Biotechnology Bulletin ›› 2017, Vol. 33 ›› Issue (11): 19-28.doi: 10.13560/j.cnki.biotech.bull.1985.2017-0261
Previous Articles Next Articles
ZHU Xin-ni1, WANG Shan-shan1, ZHOU Jia-qin2, ZHU Shi-hua2
Received:
2017-04-01
Online:
2017-11-26
Published:
2017-11-22
ZHU Xin-ni, WANG Shan-shan, ZHOU Jia-qin, ZHU Shi-hua. Research Advances of NDPKs in Plants[J]. Biotechnology Bulletin, 2017, 33(11): 19-28.
[1] Krebs HA, Hems R. Some reactions of adenosine and inosine phosphates in animal tissues[J]. Biochim Biophys Acta, 1953, 12(1/2):172-180. [2] Edlund B. Purification of a nucleoside diphosphate kinase from pea seed and phosphorylation of the enzyme with adenosine(32 P)triphosphate[J]. Acta Chem Scand, 1971, 25(4):1370-1376. [3] Morera S, Chiadmi MG, Lascu I, et al. Mechanism of phosphate transfer by nucleoside diphosphate kinase:X-ray structures of the phosphohistidine intermediate of the enzymes from Drosophila and dictyostelium[J]. Biochemistry, 1995, 34(35):11062-11070. [4] Dorion S, Dumas F, Rivoal J. Autophosphorylation of Solanum chacoense cytosolic nucleoside diphosphate kinase on Ser117[J]. J Exp Bot, 2006, 57(15):4079-4088. [5] Johansson M, Mackenziehose A, Andersson I, et al. Structure and mutational analysis of a plant mitochondrial nucleoside diphosphate kinase. Identification of residues involved in serine phosphorylation and oligomerization[J]. Plant Physiol, 2004, 136(2):3034-3042. [6] Shen Y, Kim J, Song PS. Autophosphorylation of Arabidopsis nucleoside diphosphate kinase 2 occurs only on its active histidine residue[J]. Biochemistry, 2006, 45(6):1946-1949. [7] Dorion S, Rivoal J. Characterization of a cytosolic nucleoside diphosphate kinase associated with cell division and growth in potato[J]. Planta, 2006, 224(1):108-124. [8] Dorion S, Clendenning A, Rivoal J. Engineering the expression level of cytosolic nucleoside diphosphate kinase in transgenic Solanum tuberosum rootsb alters growth, respiration and carbon metabolism[J]. Plant J, 2017, 89(5):914-926. [9] Martínez-Esteso MJ, Sellés-Marchart S, Lijavetzky D, et al. A DIGE-based quantitative proteomic analysis of grape berry flesh development and ripening reveals key events in sugar and organic acid metabolism[J]. J Exp Bot, 2011, 62(8):2521-2569. [10] Kav NV, Srivastava S, Goonewardene L, et al. Proteome-level changes in the roots of Pisum sativum in response to salinity[J]. Ann Appl Biol, 2004, 145(2):217-230. [11] Zhou QY, Xie ZM, Zhang AG, et al. Cloning, expression and characterization of a nucleoside diphosphate kinase(NDPK)gene from tobacco[J]. Prog Nat Sci-Mater, 2007, 17(8):906-912. [12] Guo G, Lv D, Yan X, et al. Proteome characterization of developing grains in bread wheat cultivars(Triticum aestivum L.)[J]. BMC Plant Biol, 2012, 12(1):147-171. [13] Fatehi F, Hosseinzadeh A, Alizadeh H, et al. The Proteome response of Hordeum spontaneum to salinity stress[J]. Cereal Res Commun, 2013, 41(1):78-87. [14] 梁潘霞, 李杨瑞, 杨丽涛. 甘蔗核苷二磷酸激酶(NDPK1)基因克隆及表达分析[J]. 热带作物学报, 2012, 33(12):2199-2205. [15] Harris N, Taylor JE, Roberts JA. Isolation of a mRNA encoding a nucleoside diphosphate kinase from tomato that is up-regulated by wounding[J]. Plant Mol Biol, 1994, 25(4):739-742. [16] Kopylov M, Bass HW, Stroupe ME. The maize(Zea mays L.)nucleoside diphosphate kinase1(ZmNDPK1)gene encodes a human NM23-H2 homologue that binds and stabilizes G-quadruplexDNA[J]. Biochemistry, 2015, 54(9):1743-1757. [17] Zhang J, Fukui T, Ichikawa A. A third type of nucleoside diphosphate kinase from spinach leaves:purification, characterization and amino-acid sequence[J]. Biochim Biophys Acta, 1995, 1248(1):19-26. [18] Shin DH, In JG, Lim YP, et al. Molecular cloning and characterization of nucleoside diphosphate(NDP)kinases from Chinese cabbage(Brassica campestris)[J]. Mol Cells, 2004, 17(1):86-94. [19] Hammargren J, Sundström J, Johansson M, et al. On the phylogeny, expression and targeting of plant nucleoside diphosphate kinases[J]. Physiol Plantarum, 2007, 129(1):79-89. [20] Ovečka M, Takáč T, Komis G, et al. Salt-induced subcellular kinase relocation and seedling susceptibility caused by overexpression of Medicago SIMKK in Arabidopsis[J]. J Exp Bot, 2014, 65(9):2335-2350. [21] 王凤茹, 董金皋, 司贺龙, 等. 水稻OsNDPK1基因在提高植物抗病性方面的应用:中国, CN201210143843. 8[P]. 2013-11-13. [22] Pan L, Kawai M, Yano A, et al. Nucleoside diphosphate kinase required for coleoptile elongation in rice[J]. Plant Physiol, 2000, 122(2):447. 