[1] Barkam S, Saraf S, Seal S. Fabricated micro-nano devices for in vivo and in vitro biomedical applications[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2013(6):544-568. [2] Liu Y, Lou C, Yang H, et al. Silica nanoparticles as promising drug/gene delivery carriers and fluorescent nano-probes:recent advances[J]. Curr Cancer Drug Targets, 2011, 11(2):156-163. [3] Yan JK, Ma HL, Chen X, et al. Self-aggregated nanoparticles of carboxylic curdlan-deoxycholic acid conjugates as a carrier of doxorubicin[J]. Int J Biol Macromol, 2015, 72:333-340. [4]Bian C, Lin H, Zhang F, et al. Synthesis of magnetic, macro/mesoporous bioactive glasses based on coral skeleton for bone tissue engineering[J]. IET Nanobiotechnol, 2014, 8(4):275-281. [5] Hadinoto K, Yang Y. Continuous and sustainable granulation of nanopharmaceuticals by spray coagulation encapsulation in alginate[J]. Int J Pharm, 2014, 473(1-2):644-652. [6] 张磊, 平其能, 郭健新, 等. 口服胰岛素纳米脂质体的制备及其降血糖作用[J]. 中国药科大学学报, 2001, 32(1):25-29. [7] Suzuki R, Utoguchi N, Kawamura K, et al. Development of effective antigen delivery carrier to dendritic cells via Fc receptor in cancer immunotherapy[J]. Yakugaku Zasshi, 2007, 127(2):301-306. [8] 杨时成, 朱家壁, 梁秉文, 等. 喜树碱固体脂质纳米粒的研究[J]. 药学学报, 1999, 34(2):146-150. [9] Vivès E, Schmidt J, Pèlegrin A. Cell-penetrating and cell-targeting peptides in drug delivery[J]. Biochimica et Biophysica Acta (BBA)- Reviews on Cancer, 2008, 1786(2):126-138. [10] Charoenphol P, Bermudez H. Design and application of multifunctional DNA nanocarriers for therapeutic delivery[J]. Acta Biomater, 2014, 10(4):1683-1691. [11] Li J, Fan C, Pei H, et al. Smart drug delivery nanocarriers with self-assembled DNA nanostructures[J]. Adv Mater, 2013, 25(32):4386-4396. [12]查刘生, 高海峰, 杨武利, 等. 聚合物纳米粒子用于给药载体[J]. 高分子通报, 2002(3):24-32. [13] Duncan R. Development of HPMA copolymer-anticancer conjugates:Clinical experience and lessons learnt[J]. Advanced Drug Delivery Reviews, 2009, 61:1131-1148. [14] Duncan R. The dawning era of polymer therapeutics[J]. Nat Rev Drug Discov, 2003, 2(5):347-360. [15]Vicent MJ, Duncan R. Polymer conjugates:nanosized medicines for treating cancer[J]. Trends Biotechnol, 2006, 24(1):39-47. [16]Barbey R, Lavanant L, Paripovic D. Polymer brushes via surface-initiated controlled radical polymerization:synthesis, characterization, properties, and applications[J]. Chem Rev, 2009, 109(11):5437-5527. [17]Bailon P, Palleroni A, Schaffer CA, Spence CL. Rational design of a potent, long-lasting form of interferon:a 40 kDa branched polyethylene glycol-conjugated interferon alpha-2a for the treatment of hepatitis C[J]. Bioconjuagte Chem, 2001(2):195-202. [18]Shu Y, Pi F, Sharma A, et al. Stable RNA nanoparticles as potential new generation drugs for cancer therapy[J]. Adv Drug Deliv Rev, 2014, 66:74-89. [19]Guo P, Grimes S, Anderson D. A defined system for in vitro packaging of DNA-gp3 of the Bacillus subtilis bacteriophage phi29[J]. Proc Natl Acad Sci USA, 1986:83:3505. [20]Guo P, Erickson S, Anderson D. A small viral RNA is required for in vitro packaging of bacteriophage phi29 DNA[J]. Science, 1987, 236:690. [21]Guo P, Zhang C, Chen C, et al. Inter-RNA interaction of phage phi29 pRNA to form a hexameric complex for viral DNA transportation[J]. Mol Cell, 1998(2):149-155. [22]Hendrix RW. Bacteriophage DNA packaging:RNA gears in a DNA transport machine[J]. Cell, 1998(94):147-150. [23] Rychahou P, Haque F, Shu Y, et al. Delivery of RNA nanoparticles into colorectal cancer metastases following systemic administration [J]. ACS Nano, 2015, 9(2):1108-1116. [24] Jasinski DL, Khisamutdinov EF, Lyubchenko YL, et al. Physicoch-emically tunable polyfunctionalized