生物技术通报 ›› 2020, Vol. 36 ›› Issue (11): 188-197.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0250
收稿日期:
2020-03-10
出版日期:
2020-11-26
发布日期:
2020-11-20
作者简介:
叶洲杰,男,硕士研究生,研究方向:CRISPR基因编辑技术;E-mail: 基金资助:
YE Zhou-jie1,2,3(), WANG Xin-rui2,3,4()
Received:
2020-03-10
Published:
2020-11-26
Online:
2020-11-20
摘要:
CRISPR系统作为在现今科学研究中对基因编辑运用广泛的一项技术,在后基因组学时代对于基因功能研究、疾病发生发展机制以及基因靶向药物等研究具有重要意义。目前人们运用CRISPR/Cas9编辑技术成功构建细胞和模式生物模型用于临床医学研究。CRISPR/Cas9作为一类强大的基因编辑技术不单只运用于基因功能缺失或外源基因敲入等研究中,CRISPR基因敲除文库筛选系统、CRISPR/dCas9基因激活系统、CRISPR干扰技术和CRISPR分子诊断技术等CRISPR转化医学研究将CRISPR应用于基因高通量筛选、基因沉默导致疾病发生、跨表观遗传修饰激活基因表达、可逆性干扰靶标基因表达以及运用CRISPR分子诊断检测病原微生物感染性疾病等临床研究中,推动生命科学和临床医学等多学科的发展。针对CRISPR系统在转化医学中的研究应用进行阐述。
叶洲杰, 王心睿. CRISPR系统转化医学研究进展[J]. 生物技术通报, 2020, 36(11): 188-197.
YE Zhou-jie, WANG Xin-rui. Research Progress of CRISPR System in Translational Medicine[J]. Biotechnology Bulletin, 2020, 36(11): 188-197.
[1] | Yang F, Ge X, Gu F. Progress of next-generation targeted gene-editing techniques[J]. China Biotechnology, 2014,34(2):98-103. |
[2] |
Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science, 2007,315(5819):1709-1712.
doi: 10.1126/science.1138140 URL pmid: 17379808 |
[3] |
Jackson RN, Lavin M, Carter J, et al. Fitting CRISPR-associated Cas3 into the helicase family tree[J]. Current Opinion in Structural Biology, 2014,24:106-114.
doi: 10.1016/j.sbi.2014.01.001 URL pmid: 24480304 |
[4] |
Terns MP. CRISPR-Based Technologies:Impact of RNA-Targeting systems[J]. Molecular Cell, 2018,72(3):404-412.
doi: 10.1016/j.molcel.2018.09.018 URL pmid: 30388409 |
[5] | Jiang F, Doudna JA. CRISPR-Cas9 structures and mechanisms[J]. Annual Review of Biophysics, 2017, 46(1):annurev-biophys-062215-010822. |
[6] | Horii T, Hatada I. Genome engineering using the CRISPR/Cas system[J]. World Journal of Medical Genetics, 2014,4(3):69-76. |
[7] |
Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012,337(6096):816-821.
doi: 10.1126/science.1225829 URL pmid: 22745249 |
[8] |
Heler R, Samai P, Modell JW, et al. Cas9 specifies functional viral targets during CRISPR-Cas adaptation[J]. Nature, 2015,519(7542):199-202.
doi: 10.1038/nature14245 URL pmid: 25707807 |
[9] |
Guilinger JP, Thompson DB, Liu DR. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification[J]. Nature Biotechnology, 2014,32(6):577-582.
doi: 10.1038/nbt.2909 URL |
[10] |
Qi LS, Larson MH, Gilbert LA, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression[J]. Cell, 2013,152(5):1173-1183.
doi: 10.1016/j.cell.2013.02.022 URL |
[11] |
Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013,339(6121):819-823.
doi: 10.1126/science.1229223 URL |
[12] |
Luo X, He YX, Zhang C, et al. Trio deep-sequencing does not reveal unexpected off-target and on-target mutations in Cas9-edited rhesus monkeys[J]. Nature Communications, 2019,10(1):1-7.
