赤星病胁迫的响应[J]. 生物技术通报, 2023, 39(9): 202-212. |
[2] | 刘珍银, 段郅臻, 彭婷, 王童欣, 王健. 基于三角梅的病毒诱导基因沉默体系的建立与优化[J]. 生物技术通报, 2023, 39(7): 123-130. |
[3] | 胡海琳, 徐黎, 李晓旭, 王晨璨, 梅曼, 丁文静, 赵媛媛. 小肽激素调控植物生长发育及逆境生理研究进展[J]. 生物技术通报, 2023, 39(7): 13-25. |
[4] | 李文辰, 刘鑫, 康越, 李伟, 齐泽铮, 于璐, 王芳. TRV病毒诱导大豆基因沉默体系优化及应用[J]. 生物技术通报, 2023, 39(7): 143-150. |
[5] | 张路阳, 韩文龙, 徐晓雯, 姚健, 李芳芳, 田效园, 张智强. 烟草TCP基因家族的鉴定及表达分析[J]. 生物技术通报, 2023, 39(6): 248-258. |
[6] | 王羽, 尹铭绅, 尹晓燕, 奚家勤, 杨建伟, 牛秋红. 烟草甲体内烟碱降解菌的筛选、鉴定及降解特性[J]. 生物技术通报, 2023, 39(6): 308-315. |
[7] | 冯珊珊, 王璐, 周益, 王幼平, 方玉洁. WOX家族基因调控植物生长发育和非生物胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(5): 1-13. |
[8] | 薛皦, 朱庆锋, 冯彦钊, 陈沛, 刘文华, 张爱霞, 刘勤坚, 张琪, 于洋. 植物基因上游开放阅读框的研究进展[J]. 生物技术通报, 2023, 39(4): 157-165. |
[9] | 魏明, 王欣玉, 伍国强, 赵萌. NAD依赖型去乙酰化酶SRT在植物表观遗传调控中的作用[J]. 生物技术通报, 2023, 39(4): 59-70. |
[10] | 桑田, 王鹏程. 植物SUMO化修饰研究进展[J]. 生物技术通报, 2023, 39(3): 1-12. |
[11] | 申云鑫, 施竹凤, 周旭东, 李铭刚, 张庆, 冯路遥, 陈齐斌, 杨佩文. 三株具生防功能芽孢杆菌的分离鉴定及其生物活性研究[J]. 生物技术通报, 2023, 39(3): 267-277. |
[12] | 余世洲, 曹领改, 王世泽, 刘勇, 边文杰, 任学良. 烟草种质基因分型核心SNP标记的开发[J]. 生物技术通报, 2023, 39(3): 89-100. |
[13] | 杜清洁, 周璐瑶, 杨思震, 张嘉欣, 陈春林, 李娟起, 李猛, 赵士文, 肖怀娟, 王吉庆. 过表达CaCP1提高转基因烟草对盐胁迫的敏感性[J]. 生物技术通报, 2023, 39(2): 172-182. |
[14] | 汪格格, 邱诗蕊, 张琳晗, 杨国伟, 徐小云, 汪爱羚, 曾淑华, 刘雅洁. 异源三倍体普通烟草(SST)减数分裂期的分子细胞学研究[J]. 生物技术通报, 2023, 39(2): 183-192. |
[15] | 孙雨桐, 刘德帅, 齐迅, 冯美, 黄栩筝, 姚文孔. 茉莉酸调控植物生长发育和胁迫的研究进展[J]. 生物技术通报, 2023, 39(11): 99-109. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||