生物技术通报 ›› 2025, Vol. 41 ›› Issue (2): 321-330.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0773
• 研究报告 • 上一篇
项波卡1(), 周钻钻2, 冯佳卉2, 夏琛1, 李奇1, 陈春2(
)
收稿日期:
2024-08-12
出版日期:
2025-02-26
发布日期:
2025-02-28
通讯作者:
陈春,男,博士,教授,研究方向 :微生物防治;E-mail: aspring@cjlu.edu.cn作者简介:
项波卡,男,硕士研究生,研究方向 :烟草绿色防控;E-mail: xiangbk@zjtobacco.com
基金资助:
XIANG Bo-ka1(), ZHOU Zuan-zuan2, FENG Jia-hui2, XIA Chen1, LI Qi1, CHEN Chun2(
)
Received:
2024-08-12
Published:
2025-02-26
Online:
2025-02-28
摘要:
目的 开展烟叶霉变真菌的生物学研究对卷烟产业具有重要经济意义。 方法 利用平板分离法对致霉真菌进行分离纯化,利用测序技术和遗传进化分析对所得菌株进行鉴定,利用回接试验对所得菌株进行致霉性检测,利用生长检测确定所得菌株的致霉因素,利用模型模拟确定致霉因素的相关性。 结果 从霉变烟叶表面分离得到一株致霉真菌,经形态学及ITS序列同源性分析确定该菌株与Penicillium citrinum具有99.82%的同源性;致霉性实验证实,该菌株在相对湿度90%条件下可以导致烟叶霉变。致霉因素分析发现,该菌株的最适菌落生长及产孢条件为30℃和水活度为0.99。Gompertz模型模拟和因子分析表明,烟叶发生霉变与烟叶接触到的初始真菌孢子数量无显著的相关性,但与温度、水活度和温度水活度的互作密切相关。 结论 证实了Penicillium citrinum CY-H4具有致霉能力,温度和水活度是该菌引发烟叶霉变的主要致霉因素。
项波卡, 周钻钻, 冯佳卉, 夏琛, 李奇, 陈春. 一株烟叶霉变真菌的分离鉴定及其致霉因素研究[J]. 生物技术通报, 2025, 41(2): 321-330.
XIANG Bo-ka, ZHOU Zuan-zuan, FENG Jia-hui, XIA Chen, LI Qi, CHEN Chun. Isolation and Identification of a Fungus from Moldy Tobacco Leaf and Study on Its Mold-causing Factors[J]. Biotechnology Bulletin, 2025, 41(2): 321-330.
图1 分离纯化的霉菌CY-H4的菌落生长形态及其系统发育树A:培养皿正面照片;B:培养皿背面照片;C:显微观察照片;D:霉菌90%湿度下在烟叶上的生长情况;E:基于ITS序列构建的Neighbor-Joining系统发育树(Bootstrap =1 000)
Fig. 1 Colony growth morphology and phylogenetic tree of the purified isolation CY-H4A: Front view of the petri dish; B: back view of the petri dish; C: microscopic observation photos; D: growth of mold on tobacco leaves at 90% humidity; E: neighbor-joining phylogenetic tree constructed based on ITS sequences (Bootstrap =1 000)
图2 六组水活度处理下不同温度影响橘青霉菌落面积变化(初始接种浓度:104个/mL)
Fig. 2 Effects of different temperatures on the colony areas of P. citrinum with 6 treatments of water activity (Initial inoculation concentration: 104 spore/mL)
图3 六组水活度处理下不同温度影响橘青霉菌落面积变化(初始接种浓度:105个/mL)
Fig. 3 Effects of different temperatures on the colony areas of P. citrinum with 6 treatments of water activity (Initial inoculation concentration: 105 spore/mL)
图4 六组水活度处理下不同温度影响橘青霉菌落面积变化(初始接种浓度:106个/mL)
Fig. 4 Effects of different temperatures on the colony areas of P. citrinum with 6 treatments of water activity (Initial inoculation concentration: 106 spore/mL)
图5 不同初始接种浓度下橘青霉培养7 d后产孢量的变化A: 104个/mL; B: 105个/mL; C: 106个/mL
Fig. 5 Variation in spore productions of P. citrinum after 7 d of culture at different initial inoculation concentrations
参数 Parameter | Gompertz 模型 a Gompertz model a | |||
---|---|---|---|---|
平均值±标准误 Mean±SE | t | P | ||
K1 | 9.075±0.506 | 17.95 | 0.000 1 | |
c0 | 7.421±0.429 | 17.31 | 0.000 1 | |
c1 | 23.92±2.245 | 10.65 | 0.000 1 | |
c2 | -1 518.8±99.97 | 15.19 | 0.000 1 | |
c3 | -1.793±0.129 | 13.95 | 0.000 1 | |
c4 | 93.95±5.899 | 15.93 | 0.000 1 | |
ANOVA: r2 =0.92, F5, 624 =1 367.54, P<0.000 1 |
