生物技术通报 ›› 2023, Vol. 39 ›› Issue (12): 237-249.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0452
收稿日期:
2023-05-11
出版日期:
2023-12-26
发布日期:
2024-01-11
通讯作者:
董怡华同为本文通讯作者作者简介:
董怡华,女,博士,教授,研究方向:环境工程微生物在水处理中的应用;E-mail: harvesttime@163.com
基金资助:
DONG Yi-hua1,2(), WANG Ling-xiao2, REN Han-xue2, CHEN Feng2
Received:
2023-05-11
Published:
2023-12-26
Online:
2024-01-11
摘要:
为了提高低温废水的生物脱氮效率,从寒冷地区冬季土壤和底泥中分离筛选耐低温异养硝化-好氧反硝化细菌,研究其脱氮特性及途径。通过菌落和细胞形态特征观察、16S rRNA基因序列分析鉴定菌种。分别以NH4+-N、NO3--N、NO2--N为唯一氮源,以NH4+-N和NO3--N为混合氮源,考察菌株在低温条件(10℃)的硝化、反硝化以及同步硝化反硝化性能。采用聚合酶链式反应(polymerase chain reaction, PCR)对菌株的脱氮功能酶基因扩增,推测低温脱氮途径。结果表明,从河水底泥中筛选出一株异养硝化-好氧反硝化菌,经鉴定为Pseudomonas veronii,命名为P. veronii DH-3。该菌分别以相同初始含氮量(105 mg/L)的NH4+-N、NO3--N和NO2--N为唯一氮源,在10℃好氧培养48 h时,氮的去除率分别为99.07%、96.89%和90.29%,且在脱氮过程中几乎无亚硝酸盐的累积。以NH4+-N和NO3--N为混合氮源时,NH4+-N在48 h内被完全去除,NO3--N的去除率为87.09%;氮平衡分析结果表明,以NO3--N和NO2--N为唯一氮源时含氮气体和细胞内生物氮的转化率均低于NH4+-N,表明该菌株的异养硝化能力强于好氧反硝化能力。脱氮功能基因hao、napA、nirS、nirK、cnorB和nosZ的成功表达,进一步证实该菌株具有硝化反硝化能力。根据上述研究结果,推测该菌株低温脱氮的主要途径为异养硝化-好氧反硝化作用和同化作用。菌株P. veronii DH-3具有良好的异养硝化-好氧反硝化性能,为低温含氮废水的生物净化提供了理论支持。
董怡华, 王凌潇, 任涵雪, 陈峰. 一株耐低温异养硝化-好氧反硝化菌的分离鉴定及其脱氮特性[J]. 生物技术通报, 2023, 39(12): 237-249.
DONG Yi-hua, WANG Ling-xiao, REN Han-xue, CHEN Feng. Isolation and Identification of a Psychrotolerant Heterotrophic Nitrification-aerobic Denitrification Bacterium and Its Nitrogen-removing Characteristics[J]. Biotechnology Bulletin, 2023, 39(12): 237-249.
引物名称 Primer name | 引物序列 Primer sequence(5'-3') | 用途 Usage | 参考文献 Reference |
---|---|---|---|
27F 1492R | AGTTTGATCMTGGCTCAG GGTTACCTTGTTACGACTT | 16S rRNA基因序列扩增 | [ |
hao-F hao-R | GTTTCGGCATGGATACGCT CCAGGCATCAAAGAATACCC | hao基因序列扩增 | [ |
napA-F napA-R | CATTGCCGACTATGAAGCTCAGG AAAATATAGCGACTATTGATCTCTTGCAG | napA基因序列扩增 | [ |
nirS-cd3aF nirS-R3cd | GTSAACGTSAAGGARACSGG GASTTCGGRTGSGTCTTGA | nirS基因序列扩增 | [ |
nirK-F nirK-R | CGAACAAGGCAAGGATTTG ACTGTCAACACACCGCTCA | nirK基因序列扩增 | [ |
cnorB-F cnorB-R | CGNGARTTYCTSGARCARCC CRTADGCVCCRWAGAAVGC | cnorB基因序列扩增 | [ |
nosZ-F nosZ-R | CCCGCTGCACACC(A/G)CCTTCGA CGTCGCC(C/G)GAGATCTCGATCA | nosZ基因序列扩增 | [ |
表1 PCR引物序列表
Table 1 PCR primer sequences list
引物名称 Primer name | 引物序列 Primer sequence(5'-3') | 用途 Usage | 参考文献 Reference |
---|---|---|---|
27F 1492R | AGTTTGATCMTGGCTCAG GGTTACCTTGTTACGACTT | 16S rRNA基因序列扩增 | [ |
hao-F hao-R | GTTTCGGCATGGATACGCT CCAGGCATCAAAGAATACCC | hao基因序列扩增 | [ |
napA-F napA-R | CATTGCCGACTATGAAGCTCAGG AAAATATAGCGACTATTGATCTCTTGCAG | napA基因序列扩增 | [ |
nirS-cd3aF nirS-R3cd | GTSAACGTSAAGGARACSGG GASTTCGGRTGSGTCTTGA | nirS基因序列扩增 | [ |
