生物技术通报 ›› 2025, Vol. 41 ›› Issue (9): 54-61.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0351
吴夏明(
), 周陈平, 杨敏, 徐泽, 邝瑞彬, 刘传和, 贺涵, 魏岳荣(
)
收稿日期:2025-04-02
出版日期:2025-09-26
发布日期:2025-09-24
通讯作者:
魏岳荣,男,博士,研究员,研究方向 :亚热带作物种质资源收集评价、细胞工程和分子育种;E-mail: weid18@163.com作者简介:吴夏明,男,博士,助理研究员,研究方向 :草莓、番木瓜的遗传育种及生物技术;E-mail: wuxiaming625@126.com
基金资助:
WU Xia-ming(
), ZHOU Chen-ping, YANG Min, XU Ze, KUANG Rui-bin, LIU Chuan-he, HE Han, WEI Yue-rong(
)
Received:2025-04-02
Published:2025-09-26
Online:2025-09-24
摘要:
目的 株高是影响番木瓜产量和品质的重要性状之一,定位番木瓜株高的主要候选基因,为番木瓜的矮化育种提供基因资源。 方法 以YY(植株较高)和GM(植株较矮)为亲本构建定位群体,利用BSA-seq技术对两亲本以及子代混池GY-H(高池)和GY-S(矮池)进行测序分析,数据经质控后,利用ED以及SNP-index法计算混池之间的基因频率差距,定位番木瓜株高候选区间。 结果 本次BSA-seq产生的数据良好,数据经过滤后,最终得到高质量的SNP位点337 980个用于基因定位,利用ED以及SNP-index法计算寻找混池之间基因型频率的显著差异,最终分别在第3、6和8染色体上共定位到大小为0.93 Mb的候选区间,将该区间与番木瓜‘紫晖’参考基因组比对,0.93 Mb的区间内共包含46个编码基因,其中,有37个基因被注释。 结论 Cp_zihui12764、Cp_zihui06963、Cp_zihui07024和Cp_zihui12732可能是调控番木瓜株高的候选基因。
吴夏明, 周陈平, 杨敏, 徐泽, 邝瑞彬, 刘传和, 贺涵, 魏岳荣. 基于BSA-seq的番木瓜株高候选基因定位[J]. 生物技术通报, 2025, 41(9): 54-61.
WU Xia-ming, ZHOU Chen-ping, YANG Min, XU Ze, KUANG Rui-bin, LIU Chuan-he, HE Han, WEI Yue-rong. Gene Mapping of Plant Height in Papaya Based on BSA-seq[J]. Biotechnology Bulletin, 2025, 41(9): 54-61.
图1 两亲本番木瓜植株高度表型A和B分别为YY和GM的株高
Fig. 1 Plant height phenotypes of two papaya (Carica papaya L.) parentsA and B are the plant heights of YY and GM, respectively
| 样本名称Sample name | 质控后 reads Clean reads | 过滤后的碱基数Clean base (bp) | Q20 (%) | Q30 (%) | GC (%) | 比对效率Mapped (%) | 平均测序深度 Average depth (X) | 10 × 覆盖率 Coverage ratio 10 × (%) |
|---|---|---|---|---|---|---|---|---|
| GM | 57 631 310 | 8 615 217 987 | 97.98 | 94.94 | 36.52 | 99.38 | 24 | 90.48 |
| YY | 57 073 064 | 8 530 048 829 | 98.01 | 94.88 | 37.23 | 99.39 | 24 | 90.14 |
| GY-S | 90 185 416 | 13 468 978 624 | 97.98 | 94.81 | 37.05 | 98.20 | 38 | 95.87 |
| GY-H | 88 204 618 | 13 174 359 352 | 97.99 | 94.89 | 36.78 | 99.38 | 37 | 96.44 |
表1 样本测序数据质控统计分析
Table 1 Statistical analysis of sample sequencing data quality control
| 样本名称Sample name | 质控后 reads Clean reads | 过滤后的碱基数Clean base (bp) | Q20 (%) | Q30 (%) | GC (%) | 比对效率Mapped (%) | 平均测序深度 Average depth (X) | 10 × 覆盖率 Coverage ratio 10 × (%) |
|---|---|---|---|---|---|---|---|---|
| GM | 57 631 310 | 8 615 217 987 | 97.98 | 94.94 | 36.52 | 99.38 | 24 | 90.48 |
| YY | 57 073 064 | 8 530 048 829 | 98.01 | 94.88 | 37.23 | 99.39 | 24 | 90.14 |
| GY-S | 90 185 416 | 13 468 978 624 | 97.98 | 94.81 | 37.05 | 98.20 | 38 | 95.87 |
| GY-H | 88 204 618 | 13 174 359 352 | 97.99 | 94.89 | 36.78 | 99.38 | 37 | 96.44 |