表1 比生长速度相关参数(温度和水活度)与菌落面积拟合改良型Gompertz模型的参数估计
Table 1 Parameters estimated for the modified Gompertz model separately depicting the parameters related to colony growth rate (temperature and water activity) through colony area
参数 Parameter | Gompertz 模型 a Gompertz model a | |||
---|---|---|---|---|
平均值±标准误 Mean±SE | t | P | ||
K1 | 9.075±0.506 | 17.95 | 0.000 1 | |
c0 | 7.421±0.429 | 17.31 | 0.000 1 | |
c1 | 23.92±2.245 | 10.65 | 0.000 1 | |
c2 | -1 518.8±99.97 | 15.19 | 0.000 1 | |
c3 | -1.793±0.129 | 13.95 | 0.000 1 | |
c4 | 93.95±5.899 | 15.93 | 0.000 1 | |
ANOVA: r2 =0.92, F5, 624 =1 367.54, P<0.000 1 |
图6 橘青霉不同水活度处理下菌落面积随培养温度、培养时间变化的模型预测A: Aw =0.77; B: Aw =0.83; C: Aw =0.87; D: Aw =0.90; E: Aw =0.95; F: Aw =0.99
Fig. 6 Model prediction of the changes of colony areas of P. citrinum with culture temperature and culture time under different water activity treatments
1 | 罗丽琼, 夏玉珍, 张天顺, 等. 储烟霉变原因及其防控技术研究进展 [J]. 贵州农业科学, 2015, 43(8): 118-121. |
Luo LQ, Xia YZ, Zhang TS, et al. Research progress in moldy causes and control technology in stored tobacco [J]. Guizhou Agric Sci, 2015, 43(8): 118-121. | |
2 | Zhou JX, Cheng Y, Yu LF, et al. Characteristics of fungal communities and the sources of mold contamination in mildewed tobacco leaves stored under different climatic conditions [J]. Appl Microbiol Biotechnol, 2022, 106(1): 131-144. |
3 | Welty RE, Vickroy DG. Evaluations of cigarettes made with mold-damaged and nondamaged flue-cured tobacco [J]. Contrib Tob Res, 1975, 8(2): 102-106. |
4 | Ross T. Indices for performance evaluation of predictive models in food microbiology [J]. J Appl Bacteriol, 1996, 81(5): 501-508. |
5 | Yang L, Yang QX, Yang SH, et al. Application of near infrared spectroscopy to detect mould contamination in tobacco [J]. J Infrared Spectrosc, 2015, 23(6): 391-400. |
6 | Pauly JL, Paszkiewicz G. Cigarette smoke, bacteria, mold, microbial toxins, and chronic lung inflammation [J]. J Oncol, 2011, 2011: 819129. |
7 | Chen L, Zhang QQ, Huang K, et al. Tumonoic acids K and L, novel metabolites from the marine-derived fungus Penicillium citrinum [J]. Heterocycles, 2012, 85(2): 413. |
8 | Zhou JX, Yu LF, Zhang J, et al. Characterization of the core microbiome in tobacco leaves during aging [J]. Microbiologyopen, 2020, 9(3): e984. |
9 | Zhou JX, Liu J, Wang DF, et al. Fungal communities are more sensitive to mildew than bacterial communities during tobacco storage processes [J]. Appl Microbiol Biotechnol, 2024, 108(1): 88. |
10 | 卢灿华, 苏家恩, 盖晓彤, 等. 烤烟霉变病原菌鉴定及其生防菌筛选 [J]. 中国烟草科学, 2022, 43(2): 45-51. |
Lu CH, Su JN, Gai XT, et al. Causal pathogen identification and antagonistic bacteria screening of tobacco leaf mold [J]. Chinese Tobacco Science, 2022, 43(2):45-51. | |