nirK-F nirK-R | CGAACAAGGCAAGGATTTG ACTGTCAACACACCGCTCA | nirK基因序列扩增 | [ |
cnorB-F cnorB-R | CGNGARTTYCTSGARCARCC CRTADGCVCCRWAGAAVGC | cnorB基因序列扩增 | [ |
nosZ-F nosZ-R | CCCGCTGCACACC(A/G)CCTTCGA CGTCGCC(C/G)GAGATCTCGATCA | nosZ基因序列扩增 | [ |
水质指标 Water quality indicators | 分析方法Analytical methods |
---|---|
NH4+-N | 纳氏试剂分光光度法 |
NO3--N | 紫外分光光度法 |
NO2--N | N-(1-萘基)-乙二胺分光光度法 |
TN | 过硫酸钾氧化-紫外分光光度法 |
表2 水质指标及分析方法
Table 2 Analysis methods for water quality indicators
水质指标 Water quality indicators | 分析方法Analytical methods |
---|---|
NH4+-N | 纳氏试剂分光光度法 |
NO3--N | 紫外分光光度法 |
NO2--N | N-(1-萘基)-乙二胺分光光度法 |
TN | 过硫酸钾氧化-紫外分光光度法 |
图1 菌株DH-3的菌落和细胞形态学特征 A:固体培养基的菌落形态;B:革兰氏染色结果;C:细胞形态SEM照片
Fig. 1 Colony and cell morphological characteristics of strain DH-3 A: Colony morphology of solid medium. B: Gram staining results. C: SEM cell morphology
氮源 Nitrogen resource | 培养时间 Culture time/h | 氮质量浓度Nitrogen mass concentration/(mg·L-1) | |||||
---|---|---|---|---|---|---|---|
NH4+-N | NO3--N | NO2--N | 细胞内生物氮Intracellular-N | 含氮气体Gas-N | |||
NH4+-N | 0 | 105.49 ± 2.27 | - | - | - | - | |
48 | 0.98 ± 0.17 | 0.37 ± 0.04 | - | 47.24 ± 1.32 | 56.83 ± 1.24 | ||
NO3--N | 0 | - | 105.43 ± 2.22 | - | - | - | |
48 | 2.47 ± 0.18 | 3.28 ± 1.04 | - | 42.76 ± 2.07 | 55.46 ± 1.57 | ||
NO2--N | 0 | - | - | 105.53 ± 2.28 | - | - | |
48 | 2.48 ± 0.23 | 0.25 ± 0.01 | 10.24 ± 1.06 | 38.58 ± 2.31 | 53.21 ± 1.88 | ||
NH4+-N+NO3--N | 0 | 52.58 ± 1.48 | 52.61 ± 2.03 | - | - | - | |
48 | - | 6.79±0.93 | - | 44.59 ± 2.03 | 53.82 ± 1.46 |
表3 脱氮过程中的氮平衡分析
Table 3 Nitrogen balance analysis during nitrogen removal
氮源 Nitrogen resource | 培养时间 Culture time/h | 氮质量浓度Nitrogen mass concentration/(mg·L-1) | |||||
---|---|---|---|---|---|---|---|
NH4+-N | NO3--N | NO2--N | 细胞内生物氮Intracellular-N | 含氮气体Gas-N | |||
NH4+-N | 0 | 105.49 ± 2.27 | - | - | - | - | |
48 | 0.98 ± 0.17 | 0.37 ± 0.04 | - | 47.24 ± 1.32 | 56.83 ± 1.24 | ||
NO3--N | 0 | - | 105.43 ± 2.22 | - | - | - | |
48 | 2.47 ± 0.18 | 3.28 ± 1.04 | - | 42.76 ± 2.07 | 55.46 ± 1.57 | ||
NO2--N | 0 | - | - | 105.53 ± 2.28 | - | - | |
48 | 2.48 ± 0.23 | 0.25 ± 0.01 | 10.24 ± 1.06 | 38.58 ± 2.31 | 53.21 ± 1.88 | ||
NH4+-N+NO3--N | 0 | 52.58 ± 1.48 | 52.61 ± 2.03 | - | - | - | |
48 | - | 6.79±0.93 | - | 44.59 ± 2.03 | 53.82 ± 1.46 |
[1] | 卢瑞朋, 徐文江, 李安峰, 等. 强化反硝化除磷的新型多级缺氧-好氧工艺[J]. 中国环境科学, 2022, 42(4): 1706-1713. |
Lu RP, Xu WJ, Li AF, et al. Enhanced denitrifying phosphorus removal in novel multistage anoxic-oxic process[J]. China Environ Sci, 2022, 42(4): 1706-1713. | |