| 样本名称Sample name | SNP数量SNP number | 转换Transition | 颠换Transversion | 转换颠换比Ti/Tv | 杂合SNP数Number of heterozygous SNPs | 纯合SNP数Number of homozygous SNPs | 杂合率Het-ratio (%) |
|---|---|---|---|---|---|---|---|
| GM | 965 507 | 690 948 | 274 559 | 2.51 | 527 727 | 437 780 | 54.65 |
| YY | 990 492 | 707 374 | 283 118 | 2.49 | 666 029 | 324 463 | 67.24 |
| GY-S | 1 192 451 | 852 055 | 340 396 | 2.50 | 972 939 | 219 512 | 81.59 |
| GY-H | 1 197 004 | 856 131 | 340 873 | 2.51 | 961 753 | 235 251 | 80.34 |
| 总计Total | 1 312 849 | 938 704 | 374 145 | 2.50 | - | - | - |
表2 BSA-seq检测到SNP的数量与类型
Table 2 Number and types of SNPS detected by BSA-seq
| 样本名称Sample name | SNP数量SNP number | 转换Transition | 颠换Transversion | 转换颠换比Ti/Tv | 杂合SNP数Number of heterozygous SNPs | 纯合SNP数Number of homozygous SNPs | 杂合率Het-ratio (%) |
|---|---|---|---|---|---|---|---|
| GM | 965 507 | 690 948 | 274 559 | 2.51 | 527 727 | 437 780 | 54.65 |
| YY | 990 492 | 707 374 | 283 118 | 2.49 | 666 029 | 324 463 | 67.24 |
| GY-S | 1 192 451 | 852 055 | 340 396 | 2.50 | 972 939 | 219 512 | 81.59 |
| GY-H | 1 197 004 | 856 131 | 340 873 | 2.51 | 961 753 | 235 251 | 80.34 |
| 总计Total | 1 312 849 | 938 704 | 374 145 | 2.50 | - | - | - |
图3 各样本间SNPs(A)与InDels(B)统计韦恩图GM、YY、GY-H、GY-S分别为矮植株亲本、高植株亲本、高植株混池和矮植株混池中检测到的SNP以及InDel的数量
Fig. 3 Venn plots of SNPs (A) and InDels (B) statistics among samplesGM, YY, GY-H, and GY-S are the number of SNPs and InDels detected in the dwarf plant parent, tall plant parent, tall plant mixed pool and dwarf plant mixed pool, respectively
图4 染色体上欧氏距离分布图横坐标为每个染色体上的碱基位置,纵坐标代表SNP的ED值的N次方
Fig. 4 Distribution of Euclidean distances on chromosomesThe horizontal coordinates are the base positions on each chromosome, and the vertical coordinates indicate the Nth power of the ED of the SNP
图5 SNP-index在染色体上的分布横坐标为各条染色体的名称及其长度,纵坐标代表SNP-index值,点即为SNP-index,黑色线为SNP-index的均值,红色线95%置信线
Fig. 5 Distribution of SNP-index on chromosomesThe horizontal coordinate is the name of each chromosome and its length, the vertical coordinate indicates the SNP-index value, the dot is the SNP-index, the black line is the mean value of the SNP-index, and the red colored line is the 95% confidence line
| 基因编号Gene_ID | 基因功能注释Annotation of gene function |
|---|---|
| Cp_zihui12720 | DNA引导的RNA聚合酶 DNA-directed RNA polymerase |
| Cp_zihui07030 | 线粒体转录终止因子 Mitochodrial transcription termination factor |
| Cp_zihui06023 | 半乳糖基转移酶 Galactosyltransferase |
| Cp_zihui12764 | 2OG-Fe(Ⅱ)加氧酶家族 2OG-Fe(Ⅱ) oxygenase superfamily |