RNA square architecture with fluorogenic and ribozymatic properties[J]. ACS Nano, 2014, 8(8):7620-7629. [25] Shu D, Shu Y, Haque F, et al. Thermodynamically stable RNA three-way junction for constructing multifunctional nanoparticles for delivery of therapeutics[J]. Nature Nanotechnology, 2011, 6(10):658-667. [26]Laing BM, Guo PD, Bergstrom E. Optimized method for the synthesis and purification of adenosine-folic acid conjugates for use as transcription initiators in the preparation of modified RNA[J]. Methods, 2011, 54(2):260-266. [27]Haque F, Shu D, Shu Y, et al. Ultrastable synergistic tetravalent RNA nanoparticles for targeting to cancers[J]. Nano Today, 2012, 7(4):245-257. [28]Wang M, Thanou M. Targeting nanoparticles to cancer[J]. Pharmacological Research, 2010, 62:90-99. [29]Yokoyama M. Polymeric micelles as a new drug carrier system and their required considerations for clinical trials[J]. Expert Opin Drug Deliv, 2010, 7(2):145-158. [30]李文渊, 童丽, 热增才旦. 纳米胶束作为药物载体的研究进展[J]. 中国执业药师, 2009, 6(12):36-39. [31] Park K. Facing the truth about nanotechnology in drug delivery[J]. ACS Nano, 2013, 7(9):7442-7447. [32] Tang W, Jia S, Jia Y, et al. Research on medical application of bacterial cellulose as nano-biomaterials[J]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi, 2014, 31(4):927-929. [33]Huang D, Zuo Y, Li J, et al. Bioactive composite gradient coatings of nano-hydroxyapatite /polyamide66 fabricated on polyamide66 substrates[J]. J R Soc Interface, 2012, 9(72):1450-1457. [34] Li J, Zuo Y, Man Y, et al. Fabrication and biocompatibility of an antimicrobial composite membrane with an asymmetric porous structure[J]. J Biomater Sci Polym Ed, 2012, 23(1-4):81-96. [35] Saracino GA, Cigognini D, Silva D, et al. Nanomaterials design and tests for neural tissue engineering[J]. Chem Soc Rev, 2012, 42 (1):225-262. [36] Lim EH, Sardinha JP, Myers S. Nanotechnology biomimetic cartilage regenerative scaffolds[J]. Arch Plast Surg, 2014, 41(3):231-240. [37]嵇伟平, 韩培, 赵常利, 等. 钛合金表面纳米结构对成骨细胞黏附的促进作用[J]. 科学通报, 2008, 5(1):83-88. [38]Huang Y, Zhou G, Zheng L, et al. Micro-/nano-sized hydroxyapatite directs differentiation of rat bone marrow derived mesenchymal stem cells towards an osteoblast lineage[J]. Nanoscale, 2012, 4(7):2484-2490. [39]Liu J, Lu CY, Zhou H, et al. Flexible gold electrode array for multiplexed immunoelectrochemical measurement of three protein biomarkers for prostate cancer[J]. ACS Appl Mater Interfaces 2014, 6(22):20137-20143. [40] Ren X, Yan T, Zhang Y, et al. Nanosheet Au/Co3O4-based ultrase-nsitive nonenzymatic immunosensor for melanoma adhesion mole-cule antigen[J]. Biosens Bioelectron, 2014, 58:345-350. [41] Mangge H, Almer G, Stelzer I, et al. Laboratory medicine for molecular imaging of atherosclerosis[J]. Clin Chim Acta, 2014, 437:19-24. [42] Chu M, Li H, Wu Q, et al. Pluronic-encapsulated natural chlorophyll nanocomposites for in vivo cancer imaging and photothermal/photo-dynamic therapies[J]. Biomaterials, 2014, 35(29):8357-8373. [43] Alharbi KK, Al-Sheikh YA. Role and implications of nanodiagno-stics in the changing trends of clinical diagnosis[J]. Saudi J Biol Sci, 2014, 21(2):109-117. [44] Jain KK. Nanodiagnostics:application of nanotechnology in molecular diagnostics[J]. Expert Rev Mol Diagn, 2003, 3(2):153-161. [45]Sahab ZJ, Semaan SM, Sang QX, et al. Methodology and applications of disease biomarker identification in human serum[J]. Biomark. Insights, 2007(2):21-43. [46]Hachuda S, Otsuka S, Kita S, et al. Selective detection of sub-atto-molar Streptavidin in 10(13)-fold impure sample using photonic crystal nanolaser sensors[J]. Opt Express, 2013, 21(10):12815-12821. [47]Wagner