11 | Gao JN, Uwiringiyimana E, Zhang D. Microbial composition and diversity of the tobacco leaf phyllosphere during plant development [J]. Front Microbiol, 2023, 14: 1199241. |
12 | Zhang MZ, Guo DF, Wang HQ, et al. Analyzing microbial community and volatile compound profiles in the fermentation of cigar tobacco leaves [J]. Appl Microbiol Biotechnol, 2024, 108(1): 243. |
13 | 王林, 王宇栋, 朱宝, 等. 仓储片烟中优势霉菌的分离鉴定及其霉变挥发性代谢产物研究 [J]. 河南农业科学, 2023, 52(3): 101-108. |
Wang L, Wang YD, Zhu B, et al. Isolation and identification of dominant mold and its moldy volatile metabolites in tobacco strips during storage [J]. J Henan Agric Sci, 2023, 52(3): 101-108. | |
14 | 潘祖贤, 蔡永占, 何鹏飞, 等. 烘烤期烟叶霉烂病病原菌的分离、鉴定及生物学特性 [J]. 中国烟草科学, 2019, 40(4): 42-47. |
Pan ZX, Cai YZ, He PF, et al. Isolation, identification and characterization of the pathogen of tobacco leaf mold during flue-curing [J]. Chin Tob Sci, 2019, 40(4): 42-47. | |
15 | 刘亚兵, 何腊平, 高泽鑫, 等. 食品微生物生长预测模型的研究 [J]. 食品工业, 2016, 37(11): 159-164. |
Liu YB, He LP, Gao ZX, et al. Research on predictive model of food microorganism growth [J]. Food Ind, 2016, 37(11): 159-164. | |
16 | Kim JY, Jeon EB, Song M, et al. Development of predictive growth models of Aeromonas hydrophila on raw tuna Thunnus orientalis as a function of storage temperatures [J]. LWT, 2022, 156: 113052. |
17 | Pei PG, Xiong K, Wang XY, et al. Predictive growth kinetic parameters and modelled probabilities of deoxynivalenol production by Fusarium graminearum on wheat during simulated storing conditions [J]. J Appl Microbiol, 2022, 133(2): 349-361. |
18 | Mousa W, Ghazali FM, Jinap S, et al. Modelling the effect of water activity and temperature on growth rate and aflatoxin production by two isolates of Aspergillus flavus on paddy [J]. J Appl Microbiol, 2011, 111(5): 1262-1274. |
19 | Feng JH, Zhou ZZ, Xiong QY, et al. Exploration on the mildew conditions of Cladosporium asperulatum CY-H1, a pathogenic fungus on tobacco leaves [J]. Annu Res Rev Biol, 2024, 39: 48-57. |
20 | White TJ, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics [M]//PCR Protocols. Amsterdam: Elsevier, 1990: 315-322. |
21 | Berger RD. Comparison of the gompertz and logistic equations to describe plant disease progress [J]. Phytopathology, 1981, 71(7):716. |
22 | 唐启义, 冯明光. 实用统计分析及其DPS数据处理系统 [M]. 北京: 科学出版社, 2002. |
Tang QY, Feng MG. DPS data processing system for practical statistics [M]. Beijing: Science Press, 2002. | |
23 | Chen QL, Cai L, Wang HC, et al. Fungal composition and diversity of the tobacco leaf phyllosphere during curing of leaves [J]. Front Microbiol, 2020, 11: 554051. |
24 | 李魁, 李廷生, 王平诸, 等. 我国烟草真菌区系调查及霉变成因的研究 [J]. 郑州工程学院学报, 2003, 24(3): 20-24. |
Li K, Li TS, Wang PZ, et al. Study on mycoflora in tobacco and the cause of its going midewed [J]. J Zhengzhou Inst Technol, 2003, 24(3): 20-24. | |
25 | 李跃锋, 王锐亮, 陈河祥, 等. 烟支霉变微生物的鉴定及其生物学特性分析 [J]. 烟草科技, 2017, 50(6): 9-15. |
