[1] Rodriguez-Aparicio LB, Reglero A, Ortiz AI, et al. Effect of physical and chemical conditions on the production of colominic acid by Escherchia coli in a defined medium[J]. Applied Microbiology and Biotechnology, 1988, 27(5-6):474-483.
[2] Barker SA, Jones RG, Somers PJ. Improvements in the production and isolation of colominic acid[J]. Carbohydrate Research, 1967, 3(3):369-376.
[3] Inoue S, Inoue Y. Development profile of neural cell adhesion molecule glycoforms with a varying degree of polymerization of polysialic acid chains[J]. The Journal of Biological Chemistry, 2001, 276(34):31863-31870.
[4] Nakata D, Troy FA. Degree of polymerization(DP)of polysialic acid(polySia)on neural cell adhesion molecules(N-CAMS):development and application of a new strategy to accurately determine the DP of polySia chains on N-CAMS[J]. The Journal of Biological Chemistry, 2005, 280(46):38305-38316.
[5] Haile Y, Berski S, Drager G, et al. The effect of modified polysialic acid based hydrogels on the adhesion and viability of primary neurons and glial cells[J]. Biomaterials, 2008, 29(12):1880-1891.
[6] Chen C, Constantinou A, Chester KA, et al. Glycoengineering approach to half-Life extension of recombinant biotherapeutics[J]. Bioconjugate Chemistry, 2012, 23(8):1524-1533.
[7] Camino CC, Maria LJ. High production of polysialic acid by Escherichia coli K-92 grow in a chemically defined medium regulated by temperature[J]. Biological Chemistry Hoppe-Seyler, 1990, 371(11):1101-1106.
[8] 郭良栋, 钱世钧, 叶军, 等. 产多聚唾液酸的菌种筛选及产酸条件[J]. 微生物学报, 1998, 38(2):103-107.
[9] 贾薇. 聚唾液酸生产菌的诱变育种及发酵研究[D]. 无锡:无锡轻工大学, 1999.
[10]Rode B, Endres C, Ran C, et al. Large-scale production and homogenous purification of long chain polysialic acids from E. coli K1[J]. Journal of Bacteriology, 2008, 135(2):202-209.
[11]于军华. 聚唾液酸生产菌种的选育及其发酵工艺的研究[D]. 无锡:无锡轻工大学, 2000.
[12]张琦. 聚唾液酸发酵和分离纯化工艺的研究[D]. 无锡:江南大学, 2009.
[13]Berrios-Rivera SJ, San KY, Bennett GN. The effect of NAPRTase overexpression on the total levels of NAD, the NADH/NAD(+)ratio, and the distribution of metabolites in Escherichia coli[J]. Metabolic Engineering, 2002, 4(3):238-247.
[14] Heuser F, Schroer K, Lutz S, et al. Enhancement of the NAD(P)(H)pool in Escherichia coli for biotransformation[J]. Engineering in Life Sciences, 2007, 7(4):343-353.
[15]Geertman JM, van Maris AJ, van Dijken JP, et al. Physiological and genetic engineering of cytosolic redox metabolism in Saccharomyces cerevisiae for improved glycerol production[J]. Metabolic Engineering, 2006, 8(6):532-542.
[16]Zhang YP, Li Y, Du CY, et al. Inactivation of aldehyde dehydrogenase:A key factor for engineering 1, 3-propanediol production by Klebsiella pneumoniae[J]. Metabolic Engineering, 2006, 8(6):578-586.
[17]Hou J, Lages NF, Oldiges M, et al. Metabolic impact of redox cofactor perturbations in Saccharomyces cerevisiae[J]. Metabolic Engineering, 2009, 11(4-5):253-261.
[18]Zhang Y, Huang Z, Du C, et al. Introduction of an NADH regeneration system into Klebsiella oxytoca leads to an enhanced oxidative and reductive metabolism of glycerol[J]. Metabolic Engineering, 2009, 11(2):101-106.
[19]de Graef MR, Alexeeva S, Snoep JL, et al. The steady-state internal redox state(NADH/NAD+)reflects the external redox state and is correlated with catabolic adaptation in Escherichia coli[J]. Journal of Bacteriology, 1999, 181(8):2351-2357.
[20]Liu LM, Li Y, Shi ZP, et al. Enhancement of pyruvate productivity in Torulopsis glabrata:Increase of NAD(+)availability[J]. Journal of Bacteriology, 2006, 126(2):173-185.
[21]Lin H, Bennett GN, San KY. Effect of carbon sources differing in oxidation state and transport route on succinate production in metabolically engineered Escherichia coli[J]. Journal of Industrial Microbiology and Biotechnology, 2005, 32(3):87-93.
[22]Svennerholm L. Quantitative estimation of sialic acids[J]. Biochimica et Biophysica Acta, 1957, 24(4):604-611.
[23]Hong SH, Lee SY. Importance of redox balance on the production of succinic acid by metabolically engineered Escherichia coli[J]. Applied Microbiology and Biotechnology, 2002, 58:286-290.
[24]San KY, Bennett GN, Berrios-Rivera SJ, et al. Metabolic engineering through cofactor manipulation and its effects on metabolic flux redistribution in Escherichia coli[J]. Metabolic Engineering, 2002, 4:182-192.
[25]Liu XL, Lin J, Hu HF, et al. Metabolic engineering of Escherichia coli to enhance shikimic acid production from sorbitol[J]. World Journal of Microbiology and Biotechnology, 2014, 30(9):2543-2550.
[26]Wimpenn, JWT, Firth A. Levels of nicotinamide adenine dinucleotide and reduced nicotinamide adenine dinucleotide in facultative bacteria and the effect of oxygen[J]. Journal of Bacteriology, 1972, 111(1):24-32.
[27]Matin A, Gottschal JC. Influence of dilution rate on NAD(P)and NAD(P)H concentrations and ratios in a Pseudomonas sp. grown in continuous culture[J]. Journal of General Microbiology, 1976, 94(2):333-341.
[28]Berr?os-Rivera SJ, Bennett GN, San KY, et al. Metabolic engineering of Escherichia coli:increase of NADH availability by overexpressing an NAD+-dependent formate dehydrogenase[J]. Metabolic Engineering, 2002, 4(3):217-229. |