| Cp_zihui07021 | GTPase激活蛋白 GTP-binding protein |
| Cp_zihui12712 | NRT1/PTR蛋白家族 Protein NRT1/PTR FAMILY |
| Cp_zihui06951 | 蛋白质泛素连接酶 Putative E3 ubiquitin-protein ligase |
| Cp_zihui06022 | 2-烯醛还原酶 2-alkenal reductase (NADP(+)-dependent) |
| Cp_zihui12730 | 含U-box结构域的蛋白 U-box domain-containing protein |
| Cp_zihui12716 | DeSI蛋白 DeSI-like protein |
| Cp_zihui05738 | 肌球蛋白7 Myosin-7 |
| Cp_zihui07019 | 丝氨酸/苏氨酸蛋白激酶 Putative serine/threonine-protein kinase |
| Cp_zihui05736 | 肌球蛋白8 Myosin-8 |
| Cp_zihui12718 | NRT/PTR蛋白家族 Protein NRT1/PTR FAMILY |
| Cp_zihui07027 | 线粒体转录终止因子 Mitochodrial transcription termination factor-related protein |
| Cp_zihui06963 | 2OG-Fe(Ⅱ)加氧酶家族 2OG-Fe(Ⅱ) oxygenase superfamily |
| Cp_zihui06964 | 肌苷尿苷水解酶 Inosine-uridine preferring nucleoside hydrolase |
| Cp_zihui12725 | 木聚糖酶抑制剂N-末端 Xylanase inhibitor N-terminal |
| Cp_zihui06018 | 泛素自噬蛋白 Autophagy protein Atg8 ubiquitin like |
| Cp_zihui12734 | 肽基脯氨酰顺反异构酶CYP22 Peptidyl-prolyl cis-trans isomerase CYP22 |
| Cp_zihui07025 | 线粒体转录终止因子 Mitochodrial transcription termination factor-related protein |
| Cp_zihui06953 | 叶绿体丙酮酸磷酸二激酶 Pyruvate, phosphate dikinase, chloroplastic |
| Cp_zihui16799 | NPR1蛋白 NPR1 protein |
| Cp_zihui16893 | Rbx 1a蛋白 RING-box protein 1a |
| Cp_zihui16892 | 类丝氨酸蛋白酶SBT1.8 Subtilisin-like protease SBT1.8 |
| Cp_zihui05733 | 吲哚-3-丙酮酸单加氧酶YUCCA3 Indole-3-pyruvate monooxygenase YUCCA3 |
| Cp_zihui07029 | 线粒体转录终止因子 Mitochodrial transcription termination factor |
| Cp_zihui07022 | 锌指结构域蛋白 Zinc finger CCCH domain-containing protein |
| Cp_zihui05696 | 28 kD 核糖核蛋白 28 kD ribonucleoprotein |
| Cp_zihui06020 | S-酰基转移酶7 S-acyltransferase protein 7 |
| Cp_zihui07024 | AP2/ERF家族蛋白 AP2/ERF domain-containing protein |
| Cp_zihui05695 | 质体定位蛋白2 Plasmodesmata-located protein 2 |
| Cp_zihui12731 | 磷脂酰肌醇激酶6 Phosphatidylinositol 4-phosphate 5-kinase 6 |
| Cp_zihui12737 | NADH脱氢酶 NADH dehydrogenase |
| Cp_zihui12732 | TGA 6转录因子 Transcription factor TGA6 |
| Cp_zihui12719 | 苯丙氨酸-tRNA连接酶 Phenylalanine--tRNA ligase |
| Cp_zihui12735 | E3泛素蛋白连接酶 E3 ubiquitin-protein ligase |
表3 候选区间内基因的注释信息
Table 3 Annotated information for genes within candidate intervals
| 基因编号Gene_ID | 基因功能注释Annotation of gene function |
|---|---|
| Cp_zihui12720 | DNA引导的RNA聚合酶 DNA-directed RNA polymerase |
| Cp_zihui07030 | 线粒体转录终止因子 Mitochodrial transcription termination factor |
| Cp_zihui06023 | 半乳糖基转移酶 Galactosyltransferase |
| Cp_zihui12764 | 2OG-Fe(Ⅱ)加氧酶家族 2OG-Fe(Ⅱ) oxygenase superfamily |
| Cp_zihui07021 | GTPase激活蛋白 GTP-binding protein |
| Cp_zihui12712 | NRT1/PTR蛋白家族 Protein NRT1/PTR FAMILY |