doi: 10.1038/s41467-018-07882-8 URL pmid: 30602773 |
[13] |
Bhaya D, Davison M, Barrangou R. CRISPR-Cas systems in bacteria and archaea:versatile small RNAs for adaptive defense and regulation.[J]. Annual Review of Genetics, 2011,45(45):273-297.
doi: 10.1146/annurev-genet-110410-132430 URL |
[14] |
Ran F, Hsu P, Lin CY, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity[J]. Cell, 2013,154(6):1380-1389.
doi: 10.1016/j.cell.2013.08.021 URL pmid: 23992846 |
[15] |
Yang S, Chang R, Yang H, et al. CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington’s disease[J]. The Journal of Clinical Investigation, 2017,127(7):2719-2724.
doi: 10.1172/JCI92087 URL pmid: 28628038 |
[16] |
Zhou Y, Sharma J, Ke Q, et al. Atypical behaviour and connectivity in SHANK3-mutant macaques[J]. Nature, 2019,570(7761):326-331.
doi: 10.1038/s41586-019-1278-0 URL pmid: 31189958 |
[17] |
Wu D, Hu D, Chen H, et al. Glucose-regulated phosphorylation of TET2 by AMPK reveals a pathway linking diabetes to cancer[J]. Nature 2018,559(7715):637-641
doi: 10.1038/s41586-018-0350-5 URL pmid: 30022161 |
[18] |
Fraietta JA, Nobles CL, Sammons MA, et al. Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells[J]. Nature, 2018,558(7709):307-312.
doi: 10.1038/s41586-018-0178-z URL pmid: 29849141 |
[19] |
Wang L, Li L, Ma Y, et al. Reactivation of γ-globin expression through Cas9 or base editor to treat β-hemoglobinopathies[J]. Cell Research, 2020: 1-3.
doi: 10.1038/cr.1998.1 URL pmid: 9570012 |
[20] |
Hille F, Richter H, Wong SP, et al. The biology of CRISPR-Cas:backward and forward[J]. Cell, 2018,172(6):1239-1259.
doi: 10.1016/j.cell.2017.11.032 URL pmid: 29522745 |
[21] |
Ma E, Harrington LB, O’Connell MR, et al. Single-stranded DNA cleavage by divergent CRISPR-Cas9 enzymes[J]. Molecular Cell, 2015,60(3):398-407.
URL pmid: 26545076 |
[22] |
Zetsche B, Gootenberg JS, Abudayyeh OO, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system[J]. Cell, 2015,163(3):759-771.
doi: 10.1016/j.cell.2015.09.038 URL pmid: 26422227 |
[23] |
Chen JS, Ma E, Harrington LB, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity[J]. Science, 2018,360(6387):436-439.
doi: 10.1126/science.aar6245 URL pmid: 29449511 |
[24] |
Woodman CBJ, Collins SI, Young LS. The natural history of cervical HPV infection:unresolved issues[J]. Nature Reviews Cancer, 2007,7(1):11-22.
doi: 10.1038/nrc2050 URL pmid: 17186016 |
[25] |
Zuo X, Fan C, Chen HY. Biosensing:CRISPR-powered diagnostics[J]. Nature Biomedical Engineering, 2017,1(6):1-2.
doi: 10.1038/s41551-016-0001 URL |
[26] |
Abudayyeh OO, Gootenberg JS, Konermann S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector[J]. Science, 2016, 353(6299):aaf5573.
doi: 10.1126/science.aaf5573 URL pmid: 27256883 |
[27] |
East-Seletsky A, O’Connell MR, Knight SC, et al. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection[J]. Nature, 2016,538(7624):270-273.
doi: 10.1038/nature19802 URL pmid: 27669025 |
[28] |
Gootenberg JS, Abudayyeh OO, Lee JW, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2[J]. Science, 2017,356(6336):438-442.
doi: 10.1126/science.aam9321 URL pmid: 28408723 |
[29] |
Myhrvold C, Freije CA, Gootenberg JS, et al. Field-deployable viral diagnostics using CRISPR-Cas13[J]. Science, 2018,360(6387):444-448.
