生物技术通报 ›› 2024, Vol. 40 ›› Issue (11): 312-320.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0228
段子朋1,2(), 孙缦利1,2, 陈彦锋1,2, 邓同兴1,2, 金少举1,2, 范文娟1,2(
), 陈旭东1,2(
)
收稿日期:
2024-03-08
出版日期:
2024-11-26
发布日期:
2024-12-19
通讯作者:
范文娟,女,博士,副教授,研究方向:肌肉干细胞分化与调控;E-mail: fwj81@163.com;作者简介:
段子朋,男,讲师,研究方向:干细胞分离与培养;E-mail: 573373763@qq.com
基金资助:
DUAN Zi-peng1,2(), SUN Man-li1,2, CHEN Yan-feng1,2, DENG Tong-xing1,2, JIN Shao-ju1,2, FAN Wen-juan1,2(
), CHEN Xu-dong1,2(
)
Received:
2024-03-08
Published:
2024-11-26
Online:
2024-12-19
摘要:
【目的】 研究虾青素(astaxanthin,AST)对鸡肌肉干细胞(chicken muscle stem cells,Ch-MuSCs)增殖的影响及其潜在机制。【方法】 原代分离Ch-MuSCs,不同浓度AST(0、0.3、0.6、1.25、2.5、5 μmol/L)处理,利用7-AAD联合Calcein AM染色法、MTT法、EdU法等检测细胞活力与增殖,免疫荧光染色检测肌管发育变化,Western blot分析AMPK/mTOR信号通路关键蛋白PI3k、AKT、p-PI3k、p-AKT以及mTOR、AMPK、p-mTOR、p-AMPK的蛋白表达。【结果】 0.6、1.25 μmol/L AST处理后均可显著增加细胞活性,减少坏死细胞(P < 0.01),其中1.25 μmol/L AST处理后细胞增殖最为显著(P < 0.01);Titin与MyoD免疫荧光染色显示,1.25 μmol/L AST处理后Titin阳性肌管长度增加显著(P < 0.05),且每条肌管内MyoD阳性细胞核增多(P < 0.05)。Western blot结果显示,1.25 μmol/L AST处理组p-PI3K和p-AKT水平显著升高(P < 0.05),AMPK及P-AMPK蛋白增加,mTOR蛋白表达水平降低(P < 0.05),加入mTOR抑制剂雷帕霉素后,AMPK、mTOR蛋白表达量显著降低(P < 0.05),但p-AMPK蛋白表达水平无明显变化;若同时采用AST处理,则AMPK及P-AMPK蛋白表达水平显著增加(P < 0.05),但mTOR蛋白及p-mTOR表达水平显著降低(P < 0.05)。【结论】 AST可通过激活AMPK/mTOR信号通路中AMPK及其上游信号分子PI3K与Akt促进Ch-MuSCs的增殖与分化,通过抑制mTOR来调控Ch-MuSCs的生长速度。
段子朋, 孙缦利, 陈彦锋, 邓同兴, 金少举, 范文娟, 陈旭东. 虾青素通过AMPK/mTOR信号通路促进鸡肌肉干细胞增殖与分化[J]. 生物技术通报, 2024, 40(11): 312-320.
DUAN Zi-peng, SUN Man-li, CHEN Yan-feng, DENG Tong-xing, JIN Shao-ju, FAN Wen-juan, CHEN Xu-dong. Astaxanthin Promotes the Proliferation and Differentiation of Chicken Muscle Stem Cells via AMPK/mTOR Signaling Pathway[J]. Biotechnology Bulletin, 2024, 40(11): 312-320.
