| 1 |
公丕成, 蔡辰, 张博, 等. 我国抗生素菌渣资源化研究新进展 [J]. 环境工程, 2017, 35(5): 107-111.
|
|
Gong PC, Cai C, Zhang B, et al. New progress of reseach on resource of antibiotic bacterial residue in China [J]. Environ Eng, 2017, 35(5): 107-111.
|
| 2 |
Peng S, Li HJ, Song D, et al. Influence of zeolite and superphosphate as additives on antibiotic resistance genes and bacterial communities during factory-scale chicken manure composting [J]. Bioresour Technol, 2018, 263: 393-401.
|
| 3 |
Tiseo K, Huber L, Gilbert M, et al. Global trends in antimicrobial use in food animals from 2017 to 2030 [J]. Antibiotics, 2020, 9(12): 918.
|
| 4 |
Fair RJ, Tor Y. Antibiotics and bacterial resistance in the 21st century [J]. Perspect Medicin Chem, 2014, 6: 25-64.
|
| 5 |
Wu J, Wang JY, Li ZT, et al. Antibiotics and antibiotic resistance genes in agricultural soils: a systematic analysis [J]. Crit Rev Environ Sci Technol, 2023, 53(7): 847-864.
|
| 6 |
Shawver S, Wepking C, Ishii S, et al. Application of manure from cattle administered antibiotics has sustained multi-year impacts on soil resistome and microbial community structure [J]. Soil Biol Biochem, 2021, 157: 108252.
|
| 7 |
Zhu YG, Johnson TA, Su JQ, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms [J]. Proc Natl Acad Sci USA, 2013, 110(9): 3435-3440.
|
| 8 |
Sun YM, Guo YJ, Shi MM, et al. Effect of antibiotic type and vegetable species on antibiotic accumulation in soil-vegetable system, soil microbiota, and resistance genes [J]. Chemosphere, 2021, 263: 128099.
|
| 9 |
Zeng QT, Sun JT, Zhu LZ. Occurrence and distribution of antibiotics and resistance genes in greenhouse and open-field agricultural soils in China [J]. Chemosphere, 2019, 224: 900-909.
|
| 10 |
Cui EP, Cui BJ, Fan XY, et al. Ryegrass (Lolium multiflorum L.) and Indian mustard (Brassica juncea L.) intercropping can improve the phytoremediation of antibiotics and antibiotic resistance genes but not heavy metals [J]. Sci Total Environ, 2021, 784: 147093.
|
| 11 |
Liang YT, Pei M, Wang DD, et al. Improvement of soil ecosystem multifunctionality by dissipating manure-induced antibiotics and resistance genes [J]. Environ Sci Technol, 2017, 51(9): 4988-4998.
|
| 12 |
张丹丹, 李若兰, 李厚禹, 等. 外源抗生素抗性基因在农田系统中的定殖机制综述 [J]. 农业环境科学学报, 2024, 43(10): 2191-2199.
|
|
Zhang DD, Li RL, Li HY, et al. Colonization mechanism of exogenous antibiotic resistance genes in agricultural systems: a review [J]. J Agro Environ Sci, 2024, 43(10): 2191-2199.
|
| 13 |
Bahram M, Hildebrand F, Forslund SK, et al. Structure and function of the global topsoil microbiome [J]. Nature, 2018, 560(7717): 233-237.
|
| 14 |
Fermor TR, Wood DA. Degradation of bacteria by Agaricus bisporus and other fungi [J]. Microbiology, 1981, 126(2): 377-387.
|
| 15 |
Holatko J, Brtnicky M, Mustafa A, et al. Effect of digestate modified with amendments on soil health and plant biomass under varying experimental durations [J]. Materials, 2023, 16(3): 1027.
|
| 16 |
Liu CS, Zhao DF, Ma WJ, et al. Denitrifying sulfide removal process on high-salinity wastewaters in the presence of Halomonas sp [J]. Appl Microbiol Biotechnol, 2016, 100(3): 1421-1426.
|
| 17 |
Muloi D, Ward MJ, Pedersen AB, et al. Are food animals responsible for transfer of antimicrobial-resistant Escherichia coli or their resistance determinants to human populations? A systematic review [J]. Foodborne Pathog Dis, 2018, 15(8): 467-474.
|
| 18 |
Li YC, Deng XH, Zhang N, et al. Rhizosphere suppression hinders antibiotic resistance gene (ARG) spread under bacterial invasion [J]. One Health, 2023, 16: 100481.
|
| 19 |
Baars JJP, Scholtmeijer K, Sonnenberg ASM, et al. Critical factors involved in primordia building in Agaricus bisporus: a review [J]. Molecules, 2020, 25(13): 2984.
|
| 20 |
Eastwood DC, Herman B, Noble R, et al. Environmental regulation of reproductive phase change in Agaricus bisporus by 1-octen-3-ol, temperature and CO₂ [J]. Fungal Genet Biol, 2013, 55: 54-66.
|
| 21 |
Lucas D, Badia-Fabregat M, Vicent T, et al. Fungal treatment for the removal of antibiotics and antibiotic resistance genes in veterinary hospital wastewater [J]. Chemosphere, 2016, 152: 301-308.
|
| 22 |
Sen KY, Llewellyn M, Taheri B, et al. Mechanism of fungal remediation of wetland water: Stropharia rugosoannulata as promising fungal species for the development of biofilters to remove clinically important pathogenic and antibiotic resistant bacteria in contaminated water [J]. Front Microbiol, 2023, 14: 1234586.
|
| 23 |
Banerjee S, Schlaeppi K, van der Heijden MGA. Keystone taxa as drivers of microbiome structure and functioning [J]. Nat Rev Microbiol, 2018, 16(9): 567-576.
|
| 24 |
石丽红, 孙梅, 唐海明, 等. 不同施肥模式下稻田土壤氮组分及微生物多样性研究进展 [J]. 中国农学通报, 2022, 38(27): 106-110.
|
|
Shi LH, Sun M, Tang HM, et al. Soil nitrogen fractions and microbial diversity in paddy field under different fertilization modes: a review [J]. Chin Agric Sci Bull, 2022, 38(27): 106-110.
|
| 25 |
Muszyńska B, Lazur J, Dobosz K. Biological significance of edible mushrooms in mycoremediation [J]. Postepy Biochem, 2017, 63(4): 326-334.
|
| 26 |
Yadav P, Rai SN, Mishra V, et al. Mycoremediation of environmental pollutants: a review with special emphasis on mushrooms [J]. Environ Sustain, 2021, 4(4): 605-618.
|
| 27 |
Hoffman MT, Elizabeth Arnold A. Diverse bacteria inhabit living hyphae of phylogenetically diverse fungal endophytes [J]. Appl Environ Microbiol, 2010, 76(12): 4063-4075.
|
| 28 |
Wu WX, Lu HP, Sastri A, et al. Contrasting the relative importance of species sorting and dispersal limitation in shaping marine bacterial versus protist communities [J]. ISME J, 2018, 12(2): 485-494.
|
| 29 |
Song S, Han ML, Wang XM, et al. Fate of antibiotic resistance genes in cultivation substrate and its association with bacterial communities throughout commercial production of Agaricus bisporus [J]. Ecotoxicol Environ Saf, 2023, 249: 114360.
|