[1] Niu W, Lu ZJ, Zhong M, et al. Diverse transcription factor binding features revealed by genome-wide ChIP-seq in C. elegans[J]. Genome Research, 2011, 21: 245-254. [2] Redestig H, Weicht D, Selbig J, Hannah MA. Transcription factor target prediction using multiple short expression time series from Arabidopsis thaliana[J]. BMC Bioinformatics, 2007, 8: 454. [3] Srikanth A, Schmid M. Regulation of flowering time: all roads lead to Rome[J]. Cell Mol Life Sci, 2011, 68: 2013-2037. [4] Michaels SD. Flowering time regulation produces much fruit[J]. Curr Opin Plant Biol, 2009, 12: 75-80. [5] Putterill J, Laurie R, Macknight R. It’s time to flower: the genetic control of flowering time[J]. Bioessays, 2004, 26(4):363-373. [6] Corbesier L, Vincent C, Jang S, et al. FT protein movement contribu-tes to long-distance signaling in floral induction of Arabidopsis[J]. Science, 2007, 316: 1030-1033. [7] Jaeger KE, Wigge PA. FT protein acts as a long-range signal in Arabidopsis[J]. Curr Biol, 2007, 17: 1050-1054. [8] Lifschitz E, Eviatar T, Rozman A, et al. The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli[J]. PANS, 2006, 103 (16):6398-6403. [9] Imaizumi T, Kay SA. Photoperiodic control of flowering: not only by coincidence[J]. Trends in Plant Science, 2006, 11(11):550-558. [10] Abe M, Kobayashi Y, Yamamoto S, et al. FD, a bZIP protein medi-ating signals from the floral pathway integrator FT at the shoot apex [J]. Science, 2005, 309: 1052-1056. [11] Wigge PA, Kim MC, Jaeger KE, et al. Integration of spatial and temporal information during floral induction in Arabidopsis[J]. Science, 2005, 309: 1056-1059. [12] Kardailsky I, Shukla VK, Ahn JH, et al. Activation tagging of the floral inducer FT[J]. Science, 1999, 286: 1962-1965. [13] Blazquez MA, Weigel D. Integration of floral inductive signals in Arabidopsis[J]. Nature, 2000, 404(6780):889-892. [14] Blazquez MA, Soowal LN, Lee I, Weigel D. LEAFY expression and flower initiation in Arabidopsis[J]. Development, 1997, 124(19):3835-3844. [15] Michaels SD, Himelblau E, Kim SY, et al. Integration of flowering signals in winter-annual Arabidopsis[J]. Plant Physiol, 2005, 137(1):149-156. [16] Moon J, Lee H, Kim M, Lee I. Analysis of flowering pathway integrators in Arabidopsis[J]. Plant Cell Physiol, 2005, 46: 292299. [17] Samach A, Onouchi H, Gold SE, et al. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis[J]. Science, 2000, 288: 1613-1616. [18] Yoo SK, Chung KS, Kim J, et al. CONSTANS activates SUPPRES-SOR OF OVEREXPRESSION OF CONSTANS 1 through FLOWE-RING LOCUS T to promote flowering in Arabidopsis[J]. Plant Physiol 2005, 139: 770-778. [19] Borner R, Kampmann G, Chandler J, et al. MADS domain gene involved in the transition to flowering in Arabidopsis[J]. Plant J, 2000, 24: 591-599. [20] Lee H, Suh SS, Park E, et al.The AGAMOUS-LIKE 20 MADS do-main protein integrates floral inductive pathways in Arabidopsis [J]. Genes Dev, 2000, 14: 2366-2376. [21] Lee J, Lee I. Regulation and function of SOC1, a flowering pathway integrator[J]. J Exp Bot, 2010, 61: 2247-2254. [22] Liu C, Zhou J, Bracha-Drori K, et al. Specification of Arabidopsis floral meristem identity by repression of flowering time genes[J]. Development, 2007, 134: 1901-1910. [23] Melzer S, Lens F, Gennen J, et al. Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana[J]. Nat Genet, 2008, 40: 1489-1492. [24] Liu C, Xi W, Shen L, et al. Regulation of floral patterning by flowering time genes[J]. Dev Cell, 2009, 16: 711-722. [25] Lee JH, Yoo SJ, Park SH, et al. Role of SVP in the control of flowering time by ambient temperature in Arabidopsis[J]. Genes Dev, 2007, 21(4):397-402. [26] Li D. A repressor complex governs the integration of flowering signals in Arabidopsis[J]. Dev Cell, 2008, 15: 110-120. [27] 刘建武, 孙成华, 刘宁. 花器官决定的ABC模型和四因子模型[J]. 植物学通报, 2004, 3: 346-351. [28] Theissen G, Becker A, Rosa AD, et al. A short history of MADS-box genes in plants[J]. Plant Mol Biol, 2000, 42: 115-149. [29] Theissen G. Development of floral organ identity: stories from the MADS house[J]. Curr Opin Plant Biol, 2001, 4: 75-85. [30] Ratcliffe OJ, Bradley DJ, Coen ES. Separation of shoot and floral identity in Arabidopsis[J]. Development, 1999, 126: 11091120. [31] Liljegren SJ, Gustafson-Brown C, Pinyopich A, et al. Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 specify meristem fate[J]. Plant Cell, 1999, 11: 1007-1018. [32] Theissen G, Saedler H. Plant biology Floral quartets[J]. Nature, 2001, 409: 469-471. [33] Krizek BA, Fletcher JC. Molecular mechanisms of flower develop-ment: an armchair guide[J]. Nat Rev Genet, 2005, 6: 688-698. [34] Benlloch R, Berbel A, Serrano-Mislata A, Madueno F. Floral initiation and in florescence architecture: a comparative view[J]. Annals Bot, 2007, 100: 659-676. [35] Lee J, Oh M, Park H, Lee I. SOC1 translocated to the nucleus by interaction with AGL24 directly regulates LEAFY[J]. Plant J, 2008, 55: 832-843. [36] Yamaguchi A, Wu MF, Yang L, et al. The microRNA-regulated SBP-Box transcription factor SPL3 is a direct upstream activator of LEAFY, FRUITFULL, and APETALA1[J]. Dev Cell, 2009, 17: 268-278. [37] Gocal GF, Sheldon CC, Gubler F, et al. GAMYB-like genes, flowering, and gibberellin signaling in Arabidopsis[J]. Plant Physiol, 2001, 127: 1682-1693. [38] Kanrar S, Bhattacharya M, Arthur B, et al. Regulatory networks that function to specify flower meristems require the function of homeobox genes PENNYWISE and POUND-FOOLISH in Arabidopsis[J]. Plant J, 2008, 54: 924-937. [39] Smith HMS, Ung N, Lal S, Courtier J. Specification of reproductive meristems requires the combined function of SHOOT MERISTEM-LESS and floral integrators FLOWERING LOCUS T and FD during Arabidopsis inflorescence development[J]. J Exp Bot, 2011, 62: 583-593. [40] Wang JW, Czech B, Weigel D. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana[J]. Cell, 2009, 138: 738-749. [41] Smyth DR, Bowman JL, Meyerowitz EM. Early flower development in Arabidopsis[J]. Plant Cell, 1990, 2: 755-767. [42] Yu H, Ito T, Wellmer F, Meyerowitz EM. Repression of AGAMOUS-LIKE 24 is a crucial step in promoting flower development[J]. Nat Genet, 2004, 36: 157-161. [43] Li B, Carey M, Workman JL. The role of chromatin during transcription[J]. Cell, 2007, 128: 707-719. [44] Gregis V, Sessa A, Dorca-Fornell C, Kater M. The Arabidopsis floral meristem identity genes AP1, AGL24 and SVP directly repress class B and C floral homeotic genes[J]. Plant J, 2009, 60: 626-637. [45] Kaufmann K, Wellmer F, Muino JM, et al. Orchestration of floral initiation by APETALA1[J]. Science, 2010, 328: 85-89. [46] Moyroud E, Minguet EG, Ott F, et al. Prediction of regulatory interactions from genome sequences using a biophysical model for the Arabidopsis LEAFY transcription factor[J]. Plant Cell, 2011, 23: 1293-1306. [47] Kaufmann K, Muino JM, Jauregui R, et al. Target genes of the MADS transcription