图1 不同浓度AST对Ch-MuSCs细胞活性与细胞活力的影响 A: Ch-MuSCs经不同浓度AST处理48 h后,荧光显微镜下活细胞被Calcein AM染色成绿色荧光,坏死细胞的细胞核被7-AAD染色成红色荧光。标尺=100 μm;B:AST处理48 h后,各组Calcein AM阳性细胞的相对百分比;C:AST处理48 h后,各组7-AAD染色阳性细胞的相对百分比。与对照组(0 μmol/L)相比,*P < 0.05,# P <0.01,## P <0.001,ns表示无统计学意义,下同
Fig. 1 Effects of different concentrations of AST on Ch-MuSCs cell activity and cell viability A: Under fluorescence microscope, live cells were stained with Calcein AM(green)and dead cells were stained with 7-AAD(red). Scale =100 μm. B: Relative percentage of Calcein AM positive cells in Ch-MuSCs after treatment with AST for 48 h. C: Relative percentage of 7-AAD-stained positive cells in Ch-MuSCs after treatment with AST for 48 h. Compared with control(0), *P < 0.05,# P <0.01,## P <0.001, ns indicates not statistically significant, the same below
图2 不同浓度AST对Ch-Muscs增殖与细胞毒性的影响 A: EdU标记(红色)表示增殖的细胞, DAPI标记细胞核;B: EdU阳性细胞的百分比;C:MTT法测定AST作用48 h后Ch-MuSCs的细胞增殖与细胞毒性
Fig. 2 Effects of different concentrations of AST on the proliferation and cytotoxicity of Ch-Muscs A: EdU-labeled(red)indicates the proliferation of cells, DAPI marks nuclei. B: Percentage of EdU positive cells. C: The cell proliferation were estimated by MTT assay with AST for 48 h
图3 AST对Ch-Muscs成肌分化能力的影响 A: Titin(红色)与MyoD(绿色)免疫荧光双标记,示分化的肌管与肌细胞核,标尺=100 μm;B:Titin阳性肌管的长度;C:每根肌管细胞核数
Fig. 3 Effect of AST on the myogenic differentiation ability of Ch-Muscs A: Titin(red)and MyoD(green)immunofluorescence double labeling, showing differentiated muscle tubes and muscle nuclei. Bar=100 μm. B: Quantitative analysis of myotube length; C: number of nuclei per muscular duct
图4 通过Western blot分析PI3K/Akt信号通路关键蛋白表达水平 A: Western blot结果图;B: AKT、p-AKT 相对蛋白表达量;C:PI3K、p-PI3K相对蛋白表达量
Fig. 4 Key protein levels in the PI3K/Akt signaling pathway measured by Western blot analysis A: Results of Western blot. B: Quantitative analysis of Western blots for AKT and p-AKT. C: Quantitative analysis of Western blots forPI3K and p-PI3K
图5 AMPK、p-AMPK、mTOR、p-mTOR的表达水平 A: Western blot结果图;B: AMPK、p-AMPK 相对蛋白表达量;C:mTOR、p-mTOR相对蛋白表达量
Fig. 5 Expressions of AMPK, p-AMPK, mTOR, and p-mTOR A: Results of Western blot. B: Quantitative analysis of Western blot for AMPK and p-AMPK. C: Quantitative analysis of Western blot for mTOR and p-mTOR
[1] |
胡荣蓉, 丁世杰, 郭赟, 等. Trolox对猪肌肉干细胞增殖及分化的影响[J]. 中国农业科学, 2021, 54(24): 5290-5301.
doi: 10.3864/j.issn.0578-1752.2021.24.011 |
Hu RR, Ding SJ, Guo Y, et al. Effects of trolox on proliferation and differentiation of pig muscle stem cells[J]. Sci Agric Sin, 2021, 54(24): 5290-5301.
doi: 10.3864/j.issn.0578-1752.2021.24.011 |
|
[2] | Dong WX, Chen WH, Zou HB, et al. Ginsenoside Rb1 prevents oxidative stress-induced apoptosis and mitochondrial dysfunction in muscle stem cells via NF- κ B pathway[J]. Oxid Med Cell Longev, 2022, 2022: 9159101. |
[3] | Kumar S, Kumar R, Diksha, et al. Astaxanthin: a super antioxidant from microalgae and its therapeutic potential[J]. J Basic Microbiol, 2022, 62(9): 1064-1082. |
[4] | Queen CJJ, Sparks SA, Marchant DC, et al. The effects of astaxanthin on cognitive function and neurodegeneration in humans: a critical review[J]. Nutrients, 2024, 16(6): 826. |
[5] | Chen Y, Ling CJ, Chen MT, et al. Astaxanthin ameliorates worsened muscle dysfunction of MDX mice fed with a high-fat diet through reducing lipotoxicity and regulating gut microbiota[J]. Nutrients, 2023, 16(1): 33. |
[6] |
Kjøbsted R, Hingst JR, Fentz J, et al. AMPK in skeletal muscle function and metabolism[J]. FASEB J, 2018, 32(4): 1741-1777.
doi: 10.1096/fj.201700442R pmid: 29242278 |
[7] | Xu JH, Velleman SG. Critical role of the mTOR pathway in poultry skeletal muscle physiology and meat quality: an opinion paper[J]. Front Physiol, 2023, 14: 1228318. |
[8] |
Ozaki Y, Ohashi K, Otaka N, et al. Myonectin protects against skeletal muscle dysfunction in male mice through activation of AMPK/PGC1α pathway[J]. Nat Commun, 2023, 14(1): 4675.