doi: 10.1126/science.aas8836 URL pmid: 29700266 |
[30] |
Gootenberg JS, Abudayyeh OO, Kellner MJ, et al. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6[J]. Science, 2018,360(6387):439-444.
doi: 10.1126/science.aaq0179 URL pmid: 29449508 |
[31] |
Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome[J]. The Lancet Respiratory Medicine, 2020,8:420-422.
doi: 10.1016/S2213-2600(20)30076-X URL pmid: 32085846 |
[32] |
Freije CA, Myhrvold C, Boehm CK, et al. Programmable inhibition and detection of RNA viruses using Cas13[J]. Molecular cell, 2019,76(5):826-837.
doi: 10.1016/j.molcel.2019.09.013 URL pmid: 31607545 |
[33] |
Nguyen TM, Zhang Y, Pandolfi PP. Virus against virus:a potent-ial treatment for 2019-nCov(SARS-CoV-2)and other RNA viru-ses[J]. Cell Research, 2020. Doi: 1038/s41422-020-0290-0.
doi: 10.1038/s41422-020-00422-4 URL pmid: 33051594 |
[34] |
Zhou Y, Zhu S, Cai C, et al. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells[J]. Nature, 2014,509(7501):487-491.
doi: 10.1038/nature13166 URL pmid: 24717434 |
[35] |
Yang X, Boehm JS, Yang X, et al. A public genome-scale lentiviral expression library of human ORFs[J]. Nature Methods, 2011,8(8):659-661.
doi: 10.1038/nmeth.1638 URL pmid: 21706014 |
[36] |
Mohr SE, Smith JA, Shamu CE, et al. RNAi screening comes of age:improved techniques and complementary approaches[J]. Nature Reviews Molecular Cell Biology, 2014,15(9):591-600.
doi: 10.1038/nrm3860 URL pmid: 25145850 |
[37] |
Rana TM. Illuminating the silence:understanding the structure and function of small RNAs[J]. Nature Reviews Molecular Cell Biology, 2007,8(1):23-36.
doi: 10.1038/nrm2085 URL pmid: 17183358 |
[38] | Sachse C, Krausz E, Krönke A, et al. High-throughput RNA interference strategies for target discovery and validation by using synthetic short interfering RNAs:functional genomics investigations of biological pathways[M] //Methods in enzymology. Academic Press, 2005,392:242-277. |
[39] |
Shalem O, Sanjana NE, Hartenian E, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells[J]. Science, 2014,343(6166):84-87.
doi: 10.1126/science.1247005 URL pmid: 24336571 |
[40] |
Han J, Perez JT, Chen C, et al. Genome-wide CRISPR/Cas9 screen identifies host factors essential for influenza virus replication[J]. Cell Reports, 2018,23(2):596-607.
doi: 10.1016/j.celrep.2018.03.045 URL pmid: 29642015 |
[41] |
Balboa D, Weltner, Eurola S, et al. Conditionally stabilized dCas9 activator for controlling gene expression in human cell reprogramming and differentiation[J]. Stem Cell Reports, 2015,5(3):448-459.
doi: 10.1016/j.stemcr.2015.08.001 URL pmid: 26352799 |
[42] |
Fujita T, Fujii H. Efficient isolation of specific genomic regions and identification of associated proteins by engineered DNA-binding molecule-mediated chromatin immunoprecipitation(enChIP)using CRISPR[J]. Biochemical and Biophysical Research Communications, 2013,439(1):132-136.
doi: 10.1016/j.bbrc.2013.08.013 URL pmid: 23942116 |
[43] |
Moosmann P, Georgiev O, Thiesen HJ, et al. Silencing of RNA polymerases II and III-dependent transcription by the KRAB protein domain of KOX1, a Krüppel-type zinc finger factor[J]. Biological Chemistry, 1997,378(7):669-678.
doi: 10.1515/bchm.1997.378.7.669 URL pmid: 9278146 |
[44] | Liu SJ, Horlbeck MA, Cho SW, et al. CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells[J]. Science, 2017, 355(6320):eaah7111. |
[45] |
Kearns NA, Pham H, Tabak B, et al. Functional annotation of native enhancers with a Cas9-histone demethylase fusion[J]. Nature Methods, 2015,12(5):401-403.
