Biotechnology Bulletin ›› 2015, Vol. 31 ›› Issue (2): 53-60.doi: 10.13560/j.cnki.biotech.bull.1985.2015.02.007
• Review and editorial • Previous Articles Next Articles
Chen Yunmei, Xu Haiyang, Wang Shiming
Received:
2014-06-18
Online:
2015-02-05
Published:
2015-02-06
Chen Yunmei, Xu Haiyang, Wang Shiming. The Structure-function Relationship of Vitreoscilla Haemoglobin and Its Application in Biotechnology[J]. Biotechnology Bulletin, 2015, 31(2): 53-60.
[1] Prmgsheim EG. The Vitreoscillaceae, a family of colourless, gliding, filamentous organisms [J]. J Gen Microbiol, 1951, 5(1):124-149. [2]Webster DA, Liu CY. Reduced nicotinamide adenine dinucleotide cytochrome o reductase associated with cytochrome o purified from Vitreoscilla. [J]. J Biol Chem, 1974, 249(13):4257-4260. [3]Tyree B, Webster DA. The binding of cyanide and carbon monoxide to cytochrome o purified from Vitreoscilla. Evidence for subunit interaction in the reduced protein[J]. J Biol Chem, 1978, 253(19):6988-6991. [4]Wakabayashi S, Matsubara H, Webster DA. Primary sequence of a dimeric bacterial haemoglobin from Vitreoscilla[J]. Nature, 1986, 322(6078):481, 483. [5]Dikshit KL, Orii Y, Navani N, et al. Site-directed mutagenesis of bacterial hemoglobin:the role of glutamine(E7) in oxygen-binding in the distal heme pocket[J]. Arch Biochem Biophys, 1998, 349 (1):161-166. [6]Tarricone C, Galizzi A, Coda A, et al. Unusual structure of the oxygen-binding site in the dimeric bacterial hemoglobin from Vitreoscilla sp[J]. Structure, 1997, 5(4):497-507. [7]Ratakonda S, Anand A, Dikshit K, et al. Crystallographic structure determination of B10 mutants of Vitreoscilla hemoglobin:role of Tyr29(B10) in the structure of the ligand-binding site[J]. Acta Crystallogr Sect F Struct Biol Cryst Commun, 2013, 69(Pt 3):215-222. [8]Kaur R, Ahuja S, Ananda A, et al. Functional implications of the proximal site hydrogen bonding network in Vitreoscilla hemoglobin(VHb):Role of Tyr95(G5) and Tyr126(H12)[J]. FEBS Letters, 2008, 582(23-24):3494-3500. [9]Ramandeep, Hwang KW, Raje M, et al. Vitreoscilla hemoglobin. Intracellular localization and binding to membranes[J]. J Biol Chem, 2001, 276(27):24781-24789. [10]Kvist M, Ryabova ES, Nordlander E, et al. An investigation of the peroxidase activity of Vitreoscilla hemoglobin[J]. J Biol Inorg Chem, 2007, 12(3):324-334. [11]Anand A, Duk BT, Singh S, et al. Redox-mediated interactions of VHb(Vitreoscilla haemoglobin) with OxyR:novel regulation of VHb biosynthesis under oxidative stress[J]. Biochem J, 2010, 426(3):271-280. [12]DeModena JA, Gutiérrez S, Velasco J, et al. The production of cephalosporin C by Acremonium chrysogenum is improved by the intracellular expression of a bacterial hemoglobin[J]. Biotechnology(N Y), 1993, 11(8):926-929. [13]Magnolo SK, Leenutaphong DL, DeModena JA, et al. Actinorhodin production by Streptomyces coelicolor and growth of Streptomyces lividans are improved by the expression of a bacterial hemoglobin[J]. Biotechnology(N Y), 1991, 9(5):473-476. [14]Priscila G, Fernandez FJ, Absalon AE, et al. Expression of the bacterial hemoglobin gene from Vitreoscilla stercoraria increases rifamycin B production in Amycolatopsis mediterranei[J]. J Biosci Bioeng, 2008, 106(5):493-497. [15]Lee MJ, Duong CT, Han K, et al. Combination strategy to increase cyclosporin A productivity by Tolypocladium niveum using random mutagenesis and protoplast transformation[J]. J Microbiol Biotechnol, 2009, 19(9):869-872. [16]Liu Y, Gong G, Xie L, et al. Improvement of cephalosporin C production by recombinant DNA integration in Acremonium