生物技术通报 ›› 2024, Vol. 40 ›› Issue (10): 122-138.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0410

• 综述与专论 • 上一篇    下一篇

植物响应盐碱胁迫的分子机制研究进展

冯凯月1(), 赵鑫焱1, 李子妍1, 邱江明2(), 曹一博1()   

  1. 1.北京林业大学林学院 林木资源高效生产全国重点实验室 森林培育与保护教育部重点实验室,北京 100083
    2.江西环境工程职业学院,赣州341000
  • 收稿日期:2024-04-29 出版日期:2024-10-26 发布日期:2024-11-20
  • 通讯作者: 邱江明,男,硕士,副教授,研究方向:经济林种苗繁育及经济林林下复合经营;E-mail: 18270730388@163.com
    曹一博,女,博士,副教授,研究方向:经济林抗逆分子机理、经济林果实发育调控机制;E-mail: caoyibo@bjfu.edu.cn
  • 作者简介:冯凯月,女,硕士研究生,研究方向:经济林(果树)培育与应用;E-mail: 2213298711@qq.com
  • 基金资助:
    国家自然科学基金青年项目(32101555)

Research Advances in the Molecular Mechanisms of Plant Response to Saline-alkali Stress

FENG Kai-yue1(), ZHAO Xin-yan1, LI Zi-yan1, QIU Jiang-ming2(), CAO Yi-bo1()   

  1. 1. State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083
    2. Jiangxi Environmental Engineering Vocational College, Ganzhou 341000
  • Received:2024-04-29 Published:2024-10-26 Online:2024-11-20

摘要:

土壤盐碱化是制约全球农业发展的主要环境因素之一。培育耐盐碱作物是应对土壤盐碱化的根本措施,但目前仍面临基因、种质资源匮乏等挑战。挖掘耐盐碱新基因,阐明植物耐盐碱应答的分子机制对培育耐盐碱作物至关重要。盐碱胁迫包括中性盐胁迫和碱性盐胁迫,中性盐胁迫会产生渗透胁迫,Na+、Cl-积累过量还会导致离子毒害,引起氧化胁迫等一系列次生胁迫。与中性盐胁迫相比,碱性盐胁迫还会引起高pH胁迫。论文综述了盐碱胁迫对植物生长发育的影响,总结了近十年植物耐盐碱应答机制的重要研究进展。包括植物对盐胁迫的感知与信号转导,以及植物响应中性盐胁迫和碱性盐胁迫引起的渗透胁迫、离子毒害、氧化胁迫、碳酸氢盐和碳酸盐胁迫、高pH胁迫的分子机制。在此基础上,还讨论了耐盐碱基因在作物育种方面的应用,并提出了提高植物耐盐碱性需要进一步研究的关键科学问题。旨在加深对植物响应盐碱胁迫分子机制的认识,为培育高产、优质的耐盐碱品种及提升盐碱地可开发利用率提供理论基础。

关键词: 盐碱胁迫, 离子毒害, 渗透胁迫, 高pH胁迫, Na+转运蛋白, 质膜H+-ATPase

Abstract:

Soil salinization is one of a major environmental factor constraining global agricultural development. Breeding saline-alkali tolerant crops is a fundamental strategy to address soil salinization. However, currently there are challenges such as limited saline-alkali-tolerant genes and germplasm resources. Exploring new genes for saline-alkali tolerance and elucidating the molecular mechanisms of plant responses to saline-alkali stress are crucial for developing saline-alkali-tolerant crops. Saline stress includes neutral salt stress and alkaline salt stress. Neutral salt stress induces osmotic stress, and excessive accumulation of Na+ and Cl- may lead to ion toxicity, causing oxidative stress and a series of secondary stresses. Compared to neutral salt stress, alkaline salt stress also induces high pH stress. This review outlines the impact of saline-alkali stress on plant growth and development, as well as the molecular mechanisms underlying plant adaptation to saline-alkali stress and summarizes the significant research progress in plant saline-alkali stress responses over the past decade. It covers plant perception and signal transduction of saline-alkali stress and the molecular mechanisms of plant responses to osmotic stress, ion toxicity, oxidative stress, bicarbonate and carbonate stress, and high pH stress caused by neutral and alkaline salt stress. On this basis, the application of saline-alkali-tolerant genes in crop breeding is also discussed, and key scientific issues that require further research to improve plant saline-alkali tolerance are proposed. The aim of this work is to deepen the understanding of the molecular mechanisms of plant adaptation to saline-alkali stress, providing a theoretical basis for breeding high-yielding and saline-alkali-tolerant crops, and improving the development and utilization rate of salt-affected land.

Key words: saline-alkali stress, ion toxicity, osmotic stress, high pH stress, Na+ transporters, plasma membrane H+-ATPase