[2] | 郭超, 尹辉, 范奎, 等. 一株好氧反硝化菌的分离鉴定及脱氮特性研究[J]. 安全与环境工程, 2020, 27(4): 41-47. |
Guo C, Yin H, Fan K, et al. Isolation, identification and nitrogen removal characteristics of aerobic denitrifying bacteria[J]. Saf Environ Eng, 2020, 27(4): 41-47. | |
[3] |
Ren JL, Cheng XW, Ma HJ, et al. Characteristics of a novel heterotrophic nitrification and aerobic denitrification bacterium and its bioaugmentation performance in a membrane bioreactor[J]. Bioresour Technol, 2021, 342: 125908.
doi: 10.1016/j.biortech.2021.125908 URL |
[4] |
Angar Y, Kebbouche-Gana S, Djelali NE, et al. Novel approach for the ammonium removal by simultaneous heterotrophic nitrification and denitrification using a novel bacterial species co-culture[J]. World J Microbiol Biotechnol, 2016, 32(3): 36.
doi: 10.1007/s11274-015-2007-y URL |
[5] | 何腾霞, 倪九派, 李振轮, 等. 1株Arthrobacter arilaitensis菌的耐冷异养硝化和好氧反硝化作用[J]. 环境科学, 2016, 37(3): 1082-1088. |
He TX, Ni JP, Li ZL, et al. Heterotrophic nitrification and aerobic denitrification of the hypothermia aerobic denitrification bacterium: Arthrobacter arilaitensis[J]. Environ Sci, 2016, 37(3): 1082-1088. | |
[6] | Xu Y, He TX, Li ZL, et al. Nitrogen removal characteristics of Pseudomonas putida Y-9 capable of heterotrophic nitrification and aerobic denitrification at low temperature[J]. Biomed Res Int, 2017, 2017: 1429018. |
[7] |
Robertson LA, Kuenen JG. Aerobic denitrification: a controversy revived[J]. Arch Microbiol, 1984, 139(4): 351-354.
doi: 10.1007/BF00408378 URL |
[8] |
Zhang DY, Li WG, Huang XF, et al. Removal of ammonium in surface water at low temperature by a newly isolated Microbacterium sp. strain SFA13[J]. Bioresour Technol, 2013, 137: 147-152.
doi: 10.1016/j.biortech.2013.03.094 URL |
[9] |
Liu YX, Wang Y, Li Y, et al. Nitrogen removal characteristics of heterotrophic nitrification-aerobic denitrification by Alcaligenes faecalis C16[J]. Chin J Chem Eng, 2015, 23(5): 827-834.
doi: 10.1016/j.cjche.2014.04.005 URL |
[10] |
Wei R, Hui C, Zhang YP, et al. Nitrogen removal characteristics and predicted conversion pathways of a heterotrophic nitrification-aerobic denitrification bacterium, Pseudomonas aeruginosa P-1[J]. Environ Sci Pollut Res Int, 2021, 28(6): 7503-7514.
doi: 10.1007/s11356-020-11066-7 |
[11] |
Yang L, Ren YX, Liang X, et al. Nitrogen removal characteristics of a heterotrophic nitrifier Acinetobacter junii YB and its potential application for the treatment of high-strength nitrogenous wastewater[J]. Bioresour Technol, 2015, 193: 227-233.