| Cp_zihui06951 | 蛋白质泛素连接酶 Putative E3 ubiquitin-protein ligase |
| Cp_zihui06022 | 2-烯醛还原酶 2-alkenal reductase (NADP(+)-dependent) |
| Cp_zihui12730 | 含U-box结构域的蛋白 U-box domain-containing protein |
| Cp_zihui12716 | DeSI蛋白 DeSI-like protein |
| Cp_zihui05738 | 肌球蛋白7 Myosin-7 |
| Cp_zihui07019 | 丝氨酸/苏氨酸蛋白激酶 Putative serine/threonine-protein kinase |
| Cp_zihui05736 | 肌球蛋白8 Myosin-8 |
| Cp_zihui12718 | NRT/PTR蛋白家族 Protein NRT1/PTR FAMILY |
| Cp_zihui07027 | 线粒体转录终止因子 Mitochodrial transcription termination factor-related protein |
| Cp_zihui06963 | 2OG-Fe(Ⅱ)加氧酶家族 2OG-Fe(Ⅱ) oxygenase superfamily |
| Cp_zihui06964 | 肌苷尿苷水解酶 Inosine-uridine preferring nucleoside hydrolase |
| Cp_zihui12725 | 木聚糖酶抑制剂N-末端 Xylanase inhibitor N-terminal |
| Cp_zihui06018 | 泛素自噬蛋白 Autophagy protein Atg8 ubiquitin like |
| Cp_zihui12734 | 肽基脯氨酰顺反异构酶CYP22 Peptidyl-prolyl cis-trans isomerase CYP22 |
| Cp_zihui07025 | 线粒体转录终止因子 Mitochodrial transcription termination factor-related protein |
| Cp_zihui06953 | 叶绿体丙酮酸磷酸二激酶 Pyruvate, phosphate dikinase, chloroplastic |
| Cp_zihui16799 | NPR1蛋白 NPR1 protein |
| Cp_zihui16893 | Rbx 1a蛋白 RING-box protein 1a |
| Cp_zihui16892 | 类丝氨酸蛋白酶SBT1.8 Subtilisin-like protease SBT1.8 |
| Cp_zihui05733 | 吲哚-3-丙酮酸单加氧酶YUCCA3 Indole-3-pyruvate monooxygenase YUCCA3 |
| Cp_zihui07029 | 线粒体转录终止因子 Mitochodrial transcription termination factor |
| Cp_zihui07022 | 锌指结构域蛋白 Zinc finger CCCH domain-containing protein |
| Cp_zihui05696 | 28 kD 核糖核蛋白 28 kD ribonucleoprotein |
| Cp_zihui06020 | S-酰基转移酶7 S-acyltransferase protein 7 |
| Cp_zihui07024 | AP2/ERF家族蛋白 AP2/ERF domain-containing protein |
| Cp_zihui05695 | 质体定位蛋白2 Plasmodesmata-located protein 2 |
| Cp_zihui12731 | 磷脂酰肌醇激酶6 Phosphatidylinositol 4-phosphate 5-kinase 6 |
| Cp_zihui12737 | NADH脱氢酶 NADH dehydrogenase |
| Cp_zihui12732 | TGA 6转录因子 Transcription factor TGA6 |
| Cp_zihui12719 | 苯丙氨酸-tRNA连接酶 Phenylalanine--tRNA ligase |
| Cp_zihui12735 | E3泛素蛋白连接酶 E3 ubiquitin-protein ligase |
| [1] | 杨培生, 钟思现, 杜中军, 等. 我国番木瓜产业发展现状和主要问题 [J]. 中国热带农业, 2007(4): 8-9. |
| Yang PS, Zhong SX, Du ZJ, et al. Present situation and main problems of papaya industry in China [J]. China Trop Agric, 2007(4): 8-9. | |
| [2] | 张芮宁, 袁舟宇, 陈萍. 番木瓜采后保鲜技术研究进展 [J]. 园艺与种苗, 2021, 41(2): 47-52. |
| Zhang RN, Yuan ZY, Chen P. Research progress on postharvest preservation technology of Carica papaya [J]. Hortic Seed, 2021, 41(2): 47-52. | |
| [3] | Yang M, Zhou CP, Yang H, et al. Genome-wide analysis of basic helix-loop-helix transcription factors in papaya (Carica papaya L.) [J]. PeerJ, 2020, 8: e9319. |