doi: 10.1038/nmeth.3325 URL pmid: 25775043 |
[46] |
Pfister SX, Ashworth A. Marked for death:targeting epigenetic changes in cancer[J]. Nature Reviews Drug Discovery, 2017,16(4):241.
doi: 10.1038/nrd.2016.256 URL pmid: 28280262 |
[47] |
Liao HK, Hatanaka F, Araoka T, et al. In vivo target gene activation via CRISPR/Cas9-mediated trans-epigenetic modulation[J]. Cell, 2017,171(7):1495-1507.
doi: 10.1016/j.cell.2017.10.025 URL pmid: 29224783 |
[48] |
Heerboth S, Lapinska K, Snyder N, et al. Use of epigenetic drugs in disease:an overview[J]. Genetics & Epigenetics, 2014, 6:GEG. S12270. 9-19.
doi: 10.4137/GEG.S12270 URL pmid: 25512710 |
[49] |
Maeder ML, Linder SJ, Cascio VM, et al. CRISPR RNA-guided activation of endogenous human genes[J]. Nature Methods, 2013,10(10):977-979.
doi: 10.1038/NMETH.2598 URL pmid: 23892898 |
[50] |
Hsu P, Lander E, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering[J]. Cell, 2014,157(6):1262-1278.
doi: 10.1016/j.cell.2014.05.010 URL pmid: 24906146 |
[51] |
Ji H, Jiang Z, Lu P, et al. Specific reactivation of latent HIV-1 by dCas9-SunTag-VP64-mediated guide RNA targeting the HIV-1 promoter[J]. Molecular Therapy, 2016,24(3):508-521.
doi: 10.1038/mt.2016.7 URL pmid: 26775808 |
[52] |
Liao HK, Hatanaka F, Araoka T, et al. In vivo target gene activation via CRISPR/Cas9-mediated trans-epigenetic modulation[J]. Cell, 2017,171(7):1495-1507.
doi: 10.1016/j.cell.2017.10.025 URL pmid: 29224783 |
[53] |
Dahlman JE, Abudayyeh OO, Joung J, et al. Orthogonal gene knockout and activation with a catalytically active Cas9 nuclease[J]. Nature Biotechnology, 2015,33(11):1159-1161.
doi: 10.1038/nbt.3390 URL pmid: 26436575 |
[54] |
Matharu N, Rattanasopha S, Tamura S, et al. CRISPR-mediated activation of a promoter or enhancer rescues obesity caused by haploinsufficiency[J]. Science, 2019, 363(6424):eaau0629.
doi: 10.1126/science.aau0629 URL pmid: 30545847 |
[55] |
Konermann S, Brigham MD, Trevino AE, et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex[J]. Nature, 2015,517(7536):583-588.
doi: 10.1038/nature14136 URL pmid: 25494202 |
[56] |
Johannessen CM, Boehm JS, Kim SY, et al. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation[J]. Nature, 2010,468(7326):968-972.
doi: 10.1038/nature09627 URL pmid: 21107320 |
[57] |
Musgrove EA, Sutherland RL . Biological determinants of endocrine resistance in breast cancer[J]. Nature Reviews Cancer, 2009,9(9):631-643.
doi: 10.1038/nrc2713 URL pmid: 19701242 |
[58] |
Heaton BE, Kennedy EM, Dumm RE, et al. A CRISPR activation screen identifies a pan-avian influenza virus inhibitory host factor[J]. Cell Reports, 2017,20(7):1503-1512.
doi: 10.1016/j.celrep.2017.07.060 URL pmid: 28813663 |
[59] |
Dahlman JE, Abudayyeh OO, Joung J, et al. Orthogonal gene knockout and activation with a catalytically active Cas9 nuclease[J]. Nature Biotechnology, 2015,33(11):1159-1163.
doi: 10.1038/nbt.3390 URL pmid: 26436575 |
[60] |
Schaefer KA, Wu WH, Colgan DF, et al. Unexpected mutations after CRISPR-Cas9 editing in vivo[J]. Nature Methods, 2017,14(6):547-548.
