生物技术通报 ›› 2025, Vol. 41 ›› Issue (9): 219-231.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0220

• 研究报告 • 上一篇    

大蒜叶片蜡质成分分析及蜡质缺失基因Ggl-1筛选

刘泽洲1(), 段乃彬2, 岳丽昕1, 王清华1, 姚行浩1, 高莉敏1, 孔素萍1()   

  1. 1.山东省农业科学院蔬菜研究所 农业农村部黄淮设施园艺工程重点实验室 山东省大宗露地蔬菜育种重点实验室,济南 250100
    2.山东省农业科学院农作物种质资源研究所,济南 250100
  • 收稿日期:2025-03-04 出版日期:2025-09-26 发布日期:2025-09-24
  • 通讯作者: 孔素萍,女,博士,研究员,研究方向 :蔬菜遗传育种;E-mail: spkong1019@126.com
  • 作者简介:刘泽洲,男,博士,助理研究员,研究方向 :蔬菜遗传育种;E-mail: lzezhouay215@163.com
  • 基金资助:
    山东省重点研发计划(2022LZGCQY015);山东省重点研发计划(2024LZGC015);山东省蔬菜产业技术体系(SDAIT-05);国家重点研发计划(2023YFD1600200);山东省自然科学基金青年基金(ZR2020QC153)

Analysis of Wax Components and Screening of Wax-deficient Gene Ggl-1 in Garlic (Allium sativum L.

LIU Ze-zhou1(), DUAN Nai-bin2, YUE Li-xin1, WANG Qing-hua1, YAO Xing-hao1, GAO Li-min1, KONG Su-ping1()   

  1. 1.Shandong Key Laboratory of Bulk Open-field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100
    2.Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100
  • Received:2025-03-04 Published:2025-09-26 Online:2025-09-24

摘要:

目的 分析大蒜蜡质缺失突变体8684-gl叶表蜡质缺失成分,筛选蜡质缺失基因Ggl-1,为探讨大蒜叶片表面蜡粉的分子调控机制奠定基础,也可为大蒜抗病虫害育种及其在生产实践中的应用提供理论基础。 方法 以大蒜蜡质缺失突变体8684-gl和野生型8684植株叶片为研究对象,利用气相色谱-质谱联用(gas chromatograph-mass spectrometer-computer, GC-MS)分析大蒜蜡质缺失突变体8684-gl及其野生型8684叶片表面的蜡质成分,通过转录组和实时荧光定量PCR(RT-qPCR)筛选蜡质缺失基因Ggl-1结果 通过GC-MS分析发现,大蒜叶片表面蜡质包含39个成分,8684-gl突变体叶片表面蜡质缺失的主要物质为16-庚烯酮(16-hentriacontanone, C31H62O)。转录组分析结果显示,蜡质缺失突变体8684-gl及其野生型8684间差异表达基因主要集中在脂质转运与代谢、脂肪酸生物合成降解过程以及次生代谢物的生物合成、运输和分解代谢等过程,蜡质缺失基因Ggl-1的候选基因为Asa8G04000和Asa4G02100,RT-qPCR结果显示,候选基因表达量在蜡质缺失突变体8684-gl及其野生型8684叶片中差异显著。 结论 蜡质缺失突变体8684-gl叶片表面蜡质缺失主要物质为16-庚烯酮,筛选到Asa8G04000和Asa4G02100为大蒜蜡质缺失基因Ggl-1的候选基因。

关键词: 大蒜, 蜡质缺失, 气相色谱-质谱联用, 蜡质成分, 转录组测序, 实时荧光定量PCR, 候选基因

Abstract:

Objective This study is aimed to analyze the wax-deficient components in the leaves of the garlic mutant 8684-gl and identify the wax-deficient gene Ggl-1. The findings may lay foundation for exploring the molecular mechanisms underlying wax formation on garlic leaf surfaces and provide a theoretical basis for garlic pest resistance breeding and its application in agricultural production. Method The garlic wax-deficient mutant 8684-gl and its wild-type counterpart 8684 were used as research materials. Gas Chromatography-Mass Spectrometry (GC-MS) was employed to analyze the wax composition on leaf surfaces. Transcriptome sequencing was conducted to identify the Ggl-1 gene, and its expression was validated using real-time quantitative PCR (RT-qPCR). Result By GC-MS analysis the 39 wax components on the surface of garlic leaves were found, with 16-hentriacontanone (C₃₁H₆₂O) as the primary missing component in 8684-gl. Transcriptome analysis revealed that differentially expressed genes (DEGs) between 8684-gl and wild-type 8684 were mainly involved in lipid transport and metabolism, fatty acid biosynthesis and degradation, and the transport and catabolism of secondary metabolites. Two candidate genes for Ggl-1, Asa8G04000 and Asa4G02100 were identified. RT-qPCR analysis confirmed that these candidate genes presented significant different expressions between 8684-gl and its wild-type counterpart. Conclusion The primary wax-deficient component in 8684-gl was 16-hentriacontanone. The gene Asa8G04000 and Asa4G02100 are identified as candidate genes for the wax-deficient gene Ggl-1, providing insights into the genetic basis of wax biosynthesis in garlic.

Key words: garlic, wax-deficient material, gas chromatograph-mass spectrometer-computer, wax components, transcriptome sequencing, real-time fluorescence quantitative PCR, candidate genes