| [4] | 刘昌芬. 番木瓜的开发和研究进展 [J]. 云南热作科技, 1999, 22(4): 27-31. |
| Liu CF. Exploiture and study progress of papaya [J]. J Yunnan Trop Crops Sci Technol, 1999, 22(4): 27-31. | |
| [5] | 吴夏明, 周陈平, 杨敏, 等. 小果型非转基因番木瓜新品种黄花佑的选育 [J]. 果树学报, 2024, 41(1): 193-196. |
| Wu XM, Zhou CP, Yang M, et al. Breeding of a new non-transgene and small-fruit-sized Papaya cultivar Huanghuayou [J]. J Fruit Sci, 2024, 41(1): 193-196. | |
| [6] | He Q, Wu H, Zeng LJ, et al. OsKANADI1 and OsYABBY5 regulate rice plant height by targeting GIBERELLIN 2-OXIDASE6 [J]. Plant Cell, 2024, 37(1): koae276. |
| [7] | Jiang L, Liu X, Xiong GS, et al. DWARF 53 acts as a repressor of strigolactone signalling in rice [J]. Nature, 2013, 504(7480): 401-405. |
| [8] | Kaur A, Best NB, Hartwig T, et al. A maize semi-dwarf mutant reveals a GRAS transcription factor involved in brassinosteroid signaling [J]. Plant Physiol, 2024, 195(4): 3072-3096. |
| [9] | Chen Q, Song J, Du WP, et al. Identification and genetic mapping for rht-DM a dominant dwarfing gene in mutant semi-dwarf maize using QTL-seq approach [J]. Genes Genomics, 2018, 40(10): 1091-1099. |
| [10] | Sun LH, Yang WL, Li YF, et al. A wheat dominant dwarfing line with Rht12, which reduces stem cell length and affects gibberellic acid synthesis, is a 5AL terminal deletion line [J]. Plant J, 2019, 97(5): 887-900. |
| [11] | Ao QJ, Qiu TS, Liao F, et al. Knockout of SlYTH2, encoding a YTH domain-containing protein, caused plant dwarfing, delayed fruit internal ripening, and increased seed abortion rate in tomato [J]. Plant Sci, 2023, 335: 111807. |
| [12] | Zhang GY, Ren Y, Sun HH, et al. A high-density genetic map for anchoring genome sequences and identifying QTLs associated with dwarf vine in pumpkin (Cucurbita maxima Duch.) [J]. BMC Genomics, 2015, 16: 1101. |
| [13] | Song L, Liu J, Cao BL, et al. Reducing brassinosteroid signalling enhances grain yield in semi-dwarf wheat [J]. Nature, 2023, 617(7959): 118-124. |
| [14] | Xie ZZ, Jin L, Sun Y, et al. OsNAC120 balances plant growth and drought tolerance by integrating GA and ABA signaling in rice [J]. Plant Commun, 2024, 5(3): 100782. |
| [15] | 冯轶, 许雪峰, 张新忠, 等. 苹果矮化砧木致矮机理的研究进展 [J]. 园艺学报, 2018, 45(9): 1633-1641. |
| Feng Y, Xu XF, Zhang XZ, et al. Progress of dwarfing mechanism of apple rootstock [J]. Acta Hortic Sin, 2018, 45(9): 1633-1641. | |
| [16] | 叶宇, 欧春青, 王斐, 等. 梨矮化砧木致矮机制研究进展 [J]. 果树学报, 2022, 39(11): 2163-2171. |
| Ye Y, Ou CQ, Wang F, et al. Progress in research on the dwarfing mechanism of pear dwarfing rootstocks [J]. J Fruit Sci, 2022, 39(11): 2163-2171. | |