doi: 10.1038/nmeth.4293 URL pmid: 28557981 |
[1] | 陈小玲, 廖东庆, 黄尚飞, 陈英, 芦志龙, 陈东. 利用CRISPR/Cas9系统改造酿酒酵母的研究进展[J]. 生物技术通报, 2023, 39(8): 148-158. |
[2] | 杨玉梅, 张坤晓. 应用CRISPR/Cas9技术建立ERK激酶相分离荧光探针定点整合的稳定细胞株[J]. 生物技术通报, 2023, 39(8): 159-164. |
[3] | 施炜涛, 姚春鹏, 魏文康, 王蕾, 房元杰, 仝钰洁, 马晓姣, 蒋文, 张晓爱, 邵伟. 利用CRISPR/Cas9技术构建MDH2敲除细胞株及抗呕吐毒素效应研究[J]. 生物技术通报, 2023, 39(7): 307-315. |
[4] | 刘晓燕, 祝振亮, 史广宇, 华梓宇, 杨晨, 张涌, 刘军. 乳腺生物反应器的表达优化策略[J]. 生物技术通报, 2023, 39(5): 77-91. |
[5] | 程静雯, 曹磊, 张艳敏, 叶倩, 陈敏, 谭文松, 赵亮. CHO细胞多基因工程改造策略的建立及应用[J]. 生物技术通报, 2023, 39(2): 283-291. |
[6] | 黄文莉, 李香香, 周炆婷, 罗莎, 姚维嘉, 马杰, 张芬, 沈钰森, 顾宏辉, 王建升, 孙勃. 利用CRISPR/Cas9技术靶向编辑青花菜BoZDS[J]. 生物技术通报, 2023, 39(2): 80-87. |
[7] | 王兵, 赵会纳, 余婧, 陈杰, 骆梅, 雷波. 利用CRISPR/Cas9系统研究REVOLUTA参与烟草叶芽发育的调控[J]. 生物技术通报, 2023, 39(10): 197-208. |
[8] | 李双喜, 华进联. 抗猪繁殖与呼吸障碍综合征基因编辑猪研究进展[J]. 生物技术通报, 2023, 39(10): 50-57. |
[9] | 林蓉, 郑月萍, 徐雪珍, 李丹丹, 郑志富. 拟南芥ACOL8基因在乙烯合成与响应中的功能分析[J]. 生物技术通报, 2023, 39(1): 157-165. |
[10] | 刘静静, 刘晓蕊, 李琳, 王盈, 杨海元, 戴一凡. 利用CRISPR/Cas9技术建立OXTR基因敲除猪胎儿成纤维细胞系[J]. 生物技术通报, 2022, 38(6): 272-278. |
[11] | Olalekan Amoo, 胡利民, 翟云孤, 范楚川, 周永明. 利用基因编辑技术研究BRANCHED1参与油菜分枝过程的调控[J]. 生物技术通报, 2022, 38(4): 97-105. |
[12] | 丁亚群, 丁宁, 谢深民, 黄梦娜, 张昱, 张勤, 姜力. Vps28基因敲除小鼠模型的构建及其对泌乳和免疫性状影响的研究[J]. 生物技术通报, 2022, 38(3): 164-172. |
[13] | 燕炯, 冯晨毅, 高学坤, 许祥, 杨佳敏, 陈朝阳. 基于CRISPR/Cas9技术构建Plin1基因敲除小鼠模型及表型分析[J]. 生物技术通报, 2022, 38(3): 173-180. |
[14] | 钟菁, 孙玲玲, 张姝, 蒙园, 支怡飞, 涂黎晴, 徐天鹏, 濮黎萍, 陆阳清. 应用CRISPR/Cas9技术敲除Mda5基因对新城疫及传染性法氏囊病毒复制的影响[J]. 生物技术通报, 2022, 38(11): 90-96. |
[15] | 宗梅, 韩硕, 郭宁, 段蒙蒙, 刘凡, 王桂香. 利用真空渗透和CRISPR/Cas9系统获得非转基因菜薹突变体[J]. 生物技术通报, 2022, 38(10): 159-163. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||