MK, Li F, Li JJ, et al. Use of quantum dots in the develop-ment of assays for cancer bionarkes[J]. Analytical and Bioanal-ytical Chemistry, 2010, 397(8):3213-3224. [48]Huang Y, Li H, GaoT, et al. A sensitive method for protein assays using a peptide-based nano-label:human glypican-3 detection for hepatocellular carcinomas diagnosis[J]. Analyst, 2014, 139(15):3744-3747. [49]Qian Y, Wang C, Gao F. Ultrasensitive electrochemical detection of DNA based on Zn2+ assistant DNA recycling followed with hybridization chain reaction dual amplification[J]. Biosens Bioelectron, 2015, 63:425-431. [50] He Y, Chen D, Li M, et al. Rolling circle amplification combined with gold nanoparticles-tag for ultra sensitive and specific quantifi- cation of DNA by inductively coupled plasma mass spectrometry [J]. Biosens Bioelectron, 2014, 58:209-213. [51] 丁良, 杨慧, 席亚楠, 等. 非荧光硫化锌纳米簇的信号放大效应用于生物分子的检测[J]. 分析化学, 2014, 42(6):799-804. [52] Feng G, Kong B, Xing J, et al. Enhancing multimodality functional and molecular imaging using glucose-coated gold nanoparticles[J]. Clin Radiol, 2014, 69(11):1105-1111. [53] Liu Y, Yao Q, Zhang X, et al. Development of gold nanoparticle-sheathed glass capillary nanoelectrodes for sensitive detection of cerebral dopamine[J]. Biosens Bioelectron, 2015, 63:262-268. [54] Kempen PJ, Kircher MF, de la Zerda A, et al. A correlative optical microscopy and scanning electron microscopy approach to locating nanoparticles in brain tumors[J]. Micron, 2015, 68:70-76. [55] 李朝辉, 王柯敏, 谭蔚泓, 等. 硅壳包被的核壳型量子点荧光纳米颗粒的制备及其在细胞识别中的应用[J]. 科学通报, 2005, 50(13):1318-1322. [56] Matsumine A, Takegami K, Asanuma K, et al. A novel hyperthermia treatment for bone metastases using magnetic materials[J]. Int J Clin Oncol, 2011, 16(2):101-108. [57]Mintorovitch J, Shamsi K. Eovist injection and resovist injection:two new liver-specific contrast agents for MRI[J]. Oncology, 2000, 14(63):37-40. [58]Schneck NA, Lowenthal M, Phinney K, et al. Current trends in magnetic particle enrichment for mass spectrometry-based analysis of cardiovascular protein biomarkers[J]. Nanomedicine(Lond), 2015, 10(3):433-446. [59]汤艳, 楚林疋, 孙宁, 等. 氧化铁磁性纳米颗粒在磁分离中的研究进展[J]. 科学通报, 2013, 58(24):2377-2384. [60]Gao LZ, Perrett S, Yan XY, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles[J]. Nat Nanotech, 2007, 2:577-583. [61]Mousavi MZ, Chen HY, Hou HS, et al. Label-free detection of rare cell in human blood using gold nano slit surface plasmon resonance[J]. Biosensors(Basel), 2015, 5(1):98-117. [62]鲍小凡, 刘冉, 刘静. 面向细胞分离的微流控技术[J]. 中国生物医学工程学报, 2013, 32(2):226-238. [63]Li M, Cushing SK, Zhang J, et al. Three-dimensional hierarchical plasmonic nano-architecture enhanced surface-enhanced Raman scattering immunosensor for cancer biomarker detection in blood plasma[J]. ACS Nano, 2013, 7(6):4967-4976. [64]Dixit CK, Kaushik A. Nano-structured arrays for multiplex analyses and Lab-on-a-Chip applications[J]. Biochem Biophys Res Commun, 2012, 419(2):316-320. [65]Ali MA, Solanki PR, Patel MK, et al. A highly efficient microfluidic nano biochip based on nanostructured nickel oxide[J]. Nanoscale, 2013, 5(7):2883-2891. [66] Torelli E, Marini M, Palmano S, et al. A DNA origami nanorobot controlled by nucleic acid hybridization[J]. Small, 2014, 10(14):2918-2926. [67]Zhang D, Hua T, Xiao F, e al. Phytotoxicity and bioaccumulation of ZnO nanoparticles in Schoenoplectus tabernaemontani[J]. Chemosphere, 2015, 120:211-219. [68]Elsabahy M, Wooley KL. Cytokines as biomarkers of nanoparticle immunotoxicity[J]. Chem Soc Rev, 2013, 42(12):5552-5576. [69]Rosenblum D, Peer D. Omics-based nanomedicine:the future of personalized oncology[J]. Cancer Lett, 2014, 352(1):126-136. |