| 1 |
Cong L, Ann Ran F, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems [J]. Science, 2013, 339(6121): 819-823.
|
| 2 |
Jiang FG, Doudna JA. CRISPR-Cas9 structures and mechanisms [J]. Annu Rev Biophys, 2017, 46: 505-529.
|
| 3 |
Shields RC, Walker AR, Maricic N, et al. Repurposing the Streptococcus mutans CRISPR-Cas9 system to understand essential gene function [J]. PLoS Pathog, 2020, 16(3): e1008344.
|
| 4 |
Zhu YM. Advances in CRISPR/Cas9 [J]. BioMed Res Int, 2022, 2022(1): 9978571.
|
| 5 |
Gilbert LA, Horlbeck MA, Adamson B, et al. Genome-scale CRISPR-mediated control of gene repression and activation [J]. Cell, 2014, 159(3): 647-661.
|
| 6 |
Chavez A, Tuttle M, Pruitt BW, et al. Comparison of Cas9 activators in multiple species [J]. Nat Methods, 2016, 13(7): 563-567.
|
| 7 |
Konermann S, Brigham MD, Trevino AE, et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex [J]. Nature, 2015, 517(7536): 583-588.
|
| 8 |
Heidersbach AJ, Dorighi KM, Gomez JA, et al. A versatile, high-efficiency platform for CRISPR-based gene activation [J]. Nat Commun, 2023, 14(1): 902.
|
| 9 |
Han K, Jeng EE, Hess GT, et al. Synergistic drug combinations for cancer identified in a CRISPR screen for pairwise genetic interactions [J]. Nat Biotechnol, 2017, 35(5): 463-474.
|
| 10 |
Pan JM, Zhang M, Dong LQ, et al. Genome-Scale CRISPR screen identifies LAPTM5 driving lenvatinib resistance in hepatocellular carcinoma [J]. Autophagy, 2023, 19(4): 1184-1198.
|
| 11 |
Feng F, Zhu YK, Ma YL, et al. A CRISPR activation screen identifies genes that enhance SARS-CoV-2 infection [J]. Protein Cell, 2022, 14(1): 64-68.
|
| 12 |
Awwad SW, Serrano-Benitez A, Thomas JC, et al. Revolutionizing DNA repair research and cancer therapy with CRISPR-Cas screens [J]. Nat Rev Mol Cell Biol, 2023, 24(7): 477-494.
|
| 13 |
Yang LP, Sheets TP, Feng Y, et al. Uncovering receptor-ligand interactions using a high-avidity CRISPR activation screening platform [J]. Sci Adv, 2024, 10(7): eadj2445.
|
| 14 |
Danziger O, Patel RS, DeGrace EJ, et al. Inducible CRISPR activation screen for interferon-stimulated genes identifies OAS1 as a SARS-CoV-2 restriction factor [J]. PLoS Pathog, 2022, 18(4): e1010464.
|
| 15 |
Rahman MM, Tollefsbol TO. Targeting cancer epigenetics with CRISPR-dCAS9: principles and prospects [J]. Methods, 2021, 187: 77-91.
|
| 16 |
Beaulieu JF, Ménard D. Isolation, characterization, and culture of normal human intestinal crypt and villus cells [J]. Methods Mol Biol, 2012, 806: 157-173.
|
| 17 |
Pászti-Gere E, Pomothy J, Jerzsele Á, et al. Exposure of human intestinal epithelial cells and primary human hepatocytes to trypsin-like serine protease inhibitors with potential antiviral effect [J]. J Enzyme Inhib Med Chem, 2021, 36(1): 659-668.
|
| 18 |
Perreault N, Beaulieu JF. Use of the dissociating enzyme thermolysin to generate viable human normal intestinal epithelial cell cultures [J]. Exp Cell Res, 1996, 224(2): 354-364.
|
| 19 |
Pageot LP, Perreault N, Basora N, et al. Human cell models to study small intestinal functions: recapitulation of the crypt-villus axis [J]. Microsc Res Tech, 2000, 49(4): 394-406.