chrysogenum[J]. Mol Biotechnol, 2010, 44(2):101-109. [17]Zhu H, Sun S, Zhang S. Enhanced production of total flavones and exopolysaccharides via Vitreoscilla hemoglobin biosynthesis in Phellinus igniarius[J]. Bioresour Technol, 2011, 102(2):1747-1751. [18]Luo Y, Kou X, Ding X, et al. Promotion of spinosad biosynthesis by chromosomal integration of the Vitreoscilla hemoglobin gene in Saccharopolyspora spinosa[J]. Sci China Life Sci, 2012, 55(2):172-180. [19]Wang S, Liu F, Hou Z, et al. Enhancement of natamycin production on Streptomyces gilvosporeus by chromosomal integration of the Vitreoscilla hemoglobin gene(vgb)[J]. World J Microbiol Biotechnol, 2014, 30(4):1369-1376. [20]Chien LJ, Chen HT, Yang PF, et al. Enhancement of cellulose pellicle production by constitutively expressing Vitreoscilla hemoglobin in Acetobacter xylinum[J]. Biotechnol Prog, 2006, 22(6):1598-1603. [21]Setyawati MI, Chien LJ, Lee CK. Expressing Vitreoscilla hemoglobin in statically cultured Acetobacter xylinum with reduced O(2) tension maximizes bacterial cellulose pellicle production[J]. J Biotechnol, 2007, 132(1):38-43. [22]Su Y, Li X, Liu Q, et al. Improved poly-gamma-glutamic acid production by chromosomal integration of the Vitreoscilla hemoglobin gene(vgb) in Bacillus subtilis[J]. Bioresour Technol, 2010, 101(12):4733-4736. [23]Zhang W, Xie H, He Y, et al. Chromosome integration of the Vitreoscilla hemoglobin gene(vgb) mediated by temperature-sensitive plasmid enhances gamma-PGA production in Bacillus amyloliquefaciens[J]. FEMS Microbiol Lett, 2013, 343(2):127-134. [24]Khosravi M, Webster DA, Stark BC. Presence of the bacterial hemoglobin gene improves alpha-amylase production of a recombinant Escherichia coli strain[J]. Plasmid, 1990, 24(3):190-194. [25]Buddenhagen RE, Webster DA, Stark BC. Enhancement by bacterial hemoglobin of amylase production in recombinant E. coli occurs under conditions of low O2[J]. Biotechnology Letters, 1996, 18(6):695-700. [26]李昕, 王海燕, 张义正. 利用细菌血红蛋白提高人肠杆菌基因工程菌几丁质酶基因的表达[J]. 四川大学学报:自然科学版, 2003, 40(4):787-791. [27]Wang X, Sun Y, Shen X, et al. Intracellular expression of Vitreoscilla hemoglobin improves production of Yarrowia lipolytica lipase LIP2 in a recombinant Pichia pastoris[J]. Enzyme Microb Technol, 2012, 50(1):22-28. [28]Wu JM, Fu WC. Intracellular co-expression of Vitreoscilla hemoglobin enhances cell performance and beta-galactosidase production in Pichia pastoris[J]. J Biosci Bioeng, 2012, 113(3):332-337. [29]Kurt AG, Aytan E, Ozer U, et al. Production of L-DOPA and dopamine in recombinant bacteria bearing the Vitreoscilla hemoglobin gene[J]. Biotechnol J, 2009, 4(7):1077-1088. [30]Li M, Wu J, Lin J, et al. Expression of Vitreoscilla hemoglobin enhances cell growth and dihydroxyacetone production in Gluconobacter oxydans[J].Curr Microbiol, 2010, 61(5):370-375. [31]Wang ZY, Hu ZB, Wang ZT. Regulation of Vitreoscilla hemoglobin on biosynthesis of astragaloside IV[J]. Yao Xue Xue Bao, 2011, 46(3):355-360. [32]Kahraman H, Erenler SO. Rhamnolipid production by Pseudomonas aeruginosa engineered with the Vitreoscilla hemoglobin gene[J]. Prikl Biokhim Mikrobiol, 2012, 48(2):212-217. [33]Shen J, Zheng H, Zhi X, et al. Improvement of amorpha-4, 11-diene production by a yeast-conform variant of Vitreoscilla hemoglobin[J]. Z Naturforsch C, 2012, 67(3-4):195-207. [34]Yadav K, Kumar C, Archana G, et al. Pseudomonas fluorescens ATCC 13525 containing an artificial oxalate operon and Vitreoscilla hemoglobin secretes oxalic acid and solubilizes rock phosphate in acidic alfisols[J]. PLoS One, 2014, 9(4):e92400. [35]Holmberg