doi: 10.1038/s41467-023-40435-2 pmid: 37542026 |
[9] |
周琳, 梁轩铭, 赵磊. 天然类胡萝卜素的生物合成研究进展[J]. 生物技术通报, 2022, 38(7): 119-127.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-1184 |
Zhou L, Liang XM, Zhao L. Biosynthesis of natural carotenoids: progress and perspective[J]. Biotechnol Bull, 2022, 38(7): 119-127. | |
[10] | Inoue H, Shimamoto S, Takahashi H, et al. Effects of astaxanthin-rich dried cell powder from Paracoccus carotinifaciens on carotenoid composition and lipid peroxidation in skeletal muscle of broiler chickens under thermo-neutral or realistic high temperature conditions[J]. Anim Sci J, 2019, 90(2): 229-236. |
[11] | Cao YR, Yang L, Qiao X, et al. Dietary astaxanthin: an excellent carotenoid with multiple health benefits[J]. Crit Rev Food Sci Nutr, 2023, 63(18): 3019-3045. |
[12] | Nishida Y, Berg PC, Shakersain B, et al. Astaxanthin: past, present, and future[J]. Mar Drugs, 2023, 21(10): 514. |
[13] | Medoro A, Davinelli S, Milella L, et al. Dietary astaxanthin: a promising antioxidant and anti-inflammatory agent for brain aging and adult neurogenesis[J]. Mar Drugs, 2023, 21(12): 643. |
[14] | Fang JH, Li M, Zhang GQ, et al. Vitamin C enhances the ex vivo proliferation of porcine muscle stem cells for cultured meat production[J]. Food Funct, 2022, 13(9): 5089-5101. |
[15] |
Motohashi N, Asakura A. Muscle satellite cell heterogeneity and self-renewal[J]. Front Cell Dev Biol, 2014, 2: 1.
doi: 10.3389/fcell.2014.00001 pmid: 25364710 |
[16] |
Mouradian S, Cicciarello D, Lacoste N, et al. LSD1 controls a nuclear checkpoint in Wnt/β-Catenin signaling to regulate muscle stem cell self-renewal[J]. Nucleic Acids Res, 2024, 52(7): 3667-3681.
doi: 10.1093/nar/gkae060 pmid: 38321961 |
[17] | Lian D, Chen MM, Wu HY, et al. The role of oxidative stress in skeletal muscle myogenesis and muscle disease[J]. Antioxidants, 2022, 11(4): 755. |
[18] | Liu Z, Lin L, Zhu HZ, et al. YAP promotes cell proliferation and stemness maintenance of porcine muscle stem cells under high-density condition[J]. Cells, 2021, 10(11): 3069. |
[19] | Yoshihara T, Sugiura T, Miyaji N, et al. Effect of a combination of astaxanthin supplementation, heat stress, and intermittent reloading on satellite cells during disuse muscle atrophy[J]. J Zhejiang Univ Sci B, 2018, 19(11): 844-852. |
[20] | Dose J, Matsugo S, Yokokawa H, et al. Free radical scavenging and cellular antioxidant properties of astaxanthin[J]. Int J Mol Sci, 2016, 17(1): 103. |
[21] |
Yu TZ, Dohl J, Chen YF, et al. Astaxanthin but not quercetin preserves mitochondrial integrity and function, ameliorates oxidative stress, and reduces heat-induced skeletal muscle injury[J]. J Cell Physiol, 2019, 234(8): 13292-13302.
doi: 10.1002/jcp.28006 pmid: 30609021 |
[22] | Zhou YS, Baker JS, Chen XP, et al. High-dose astaxanthin supplementation suppresses antioxidant enzyme activity during moderate-intensity swimming training in mice[J]. Nutrients, 2019, 11(6): 1244. |
[23] | Kawamura A, Aoi W, Abe R, et al. Combined intake of astaxanthin, β-carotene, and resveratrol elevates protein synthesis during muscle hypertrophy in mice[J]. Nutrition, 2020, 69: 110561. |
[24] |
Yoshihara T, Yamamoto Y, Shibaguchi T, et al. Dietary astaxanthin supplementation attenuates disuse-induced muscle atrophy and myonuclear apoptosis in the rat soleus muscle[J]. J Physiol Sci, 2017, 67(1): 181-190.
doi: 10.1007/s12576-016-0453-4 pmid: 27117878 |
[25] | Jaime D, Fish LA, Madigan LA, et al. The MuSK-BMP pathway maintains myofiber size in slow muscle through regulation of Akt- mTOR signaling[J]. Res Sq, 2023: rs.3.rs-rs.2613527. |
[26] | Tang G, Du Y, Guan HC, et al. Butyrate ameliorates skeletal muscle atrophy in diabetic nephropathy by enhancing gut barrier function and FFA2-mediated PI3K/Akt/mTOR signals[J]. Br J Pharmacol, 2022, 179(1): 159-178. |
[27] | Morissette MR, Cook SA, Buranasombati C, et al. Myostatin inhibits IGF-I-induced myotube hypertrophy through Akt[J]. Am J Physiol Cell Physiol, 2009, 297(5): C1124-C1132. |
[28] | Di CN, Jia W. Food-derived bioactive peptides as momentous food components: can functional peptides passed through the PI3K/Akt/mTOR pathway and NF-κB pathway to repair and protect the skeletal muscle injury?[J]. Crit Rev Food Sci Nutr, 2023: 1-18. |
[29] |
Kwak HJ, Kim J, Kim SY, et al. Moracin E and M isolated from Morus alba Linné induced the skeletal muscle cell proliferation via PI3K-Akt-mTOR signaling pathway[J]. Sci Rep, 2023, 13(1): 20570.