doi: 10.1016/j.biortech.2015.05.075 URL |
[12] |
高宇轩, 靳静晨, 徐利杉, 等. 耐盐异养硝化-好氧反硝化菌Bacillus megatherium N07的分离及脱氮特性[J]. 生物技术通报, 2022, 38(7): 247-257.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-1111 |
Gao YX, Jin JC, Xu LS, et al. Isolation of halophilic heterotrophic nitrification-aerobic denitrification bacterium Bacillus megatherium N07 and its denitrification characteristics[J]. Biotechnol Bull, 2022, 38(7): 247-257. | |
[13] |
Ge QL, Yue XP, Wang GY. Simultaneous heterotrophic nitrification and aerobic denitrification at high initial phenol concentration by isolated bacterium Diaphorobacter sp. PD-7[J]. Chin J Chem Eng, 2015, 23(5): 835-841.
doi: 10.1016/j.cjche.2015.02.001 URL |
[14] | 杨静丹, 祝铭韩, 刘琳, 等. 异养硝化-好氧反硝化菌HY3-2的分离及脱氮特性[J]. 中国环境科学, 2020, 40(1): 294-304. |
Yang JD, Zhu MH, Liu L, et al. Isolation and denitrification characteristics of heterotrophic nitrification-aerobic denitrification bacterium HY3-2[J]. China Environ Sci, 2020, 40(1): 294-304. | |
[15] |
Yang M, Lu DW, Qin BD, et al. Highly efficient nitrogen removal of a coldness-resistant and low nutrient needed bacterium, Janthinobacterium sp. M-11[J]. Bioresour Technol, 2018, 256: 366-373.
doi: 10.1016/j.biortech.2018.02.049 URL |
[16] |
Xi HP, Zhou XT, Arslan M, et al. Heterotrophic nitrification and aerobic denitrification process: promising but a long way to go in the wastewater treatment[J]. Sci Total Environ, 2022, 805: 150212.
doi: 10.1016/j.scitotenv.2021.150212 URL |
[17] |
He TX, Xie DT, Li ZL, et al. Ammonium stimulates nitrate reduction during simultaneous nitrification and denitrification process by Arthrobacter arilaitensis Y-10[J]. Bioresour Technol, 2017, 239: 66-73.
doi: 10.1016/j.biortech.2017.04.125 URL |
[18] | 丁晓宇, 卢兴顺, 吕航, 等. 耐低温异养硝化-好氧反硝化菌的分离鉴定及脱氮特性[J]. 水处理技术, 2022, 48(12): 65-70, 76. |
Ding XY, Lu XS, Lv H, et al. Isolation, identification and nitrogen removal characteristics of heterotrophic nitrification-aerobic denitrification bacteria under low temperature[J]. Technol Water Treat, 2022, 48(12): 65-70, 76. | |
[19] | 周英萍, 唐美珍, 曹彦雪, 等. 一株耐冷异养硝化菌的分离鉴定及脱氮特性[J]. 湖泊科学, 2019, 31(3): 746-754. |
Zhou YP, Tang MZ, Cao YX, et al. Isolation and denitrification characteristics of a psychrotrophic and heterotrophic nitrification bacterium[J]. J Lake Sci, 2019, 31(3): 746-754. | |
[20] | 汤默然, 李茹莹. 异养硝化-好氧反硝化菌株的分离筛选及复配菌剂对河水的净化效果[J]. 环境科学学报, 2021, 41(7): 2657-2663. |
Tang MR, Li RY. Isolation of heterotrophic nitrification-aerobic denitrification bacteria strains and purification of river water by mixed cultures[J]. Acta Sci Circumstantiae, 2021, 41(7): 2657-2663. | |
[21] | Lane D J, Stackebrandt E, Goodfellow M. 16S/23S rRNA Sequencing. Nucleic Acid Techniques in Bacterial Systematics[M]. New York: Wiley, 1991: 115-175. |
[22] |
Xing CY, Fan YC, Chen X, et al. A self-assembled nanocompartment in anammox bacteria for resisting intracelluar hydroxylamine stress[J]. Sci Total Environ, 2020, 717: 137030.
doi: 10.1016/j.scitotenv.2020.137030 URL |
[23] |
Ke X, Liu C, Tang SQ, et al. Characterization of Acinetobacter indicus ZJB20129 for heterotrophic nitrification and aerobic denitrification isolated from an urban sewage treatment plant[J]. Bioresour Technol, 2022, 347: 126423.