N, Lilius G, Bailey JE, et al. Transgenic tobacco expressing Vitreoscilla hemoglobin exhibits enhanced growth and altered metabolite production[J]. Nat Biotechnol, 1997, 15(3):244-247. [36]Zelasco S, Reggi S, Calligari P, et al. Expression of the Vitreoscilla hemoglobin(VHb)-encoding gene in transgenic white poplar:plant growth and biomass production, biochemical characterization and cell survival under submergence, oxidative and nitrosative stress conditions[J]. Molecular Breeding, 2006, 17(3):201-216. [37]Wilhelmson A, Kallio PT, Oksman-Caldentey KM, et al. Expression of Vitreoscilla hemoglobin enhances growth of Hyoscyamus muticus hairy root cultures[J]. Planta Med, 2005, 71(1):48-53. [38]Pendse GJ, Bailey JE. Effect of Vitreoscilla hemoglobin expression on growth and specific tissue plasminogen activator productivity in recombinant chinese hamster ovary cells[J]. Biotechnol Bioeng, 1994, 44(11):1367-1370. [39]Guan B, Ma H, Wang Y, et al. Vitreoscilla hemoglobin(VHb) overexpression increases hypoxia tolerance in zebrafish(Danio rerio)[J]. Mar Biotechnol(NY), 2011, 13(2):336-344. [40]Chung JW, Webster DA, Pagilla KR, et al. Chromosomal integration of the Vitreoscilla hemoglobin gene in Burkholderia and Pseudomonas for the purpose of producing stable engineered strains with enhanced bioremediating ability[J]. J Ind Microbiol Biotechnol, 2001, 27(1):27-33. [41]Patel SM, Stark BC, Hwang KW, et al. Cloning and expression of Vitreoscilla hemoglobin gene in Burkholderia sp. strain DNT for enhancement of 2, 4-dinitrotoluene degradation[J]. Biotechnol Prog, 2000, 16(1):26-30. [42]Khleifat KM, Abboud MM, Al-Mustafa AH. Effect of Vitreoscilla hemoglobin gene(vgb) and metabolic inhibitors on cadmium uptake by the heterologous host Enterobacter aerogenes[J]. Process Biochemistry, 2006, 41(4):930-934. [43]Xiong XC, Xing JM, Li X, et al. Enhancement of biodesulfurization in two-liquid systems by heterogeneous expression of Vitreoscilla hemoglobin[J]. Appl Environ Microbiol, 2007, 73(7):2394-2397. [44]Li H, Yu Z, Xiong X, et al. [Expression of Vitreoscilla hemoglobin gene in Pseudomonas delafieldii R-8 and its application to diesel desulfurization][J]. Wei Sheng Wu Xue Bao, 2009, 49(8):1026-32. [45]马正, 刘金秀, 申屠旭萍, 等. 透明颤菌血红蛋白基因在淀粉酶产色链霉菌中的表达及对合成丰加霉素的影响[J]. 微生物学通报, 2013, 40(7):1175-1185. [46]Horng YT, Chang KC, Chien CC, et al. Enhanced polyhydroxybuty-rate(PHB) production via the coexpressed phaCAB and vgb genes controlled by arabinose PBAD promoter in Escherichia coli[J]. Lett Appl MicrobiolLetters in Applied Microbiology, 2010, 50(2):158-167. [47]Zhu H, Sun S, Zhang S. Enhanced production of total flavones and exopolysaccharides via Vitreoscilla hemoglobin biosynthesis in Phellinus igniarius[J]. Bioresour Technol, 2011, 102(2):1747-1751. [48]Sanny T, Arnaldos M, Kunkel SA, et al. Engineering of ethanolic E. coli with the Vitreoscilla hemoglobin gene enhances ethanol production from both glucose and xylose[J]. Appl Microbiol Biotechnol, 2010, 88(5):1103-1112. [49]Xu M, Rao Z, Xu H, et al. Enhanced production of L-arginine by expression of Vitreoscilla hemoglobin using a novel expression system in Corynebacterium crenatum[J]. Appl Biochem Biotechnol, 2011, 163(6):707-719. [50]Li X, Peng RH, Fan HQ, et al. Vitreoscilla hemoglobin overexpression increases submergence tolerance in cabbage[J]. Plant Cell Rep, 2005, 23(10-11):710-715. [51]Wang Z, Xiao Y, Chen W, et al. Functional expression of Vitreoscilla hemoglobin(VHb) in Arabidopsis relieves submergence, nitrosative, photo-oxidative stress and enhances antioxidants metabolism[J]. Plant Science, 2009, 176(1):66-77. |