doi: 10.1038/s41598-023-47411-2 pmid: 37996535 |
[30] | Chun Y, Kim J. AMPK-mTOR signaling and cellular adaptations in hypoxia[J]. Int J Mol Sci, 2021, 22(18): 9765. |
[31] | Yan LS, Zhang SF, Luo G, et al. Schisandrin B mitigates hepatic steatosis and promotes fatty acid oxidation by inducing autophagy through AMPK/mTOR signaling pathway[J]. Metabolism, 2022, 131: 155200. |
[1] | 田兴苗, 王健霖, 郭磊, 司朵朵, 龚振兴, 李继东. 鸡毒支原体和滑液囊支原体双重LFD-RPA快速检测方法的建立[J]. 生物技术通报, 2024, 40(7): 117-124. |
[2] | 焦丹荣, 马梦雪, 何柏水, 谢龙, 左二伟. 高保真CRISPR/Cas9系统在家禽细胞中的编辑特性研究[J]. 生物技术通报, 2024, 40(10): 191-197. |
[3] | 杨岚, 张晨曦, 樊学伟, 王阳光, 王春秀, 李文婷. 鸡 BMP15 基因克隆、表达模式及启动子活性分析[J]. 生物技术通报, 2023, 39(4): 304-312. |
[4] | 陈楚雯, 李洁, 赵瑞鹏, 刘媛, 吴锦波, 李志雄. 藏鸡GPX3基因的克隆、组织表达谱研究及功能预测[J]. 生物技术通报, 2023, 39(3): 311-320. |
[5] | 周琳, 梁轩铭, 赵磊. 天然类胡萝卜素的生物合成研究进展[J]. 生物技术通报, 2022, 38(7): 119-127. |
[6] | 杨昕冉, 王建芳, 马鑫浩, 昝林森. m6A甲基化修饰相关酶基因在牛脂肪生成中的表达分析[J]. 生物技术通报, 2022, 38(7): 70-79. |
[7] | 杜振伟, 朱帅鹏, 马向飞, 李东华, 孙桂荣. 鸡CEBPA基因CDS区克隆、表达及生物信息学分析[J]. 生物技术通报, 2021, 37(8): 203-212. |
[8] | 张晨, 左其生, 邹艺琛, 赵娟娟, 张亚妮, 李碧春. 糖酵解调控鸡体外PGCLC形成的功能研究[J]. 生物技术通报, 2021, 37(6): 163-170. |
[9] | 殷俊磊, 张艳芳, 邹凡雨, 潘鹏涛, 段艳红, 仇书兴. 鸡白痢沙门菌sptP基因缺失株的构建及其免疫保护效力评价[J]. 生物技术通报, 2021, 37(2): 122-128. |
[10] | 王珊珊, 孙敏, 王永霞, 李惟栋, 韩春超. 鸡腿蘑胞外多糖的形貌结构及分子量动态变化与抗氧化的相关性研究[J]. 生物技术通报, 2021, 37(2): 129-137. |
[11] | 红格日其其格, 王燕飞, 高仙灵, 庞彩霞, 尚晓蕊, 李国婧, 王瑞刚. 中间锦鸡儿CiNAC038启动子的克隆及对激素响应分析[J]. 生物技术通报, 2020, 36(7): 55-61. |
[12] | 王晶, 戴东, 武书庚, 张海军, 齐广海. 鸡肠道微生物演替与早期定植的研究进展[J]. 生物技术通报, 2020, 36(2): 1-8. |
[13] | 杨雷, 叶洲杰, 李兆龙, 沈阳坤, 傅雅娟. 利用电转的方法对T细胞TET2基因敲除并探讨TET2对T细胞增殖的影响[J]. 生物技术通报, 2020, 36(1): 229-237. |
[14] | 杨飞芸, 白洁, 刘坤, 王瑞刚. CiCHI提高拟南芥总黄酮含量[J]. 生物技术通报, 2019, 35(11): 39-45. |
[15] | 于海亮, 邹文斌, 王晓慧, 林雨鑫, 戴国俊, 张涛, 张跟喜, 谢恺舟, 王金玉, 施会强. 京海黄鸡柔嫩艾美耳球虫感染后盲肠转录组分析[J]. 生物技术通报, 2019, 35(11): 64-71. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 601
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 91
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||