|
| 20 |
Tremblay E, Auclair J, Delvin E, et al. Gene expression profiles of normal proliferating and differentiating human intestinal epithelial cells: a comparison with the Caco-2 cell model [J]. J Cell Biochem, 2006, 99(4): 1175-1186.
|
| 21 |
Guezguez A, Paré F, Benoit YD, et al. Modulation of stemness in a human normal intestinal epithelial crypt cell line by activation of the WNT signaling pathway [J]. Exp Cell Res, 2014, 322(2): 355-364.
|
| 22 |
Juntarachot N, Sunpaweravong S, Kaewdech A, et al. Characterization of adhesion, anti-adhesion, co-aggregation, and hydrophobicity of Helicobacter pylori and probiotic strains [J]. J Taibah Univ Med Sci, 2023, 18(5): 1048-1054.
|
| 23 |
Jiang YH, Zhang GQ, Li LT, et al. Transcriptomic analysis of PDCoV-infected HIEC-6 cells and enrichment pathways PI3K-Akt and P38 MAPK [J]. Viruses, 2024, 16(4): 579.
|
| 24 |
Jiang YH, Zhang GQ, Li LT, et al. A novel host restriction factor MRPS6 mediates the inhibition of PDCoV infection in HIEC-6 cells [J]. Front Immunol, 2024, 15: 1381026.
|
| 25 |
Joung J, Kirchgatterer PC, Singh A, et al. CRISPR activation screen identifies BCL-2 proteins and B3GNT2 as drivers of cancer resistance to T cell-mediated cytotoxicity [J]. Nat Commun, 2022, 13(1): 1606.
|
| 26 |
巩琦凡. 基于CRISPRa胃癌耐药相关基因筛选及功能研究 [D]. 保定: 河北大学, 2023.
|
|
Gong QF. Screening and functional study of drug resistance-related genes in gastric cancer based on CRISPRa [D]. Baoding: Hebei University, 2023.
|
| 27 |
Zhu SY, Liu Y, Zhou Z, et al. Genome-wide CRISPR activation screen identifies candidate receptors for SARS-CoV-2 entry [J]. Sci China Life Sci, 2022, 65(4): 701-717.
|
| 28 |
Clark T, Waller MA, Loo L, et al. CRISPR activation screens: navigating technologies and applications [J]. Trends Biotechnol, 2024, 42(8): 1017-1034.
|
| 29 |
Sastry L, Xu Y, Duffy L, et al. Product-enhanced reverse transcriptase assay for replication-competent retrovirus and lentivirus detection [J]. Hum Gene Ther, 2005, 16(10): 1227-1236.
|
| 30 |
Sandoval-Villegas N, Nurieva W, Amberger M, et al. Contemporary transposon tools: a review and guide through mechanisms and applications of Sleeping beauty, piggyBac and Tol2 for genome engineering [J]. Int J Mol Sci, 2021, 22(10): 5084.
|
| 31 |
Rostovskaya M, Fu J, Obst M, et al. Transposon-mediated BAC transgenesis in human ES cells [J]. Nucleic Acids Res, 2012, 40(19): e150.
|
| 32 |
Eckermann KN, Ahmed HMM, KaramiNejadRanjbar M, et al. Hyperactive piggyBac transposase improves transformation efficiency in diverse insect species [J]. Insect Biochem Mol Biol, 2018, 98: 16-24.
|
| 33 |
Vargas JE, Chicaybam L, Stein RT, et al. Retroviral vectors and transposons for stable gene therapy: advances, current challenges and perspectives [J]. J Transl Med, 2016, 14(1): 288.
|
| 34 |
Chong ZS, Ohnishi S, Yusa K, et al. Pooled extracellular receptor-ligand interaction screening using CRISPR activation [J]. Genome Biol, 2018, 19(1): 205.
|
| 35 |
Zhou J, Wan J, Gao XW, et al. Dynamic m(6)a mRNA methylation directs translational control of heat shock response [J]. Nature, 2015, 526(7574): 591-594.
|
| 36 |
Moreno-Mateos MA, Vejnar CE, Beaudoin JD, et al. CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo [J]. Nat Methods, 2015, 12(10): 982-988.
|