[1] | WU Qiao-yin, SHI You-zhi, LI Lin-lin, PENG Zheng, TAN Zai-yu, LIU Li-ping, ZHANG Juan, PAN Yong. In Situ Screening of Carotenoid Degrading Strains and the Application in Improving Quality and Aroma of Cigar [J]. Biotechnology Bulletin, 2023, 39(9): 192-201. |
[2] | MIAO Yong-mei, MIAO Cui-ping, YU Qing-cai. Properties of Bacillus subtilis Strain BBs-27 Fermentation Broth and the Inhibition of Lipopeptides Against Fusarium culmorum [J]. Biotechnology Bulletin, 2023, 39(9): 255-267. |
[3] | XU Fa-di, XU Kang, SUN Dong-ming, LI Meng-lei, ZHAO Jian-zhi, BAO Xiao-ming. Research Progress in Second-generation Fuel Ethanol Technology Based on Poplar(Populus sp.) [J]. Biotechnology Bulletin, 2023, 39(9): 27-39. |
[4] | ZHANG Yue-yi, LAN She-yi, PEI Hai-run, FENG Di. Process Optimization of Multi-strain Fermented Oat Bran and Hair Efficacy Evaluation [J]. Biotechnology Bulletin, 2023, 39(9): 58-70. |
[5] | CHENG Ya-nan, ZHANG Wen-cong, ZHOU Yuan, SUN Xue, LI Yu, LI Qing-gang. Synthetic Pathway Construction of Producing 2'-fucosyllactose by Lactococcus lactis and Optimization of Fermentation Medium [J]. Biotechnology Bulletin, 2023, 39(9): 84-96. |
[6] | ZHAO Si-jia, WANG Xiao-lu, SUN Ji-lu, TIAN Jian, ZHANG Jie. Modification of Pichia pastoris for Erythritol Production by Metabolic Engineering [J]. Biotechnology Bulletin, 2023, 39(8): 137-147. |
[7] | LI Xin-yue, ZHOU Ming-hai, FAN Ya-chao, LIAO Sha, ZHANG Feng-li, LIU Chen-guang, SUN Yue, ZHANG Lin, ZHAO Xin-qing. Research Progress in the Improvement of Microbial Strain Tolerance and Efficiency of Biological Manufacturing Based on Transporter Engineering [J]. Biotechnology Bulletin, 2023, 39(11): 123-136. |
[8] | CHE Yong-mei, LIU Guang-chao, GUO Yan-ping, YE Qing, ZHAO Fang-gui, LIU Xin. Preparation of Compound Halotolerant Bioinoculant and Study on Its Growth-promoting Effect [J]. Biotechnology Bulletin, 2023, 39(11): 217-225. |
[9] | SUN Yan-qiu, XIE Cai-yun, TANG Yue-qin. Construction and Mechanism Analysis of High-temperature Resistant Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2023, 39(11): 226-237. |
[10] | REN Hai-wei, SUN Yi-fan, REN Yu-wei, GUO Xiao-peng, PAN Li-chao, ZHANG Bing-yun, LI Jin-ping. Research Progress of Silage Additives Based on Bibliometrics [J]. Biotechnology Bulletin, 2022, 38(8): 261-274. |
[11] | WANG Xin-guang, TIAN Lei, WANG En-ze, ZHONG Cheng, TIAN Chun-jie. Construction of Microbial Consortium for Efficient Degradation of Corn Straw and Evaluation of Its Degradation Effect [J]. Biotechnology Bulletin, 2022, 38(4): 217-229. |
[12] | LI Zhi-hao, ZHANG Ge, MO Zhi-jie, DENG Shuai-jun, LI Jia-yi, ZHANG Hai-bo, LIU Xiao-hui, LIU Hao-bao. Effects of a Xylanase-producing Bacillus cereus on the Composition and Fermented Products of Cigar Leaves [J]. Biotechnology Bulletin, 2022, 38(2): 105-112. |
[13] | JIANG Huan, MA Jiang-shan, ZENG Bai-quan, ZHANG Liang-bo, LI Pei-wang. Research Progress in 1, 3-Propanediol Production by Fermenting Crude Glycerol [J]. Biotechnology Bulletin, 2022, 38(10): 45-53. |
[14] | SHI Zhao-rong, SUN Shu-jun, ZHANG Guang-rong, MEI Da-hai, LIU Yan-chao, YANG Cheng-de. Screening,Identification and Fermentation Condition Optimization of an Antagonistic Bacterium for Melon Black Spot [J]. Biotechnology Bulletin, 2022, 38(1): 115-124. |
[15] | XU Jin-yi, NA Bin-bin, LIU Shun, CHEN Chao, SUN Hong, ZHENG Yu-long. Excellent Lactic Acid Bacteria for Silage and Their Application [J]. Biotechnology Bulletin, 2021, 37(9): 39-47. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||