Li YF, Wang RL, Chen HX, et al. Identification and biological characterization of microorganisms resulted mildew cigarette [J]. Tob Sci Technol, 2017, 50(6): 9-15. | |
26 | 黄浦, 肖瑜, 刘以清, 等. 桔青霉降解茶皂素的实验研究 [J]. 桂林理工大学学报, 2016, 36(3): 592-596. |
Huang P, Xiao Y, Liu YQ, et al. Degradation of tea saponin by Penicillium citrinum [J]. J Guilin Univ Technol, 2016, 36(3): 592-596. | |
27 | 李文谦, 张恒, 茅燕勇. 桔青霉在小麦中最大比生长速率的温度 - 水分活度复合模型的建立 [J]. 食品科技, 2011, 36(11): 135-139. |
Li WQ, Zhang H, Mao YY. Development of predictive model for combined effect of temperature and water activity on the maximum specific growth rate of Penicillium citrinum on wheat [J]. Food Sci Technol, 2011, 36(11): 135-139. | |
28 | 罗云, 陈斌, 李凤丽, 等. 引起贮存期烟叶霉变的深层原因综述 [J]. 昆明学院学报, 2020, 42(6): 13-15, 34. |
Luo Y, Chen B, Li FL, et al. Summary on deeper reasons of moldiness of tobacco leaves during storage [J]. J Kunming Univ, 2020, 42(6): 13-15, 34. | |
29 | 徐晓光, 李红娟, 田振伟. 基于HP-Elman-LSSVM模型的仓储烟草霉变预测 [J]. 中国烟草科学, 2015, 36(4): 102-105. |
Xu XG, Li HJ, Tian ZW. Prediction of warehouse tobacco mildew based on HP-Elman-LSSVM model [J]. Chin Tob Sci, 2015, 36(4): 102-105. | |
30 | 张利华, 马钧钊, 勒国庆, 等. 基于BP神经网络的仓储烟草霉变预测 [J]. 华东交通大学学报, 2013, 30(3): 71-75. |
Zhang LH, Ma JZ, Le GQ, et al. Mildew prediction of warehousing tobacco based on BP neural network [J]. J East China Jiaotong Univ, 2013, 30(3): 71-75. |
[1] | 张亚亚, 李盼盼, 高惠惠, 贾晨波, 徐春燕. 基于根表真菌群落与病原菌鉴定探究‘宁杞5号’枸杞根腐病的发生机制[J]. 生物技术通报, 2024, 40(9): 238-248. |
[2] | 王芳, 于璐, 齐泽铮, 周长军, 于吉东. 大豆镰刀菌根腐病拮抗菌的筛选及生防效果[J]. 生物技术通报, 2024, 40(7): 216-225. |
[3] | 王璐, 刘梦雨, 张富源, 纪守坤, 王云, 张英杰, 段春辉, 刘月琴, 严慧. 瘤胃源粪臭素降解菌的分离鉴定及其降解特性研究[J]. 生物技术通报, 2024, 40(3): 305-311. |
[4] | 饶紫环, 谢志雄. 一株Olivibacter jilunii 纤维素降解菌株的分离鉴定与降解能力分析[J]. 生物技术通报, 2023, 39(8): 283-290. |
[5] | 游子娟, 陈汉林, 邓辅财. 鱼皮生物活性肽的提取及功能活性研究进展[J]. 生物技术通报, 2023, 39(7): 91-104. |
[6] | 车永梅, 郭艳苹, 刘广超, 叶青, 李雅华, 赵方贵, 刘新. 菌株C8和B4的分离鉴定及其耐盐促生效果和机制[J]. 生物技术通报, 2023, 39(5): 276-285. |
[7] | 王凤婷, 王岩, 孙颖, 崔文婧, 乔凯彬, 潘洪玉, 刘金亮. 耐盐碱土曲霉SYAT-1的分离鉴定及抑制植物病原真菌特性研究[J]. 生物技术通报, 2023, 39(2): 203-210. |
[8] | 李莹, 宋新颖, 何康, 郭志青, 于静, 张霞. 贝莱斯芽孢杆菌ZHX-7的分离鉴定及抑菌促生效果[J]. 生物技术通报, 2023, 39(12): 229-236. |
[9] | 董怡华, 王凌潇, 任涵雪, 陈峰. 一株耐低温异养硝化-好氧反硝化菌的分离鉴定及其脱氮特性[J]. 生物技术通报, 2023, 39(12): 237-249. |
[10] | 祖雪, 周瑚, 朱华珺, 任佐华, 刘二明. 枯草芽孢杆菌K-268的分离鉴定及对水稻稻瘟病的防病效果[J]. 生物技术通报, 2022, 38(6): 136-146. |
[11] | 王春艳, 腊贵晓, 苏秀红, 李萌, 董诚明. 地黄不同时期内生促生细菌的筛选及其促生特性分析[J]. 生物技术通报, 2022, 38(4): 242-252. |
[12] | 张功友, 王一涵, 郭敏, 张婷婷, 王兵, 刘红美. 重楼中一株产纤维素酶内生真菌的分离及鉴定[J]. 生物技术通报, 2022, 38(2): 95-104. |
[13] | 牛鸿宇, 舒倩, 杨海君, 颜智勇, 谭菊. 一株十二烷基硫酸钠高效降解菌的分离鉴定、降解特性及代谢途径研究[J]. 生物技术通报, 2022, 38(12): 287-299. |
[14] | 崔欣雨, 李荣荣, 蔡瑞, 王妍, 郑猛虎, 徐春城. 苜蓿青贮中乳酸降解菌的分离、鉴定及降解性能研究[J]. 生物技术通报, 2021, 37(9): 58-67. |
[15] | 李瑾, 彭可为, 潘求一, 朱哲远, 彭迪. 解淀粉芽胞杆菌HR-2的分离鉴定及对水稻稻瘟病菌的拮抗效果[J]. 生物技术通报, 2021, 37(3): 27-34. |
阅读次数 | ||||||
全文 84
|
|
|||||
摘要 |
|
|||||