doi: 10.1016/j.biortech.2021.126423 URL |
[24] |
Zhao TT, Chen PP, Zhang LJ, et al. Heterotrophic nitrification and aerobic denitrification by a novel Acinetobacter sp. TAC-1 at low temperature and high ammonia nitrogen[J]. Bioresour Technol, 2021, 339: 125620.
doi: 10.1016/j.biortech.2021.125620 URL |
[25] |
Lei X, Jia YT, Chen YC, et al. Simultaneous nitrification and denitrification without nitrite accumulation by a novel isolated Ochrobactrum anthropic LJ81[J]. Bioresour Technol, 2019, 272: 442-450.
doi: 10.1016/j.biortech.2018.10.060 URL |
[26] |
Xia L, Li XM, Fan WH, et al. Heterotrophic nitrification and aerobic denitrification by a novel Acinetobacter sp. ND7 isolated from municipal activated sludge[J]. Bioresour Technol, 2020, 301: 122749.
doi: 10.1016/j.biortech.2020.122749 URL |
[27] | 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. |
State Environmental Protection Administration. Water and Wastewater Monitoring Analysis Method[M]. 4th ed. Beijing: China Environmental Science Press, 2002. | |
[28] |
Arpigny JL, Feller G, Gerday C. Cloning, sequence and structural features of a lipase from the Antarctic facultative psychrophile Psychrobacter immobilis B10[J]. Biochim Biophys Acta, 1993, 1171(3): 331-333.
pmid: 7916627 |
[29] |
Qin W, Li WG, Huang XF, et al. A proteomic analysis of heterotrophic nitrifying bacterium Acinetobacter sp. HITLi 7T adaptation to low temperature using two-dimensional difference gel electrophoresis approach[J]. Int Biodeterior Biodegrad, 2016, 113: 113-119.
doi: 10.1016/j.ibiod.2016.03.009 URL |
[30] |
He TX, Li ZL, Sun Q, et al. Heterotrophic nitrification and aerobic denitrification by Pseudomonas tolaasii Y-11 without nitrite accumulation during nitrogen conversion[J]. Bioresour Technol, 2016, 200: 493-499.
doi: 10.1016/j.biortech.2015.10.064 URL |
[31] |
Cui Y, Cui YW, Huang JL. A novel halophilic Exiguobacterium mexicanum strain removes nitrogen from saline wastewater via heterotrophic nitrification and aerobic denitrification[J]. Bioresour Technol, 2021, 333: 125189.
doi: 10.1016/j.biortech.2021.125189 URL |
[32] |
Yang Q, Yang T, Shi Y, et al. The nitrogen removal characterization of a cold-adapted bacterium: Bacillus simplex H-B[J]. Bioresour Technol, 2021, 323: 124554.
doi: 10.1016/j.biortech.2020.124554 URL |
[33] |
Lang XD, Li QW, Ji MM, et al. Isolation and niche characteristics in simultaneous nitrification and denitrification application of an aerobic denitrifier, Acinetobacter sp. YS2[J]. Bioresour Technol, 2020, 302: 122799.
doi: 10.1016/j.biortech.2020.122799 URL |
[34] |
Qu J, Zhao RJ, Chen YY, et al. Enhanced nitrogen removal from low-temperature wastewater by an iterative screening of cold-tolerant denitrifying bacteria[J]. Bioprocess Biosyst Eng, 2022, 45(2): 381-390.
doi: 10.1007/s00449-021-02668-7 |
[35] |
Jin RF, Liu TQ, Liu GF, et al. Simultaneous heterotrophic nitrification and aerobic denitrification by the marine origin bacterium Pseudomonas sp. ADN-42[J]. Appl Biochem Biotechnol, 2015, 175(4): 2000-2011.
doi: 10.1007/s12010-014-1406-0 URL |
[36] |
Guo Y, Wang YY, Zhang ZJ, et al. Physiological and transcriptomic insights into the cold adaptation mechanism of a novel heterotrophic nitrifying and aerobic denitrifying-like bacterium Pseudomonas indoloxydans YY-1[J]. Int Biodeterior Biodegrad, 2018, 134: 16-24.
doi: 10.1016/j.ibiod.2018.08.001 URL |
[37] |
Ye Q, Li KL, Li ZL, et al. Heterotrophic nitrification-aerobic denitrification performance of strain Y-12 under low temperature and high concentration of inorganic nitrogen conditions[J]. Water, 2017, 9(11): 835.