| [17] | 方天, 刘继红. 主要果树重要性状QTL鉴定研究进展 [J]. 园艺学报, 2022, 49(12): 2622-2640. |
| Fang T, Liu JH. Advances in identification of QTLs associated with significant traits in major fruit trees [J]. Acta Hortic Sin, 2022, 49(12): 2622-2640. | |
| [18] | Zhang B, Yang HJ, Li YN, et al. MdNAC5: a key regulator of fructose accumulation in apple fruit [J]. New Phytol, 2024, 244(6): 2458-2473. |
| [19] | Ma CQ, Wang X, Yu MY, et al. PpMYB36 encodes a MYB-type transcription factor that is involved in russet skin coloration in pear (Pyrus pyrifolia) [J]. Front Plant Sci, 2021, 12: 776816. |
| [20] | Wang LW, Pan L, Niu L, et al. Fine mapping of the gene controlling the weeping trait of Prunus persica and its uses for MAS in progenies [J]. BMC Plant Biol, 2022, 22(1): 459. |
| [21] | Yang M, Kong XD, Zhou CP, et al. Genomic insights into the domestication and genetic basis of yield in papaya [J]. Hortic Res, 2025, 12(5): uhaf045. |
| [22] | Li RC, Jiang HW, Zhang ZG, et al. Combined linkage mapping and BSA to identify QTL and candidate genes for plant height and the number of nodes on the main stem in soybean [J]. Int J Mol Sci, 2019, 21(1): 42. |
| [23] | Zhang XG, Hou XB, Liu YH, et al. Maize brachytic2 (Br2) suppresses the elongation of lower internodes for excessive auxin accumulation in the intercalary meristem region [J]. BMC Plant Biol, 2019, 19(1): 589. |
| [24] | 王恩琪, 殷祥贞, 甄萍萍, 等. 基于BSA-seq技术定位花生种皮颜色基因 [J]. 花生学报, 2024, 53(3): 14-20. |
| Wang EQ, Yin XZ, Zhen PP, et al. Mapping of candidate testa color genes in peanuts based on BSA-seq [J]. J Peanut Sci, 2024, 53(3): 14-20. | |
| [25] | 樊超, 毕影东, 李炜, 等. 基于BSA-seq的大豆棕色荚皮L2基因定位 [J]. 华北农学报, 2024, 39(4): 64-71. |
| Fan C, Bi YD, Li W, et al. Mapping of brown pod color related genes L2 based on BSA-seq in soybean [J]. Acta Agric Boreali Sin, 2024, 39(4): 64-71. | |
| [26] | Han FM, Zhu BG. Evolutionary analysis of three gibberellin oxidase genesin rice, Arabidopsis, and soybean [J]. Gene, 2011, 473(1): 23-35. |
| [27] | Teng F, Zhai LH, Liu RX, et al. ZmGA3ox2, a candidate gene for a major QTL qPH3.1, for plant height in maize [J]. Plant J, 2013, 73(3): 405-416. |
| [28] | Fukazawa J, Mori M, Watanabe S, et al. DELLA-GAF1 complex is a main component in gibberellin feedback regulation of GA20 oxidase 2 [J]. Plant Physiol, 2017, 175(3): 1395-1406. |
| [29] | Feng K, Hou XL, Xing GM, et al. Advances in AP2/ERF super-family transcription factors in plant [J]. Crit Rev Biotechnol, 2020, 40(6): 750-776. |