factor SEPALLATA3: integration of developmental and hormonal pathways in the Arabidopsis flower[J]. PLoS Biol, 2009, 7: e1000090. [48] Folter S, Immink RGH, Kieffer M, et al. Comprehensive interaction map of the Arabidopsis MADS Box transcription factors[J]. Plant Cell, 2005, 17: 1424-1433. [49] Sridhar VV, Surendrarao A, Liu Z. APETALA1: SEPALLATA3 interact with SEUSS to mediate transcription repression during flower development[J]. Development, 2006, 133: 3159-3166. [50] Gustafson-Brown C, Savidge B, Yanofsky MF. Regulation of the Arabidopsis floral homeotic gene APETALA1[J]. Cell, 1994, 76: 131-143. [51] Bomblies K, Dagenais N, Weigel D. Redundant enhancers mediate transcriptional repression of AGAMOUS by APETALA2[J]. Dev Biol, 1999, 216: 260-264. [52] Yant L, Mathieu J, Dinh TT, et al. Orchestration of the floral transi-tion and floral development in Arabidopsis by the bifunctional transcription factor APETALA2[J]. Plant Cell, 2010, 22: 21562170. [53] Aukerman MJ, Sakai H. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes[J]. Plant Cell, 2003, 15: 2730-2741. [54] Chen X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development[J]. Science, 2004, 303: 2022-2025. [55] Schwab R, Palatnik JF, Riester M, et al. Specific effects of microRNAs on the plant transcriptome[J]. Dev Cell, 2005, 8: 517-527. [56] Wollmann H, Mica E, Todesco M, et al. On reconciling the interactions between APETALA2, miR172 and AGAMOUS with the ABC model of flower development[J]. Development, 2010, 137: 3633-3642. [57] Grigorova B, Mara C, Hollender C, et al. LEUNIG and SEUSS co-repressors regulate miR172 expression in Arabidopsis flowers[J]. Development, 2011, 138: 2451-2456. [58] Lee H, Yoo SJ, Lee JH, et al. Genetic framework for flowering-time regulation by ambient temperature-responsive miRNAs in Arabidopsis[J]. Nucleic Acids Res, 2010, 38: 3081-3093. [59] Mathieu, J, Yant, LJ, Murdter, F, et al. Repression of flowering by the miR172 target SMZ[J]. PLoS Biol, 2009, 7: e1000148. [60] Ahn JH, Miller D, Winter VJ, et al. A divergent external loop confers antagonistic activity on floral regulators FT and TFL1[J]. EMBO J, 2006, 25: 605-614. [61] Searle I, He YH, Turck F, et al. The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis[J]. Gene Dev, 2006, 20: 898-912. [62] Willmann MR, Poethig RS. The effect of the floral repressor FLC on the timing and progression of vegetative phase change in Arabidopsis[J]. Development, 2011, 138: 677-685. [63] Chiang GCK, Barua D, Kramer EM, et al. Major flowering time gene, flowering locus C, regulates seed germination in Arabidopsis thalia-na[J]. Proc Natl Acad Sci USA, 2009, 106: 11661-11666. [64] Swiezewski S, Liu F, Magusin A, Dean C. Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target[J]. Nature, 2009, 462: 799-802. [65] Heo JB, Sung S. Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA[J]. Science, 2011, 331: 76-79. [66] Crevillen P, Dean C. Regulation of the floral repressor gene FLC: the complexity of transcription in a chromatin context[J]. Curr Opin Plant Biol, 2011, 14: 38-44. [67] Winter CM, Austin RS, Blanvillain-Baufume S, et al. LEAFY target genes reveal floral regulatory logic, cis motifs, and a link to biotic stimulus response[J]. Dev Cell, 2011, 20: 430-443. [68] Deal RB, Henikoff S. A simple method for gene expression and chromatin profiling of individual cell types within a tissue[J]. Dev Cell, 2010, 18: 1030-1040. |