doi: 10.3390/w9110835 URL |
[38] |
Chen PZ, Li J, Li QX, et al. Simultaneous heterotrophic nitrification and aerobic denitrification by bacterium Rhodococcus sp. CPZ24[J]. Bioresour Technol, 2012, 116: 266-270.
doi: 10.1016/j.biortech.2012.02.050 URL |
[39] |
张宇红, 董先博, 刘香宇, 等. 新型异养硝化-好氧反硝化菌Paracoccus sp. QD-19的分离及脱氮特性研究[J]. 生物技术通报, 2023, 39(3): 301-310.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-0834 |
Zhang YH, Dong XB, Liu XY, et al. Isolation of a novel heterotrophic nitrification-aerobic denitrification bacterium Paracoccus sp. QD-19 and its characterization of removing nitrogen[J]. Biotechnol Bull, 2023, 39(3): 301-310. | |
[40] |
Chen SH, He SY, Wu CJ, et al. Characteristics of heterotrophic nitrification and aerobic denitrification bacterium Acinetobacter sp. T1 and its application for pig farm wastewater treatment[J]. J Biosci Bioeng, 2019, 127(2): 201-205.
doi: 10.1016/j.jbiosc.2018.07.025 URL |
[41] |
Chen HJ, Zhou WZ, Zhu SN, et al. Biological nitrogen and phosphorus removal by a phosphorus-accumulating bacteria Acinetobacter sp. strain C-13 with the ability of heterotrophic nitrification-aerobic denitrification[J]. Bioresour Technol, 2021, 322: 124507.
doi: 10.1016/j.biortech.2020.124507 URL |
[42] |
Huang F, Pan LQ, Lv N, et al. Characterization of novel Bacillus strain N31 from mariculture water capable of halophilic heterotrophic nitrification-aerobic denitrification[J]. J Biosci Bioeng, 2017, 124(5): 564-571.
doi: S1389-1723(17)30267-0 pmid: 28716629 |
[43] |
Rout PR, Bhunia P, Dash RR. Simultaneous removal of nitrogen and phosphorous from domestic wastewater using Bacillus cereus GS-5 strain exhibiting heterotrophic nitrification, aerobic denitrification and denitrifying phosphorous removal[J]. Bioresour Technol, 2017, 244(Pt 1): 484-495.
doi: 10.1016/j.biortech.2017.07.186 URL |
[44] |
Yang JX, Feng L, Pi SS, et al. A critical review of aerobic denitrification: insights into the intracellular electron transfer[J]. Sci Total Environ, 2020, 731: 139080.
doi: 10.1016/j.scitotenv.2020.139080 URL |
[45] |
Padhi SK, Tripathy S, Sen R, et al. Characterisation of heterotrophic nitrifying and aerobic denitrifying Klebsiella pneumoniae CF-S9 strain for bioremediation of wastewater[J]. Int Biodeterior Biodegrad, 2013, 78: 67-73.
doi: 10.1016/j.ibiod.2013.01.001 URL |
[46] |
Throbäck IN, Enwall K, Jarvis A, et al. Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE[J]. FEMS Microbiol Ecol, 2004, 49(3): 401-417.
doi: 10.1016/j.femsec.2004.04.011 pmid: 19712290 |
[47] |
Carneiro Fidélis Silva L, Santiago Lima H, Antônio de Oliveira Mendes T, et al. Heterotrophic nitrifying/aerobic denitrifying bacteria: ammonium removal under different physical-chemical conditions and molecular characterization[J]. J Environ Manage, 2019, 248: 109294.
doi: 10.1016/j.jenvman.2019.109294 URL |
[48] |
Yao S, Ni JR, Ma T, et al. Heterotrophic nitrification and aerobic denitrification at low temperature by a newly isolated bacterium, Acinetobacter sp. HA2[J]. Bioresour Technol, 2013, 139: 80-86.
doi: 10.1016/j.biortech.2013.03.189 URL |
[49] |
Li YJ, Zhang LH, Liu WF, et al. Simultaneous removal of urea nitrogen and inorganic nitrogen from high-salinity wastewater by Halomonas sp. H36[J]. Environ Sci Pollut Res Int, 2023, 30(2): 2544-2554.