| [30] | Li HC, Wang LJ, Liu MS, et al. Maize plant architecture is regulated by the ethylene biosynthetic gene ZmACS7 [J]. Plant Physiol, 2020, 183(3): 1184-1199. |
| [31] | Mashiguchi K, Tanaka K, Sakai T, et al. The main auxin biosynthesis pathway in Arabidopsis [J]. Proc Natl Acad Sci USA, 2011, 108(45): 18512-18517. |
| [32] | Gao YN, Wang GQ, Yuan SJ, et al. Phenotypic analysis and molecular characterization of an allelic mutant of the D61 gene in rice [J]. Crop J, 2014, 2(4): 175-182. |
| [33] | Hou SS, Niu HH, Tao QY, et al. A mutant in the CsDET2 gene leads to a systemic brassinosteriod deficiency and super compact phenotype in cucumber (Cucumis sativus L.) [J]. Theor Appl Genet, 2017, 130(8): 1693-1703. |
| [34] | Lu CF, Liu XY, Tang YQ, et al. A comprehensive review of TGA transcription factors in plant growth, stress responses, and beyond [J]. Int J Biol Macromol, 2024, 258: 128880. |
| [35] | Han Q, Tan WR, Zhao YQ, et al. Salicylic acid-activated BIN2 phosphorylation of TGA3 promotes Arabidopsis PR gene expression and disease resistance [J]. EMBO J, 2022, 41(19): e110682. |
| [1] | 刘泽洲, 段乃彬, 岳丽昕, 王清华, 姚行浩, 高莉敏, 孔素萍. 大蒜叶片蜡质成分分析及蜡质缺失基因Ggl-1筛选[J]. 生物技术通报, 2025, 41(9): 219-231. |
| [2] | 李欣芃, 张武汉, 张莉, 舒服, 何强, 郭杨, 邓华凤, 王悦, 孙平勇. γ射线诱变创制水稻突变体及其分子鉴定[J]. 生物技术通报, 2025, 41(3): 35-43. |
| [3] | 孙志勇, 杜怀东, 刘阳, 马嘉欣, 于雪然, 马伟, 姚鑫杰, 王敏, 李培富. 水稻籽粒γ-氨基丁酸含量的全基因组关联分析[J]. 生物技术通报, 2024, 40(8): 53-62. |
| [4] | 王腾辉, 葛雯冬, 罗雅方, 范震宇, 王玉书. 基于极端混合池(BSA)全基因组重测序的羽衣甘蓝白色叶基因定位[J]. 生物技术通报, 2023, 39(9): 176-182. |
| [5] | 王宝宝, 王海洋. 理想株型塑造之于玉米耐密改良[J]. 生物技术通报, 2023, 39(8): 11-30. |
| [6] | 吴元明, 林佳怡, 柳雨汐, 李丹婷, 张宗琼, 郑晓明, 逄洪波. 基于BSA-seq和RNA-seq挖掘水稻株高相关QTL[J]. 生物技术通报, 2023, 39(8): 173-184. |
| [7] | 徐建霞, 丁延庆, 冯周, 曹宁, 程斌, 高旭, 邹桂花, 张立异. 基于Super-GBS的高粱株高和节间数QTL定位[J]. 生物技术通报, 2023, 39(7): 185-194. |
| [8] | 周诗晨, 仪治本, 王馨翊, 杨晓颖, 孙丽娜, 栾维江, 梁闪闪. 高粱双粒突变体Dgs的遗传分析与基因定位[J]. 生物技术通报, 2022, 38(7): 171-177. |
| [9] | 潘志文, 陈伟庭, 高洁儿, 周峰, 姚涓, 王声斌, 姜大刚. 转基因番木瓜基因组DNA的快速制备和PCR检测方法[J]. 生物技术通报, 2021, 37(6): 286-294. |
| [10] | 韩立杰, 才宏伟. 高粱粒重遗传研究进展[J]. 生物技术通报, 2019, 35(5): 15-27. |
| [11] | 石建斌, 杨永智, 王舰. 马铃薯突变体赤霉素代谢关键酶基因差异表达分析[J]. 生物技术通报, 2016, 32(1): 124-130. |
| [12] | 董斌, 李荣喜, 黄永芳, 洪文泓, 谭莎. 分子标记在油茶研究中的应用[J]. 生物技术通报, 2015, 31(6): 74-80. |
| [13] | 甘仪梅,曾凡云,张树珍,杨本鹏. BAC-FISH在植物基因组研究中的应用[J]. 生物技术通报, 2013, 29(10): 58-65. |
| [14] | 肇莹, 王丽萍, 肖军, 王娜, 龚娜, 陈珣, , 杨镇, 王红, 杨涛. 水稻转导外源总DNA 变异后代盐胁迫下株高及生理指标分析[J]. 生物技术通报, 2012, 0(12): 71-75. |
| [15] | 乔枫;赵开军;. 植物中赤霉素代谢酶与株高的关系[J]. , 2011, 0(03): 1-6. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||