doi: 10.1007/s11356-022-22018-8 |
[50] |
Man QL, Zhang PL, Huang WQ, et al. A heterotrophic nitrification-aerobic denitrification bacterium Halomonas venusta TJPU05 suitable for nitrogen removal from high-salinity wastewater[J]. Front Environ Sci Eng, 2022, 16(6): 69.
doi: 10.1007/s11783-021-1503-6 |
[51] |
Qiao ZX, Wu YG, Qian J, et al. A lab-scale study on heterotrophic nitrification-aerobic denitrification for nitrogen control in aquatic ecosystem[J]. Environ Sci Pollut Res Int, 2020, 27(9): 9307-9317.
doi: 10.1007/s11356-019-07551-3 |
[1] | 饶紫环, 谢志雄. 一株Olivibacter jilunii 纤维素降解菌株的分离鉴定与降解能力分析[J]. 生物技术通报, 2023, 39(8): 283-290. |
[2] | 游子娟, 陈汉林, 邓辅财. 鱼皮生物活性肽的提取及功能活性研究进展[J]. 生物技术通报, 2023, 39(7): 91-104. |
[3] | 余洋, 刘天海, 刘理旭, 唐杰, 彭卫红, 陈阳, 谭昊. 羊肚菌菌种生产车间气溶胶微生物群落研究[J]. 生物技术通报, 2023, 39(5): 267-275. |
[4] | 车永梅, 郭艳苹, 刘广超, 叶青, 李雅华, 赵方贵, 刘新. 菌株C8和B4的分离鉴定及其耐盐促生效果和机制[J]. 生物技术通报, 2023, 39(5): 276-285. |
[5] | 张宇红, 董先博, 刘香宇, 许家琪, 徐子祾. 新型异养硝化-好氧反硝化菌Paracoccus sp. QD-19的分离及脱氮特性研究[J]. 生物技术通报, 2023, 39(3): 301-310. |
[6] | 王凤婷, 王岩, 孙颖, 崔文婧, 乔凯彬, 潘洪玉, 刘金亮. 耐盐碱土曲霉SYAT-1的分离鉴定及抑制植物病原真菌特性研究[J]. 生物技术通报, 2023, 39(2): 203-210. |
[7] | 李莹, 宋新颖, 何康, 郭志青, 于静, 张霞. 贝莱斯芽孢杆菌ZHX-7的分离鉴定及抑菌促生效果[J]. 生物技术通报, 2023, 39(12): 229-236. |
[8] | 蒋慧慧, 王强, 付维来, 饶志明, 张显. 一株异养硝化-好氧反硝化细菌的筛选及氮转化特性研究[J]. 生物技术通报, 2023, 39(12): 250-260. |
[9] | 李会杰, 董莲华, 陈桂芳, 刘思渊, 杨佳怡, 杨靖亚. 食品中椰毒假单胞菌微滴式数字PCR定量检测方法的建立[J]. 生物技术通报, 2023, 39(1): 127-136. |
[10] | 贺丽娜, 冯源, 石慧敏, 叶建仁. 具有杀线活性马尾松内生细菌的筛选与鉴定[J]. 生物技术通报, 2022, 38(8): 159-166. |
[11] | 高宇轩, 靳静晨, 徐利杉, 高雅娟, 张闻天, 李晨晨, 张国伟, 靳永胜. 耐盐异养硝化-好氧反硝化菌Bacillus megatherium N07的分离及脱氮特性[J]. 生物技术通报, 2022, 38(7): 247-257. |
[12] | 祖雪, 周瑚, 朱华珺, 任佐华, 刘二明. 枯草芽孢杆菌K-268的分离鉴定及对水稻稻瘟病的防病效果[J]. 生物技术通报, 2022, 38(6): 136-146. |
[13] | 王春艳, 腊贵晓, 苏秀红, 李萌, 董诚明. 地黄不同时期内生促生细菌的筛选及其促生特性分析[J]. 生物技术通报, 2022, 38(4): 242-252. |
[14] | 付雅丽, 彭万里, 林双君, 邓子新, 梁如冰. 香茅醇假单胞菌SJTE-3的短链脱氢酶SDR-X1的克隆及酶性质测定[J]. 生物技术通报, 2022, 38(3): 121-129. |
[15] | 胡珊, 梁卫驱, 黄皓, 徐匆, 罗华建, 胡楚维, 黄晓彦, 陈仕丽. 中药渣堆肥中解磷细菌的筛选、鉴定及其拮抗作用[J]. 生物技术通报, 2022, 38(3): 92-102. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||