452. [23] Yano A, Umeda M, Uchimiya H. Expression of functional proteins of cDNA encoding rice nucleoside diphosphate kinase(NDK)in Escherichia coli, and organ-related alteration of NDK activities during rice seed germination(Oryza sativa, L.)[J]. Plant Mol Biol, 1995, 27(5):1053-1058. [24] Lee DG, Ahsan N, Lee SH, et al. An approach to identify cold-induced low-abundant proteins in rice leaf[J]. CR Biol, 2007, 330(3):215-225. [25] Chen JH, Tian L, Xu HF, et al. Cold-induced changes of protein and phosphoprotein expression patterns from rice roots as revealed by multiplex proteomic analysis[J]. Plant Omics J Plant, 2012, 5(2):194-199. [26] Lin SK, Chang MC, Tsai YG, et al. Proteomic analysis of the expression of proteins related to rice quality during caryopsis development and the effect of high temperature on expression[J]. Proteomics, 2005, 5(8):2140-2156. [27] Kawasaki S, Borchert C, Deyholos M, et al. Gene expression profiles during the initial phase of salt stress in rice[J]. Plant Cell, 2001, 13(4):889-905. [28] Cho SM, Shin SH, Kim KS, et al. Enhanced expression of a gene encoding a nucleoside diphosphate kinase 1(OsNDPK1)in rice plants upon infection with bacterial pathogens[J]. Mol Cells, 2004, 18(3):390-395. [29] 凌丹燕, 路梅. 细菌性条斑病菌JH01诱导水稻抗病均一化差减文库的构建[J]. 安徽农业科学, 2016(2):188-191. [30] Ahsan N, Lee DG, Lee KW, et al. Glyphosate-induced oxidative stress in rice leaves revealed by proteomic approach[J]. Plant Physiol Bioch, 2008, 46(12):1062-1070. [31] Salekdeh GH, Siopongco J, Wade LJ, et al. Proteomic analysis of rice leaves during drought stress and recovery[J]. Proteomics, 2002, 2(9):1131-45. [32] Ishikawa T, Morimoto Y, Madhusudhan R, et al. Acclimation to diverse environmental stresses caused by a suppression of cytosolic ascorbate peroxidase in tobacco BY-2 cells[J]. Plant Cell Physiol, 2005, 46(8):1264-1271. [33] Choi G, Yi H, Lee J, et al. Phytochrome signalling is mediated through nucleoside diphosphate kinase 2[J]. Nature, 1999, 401(6753):610-613. [34] Choi G, Kim JI, Hong SW, et al. A possible role for NDPK2 in the regulation of auxin-mediated responses for plant growth and development[J]. Plant Cell Physiol, 2005, 46(8):1246-1254. [35] Seong ES, Guo J, Kim YH, et al. Regulations of marker genes involved in biotic and abiotic stress by overexpression of the AtNDPK2 gene in rice[J]. Biochem Bioph Res Co, 2007, 363(1):126-132. [36] Shen Y, Han Y, Kim J, et al. Arabidopsis nucleoside diphosphate kinase-2 as a plant GTPase activating protein[J]. Bmb Rep, 2008, 41(9):645-650. [37] Fukamatsu Y, Yabe N, Hasunuma K. Arabidopsis NDK1 is a component of ROS signaling by interacting with three catalases[J]. Plant Cell Physiol, 2003, 44(10):982-989. [38] Moon H, Lee B, Choi G, et al. NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants[J]. P Natl Acad Sci USA, 2003, 100(1):358-363. [39] Hamada T, Tanaka N, Noguchi T, et al. Phytochrome regulates phosphorylation of a protein with characteristics of a nucleoside diphosphate kinase in the crude membrane fraction from stem sections of etiolated pea seedlings[J]. J Photoch Photobio B Bio, 1996, 33(2):143-151. [40] Tanaka N, Ogura T, Noguchi T, et al. Phytochrome-mediated light signals are transduced to nucleoside diphosphate kinase in Pisumsativum L. cv. Alaska[J]. J Photoch Photobio B, 1998, 45(2-3):113-121. [41] Haque ME, Yoshida Y, Hasunuma K. ROS resistance in Pisum sativum cv. Alaska:the involvement of nucleoside diphosphate kinase in oxidative stress responses via the regulation of antioxidants[J]. Planta, 2010, 232(2):367-382. [42] 白晓娟, 刘丽娟, 张春华, 等. H 2 O 2 预处理对不同水稻品种Cd耐性的影响[J]. 中国水稻科学, 2010, 24(4):391-397. [43] 丁艳, 韩卓, 王泽港, 等. 不同基因型玉米幼苗对低磷条件的响应[J]. 中国农学通报, 2011, 27(30):32-34. [44] Zhang J, Fukui T, Ichikawa A. A third type of nucleoside diphosphate kinase from spinach leaves:purification, characterization and amino-acid sequence[J]. Biochim Biophys Acta, 1995, 1248(1):19-26. [45] Valenti D, Vacca RA, Pinto MCD, et al. In the early phase of programmed cell death in Tobacco Bright Yellow 2 cells the mitochondrial adenine nucleotide translocator, adenylate kinase and nucleoside diphosphate kinase are impaired in a reactive oxygen species-dependent manner[J]. Biochim Biophys Acta, 2007, 1767(1):66-78. [46] EscobarGalvis ML, Håkansson G, Alexciev K, et al. Cloning and characterisation of a pea mitochondrial NDPK[J]. Biochimie, 1999, 81(12):1089-1096. [47] Galvis MLE, Marttila S, HaKansson G, et al. Heat stress response in pea involves interaction of mitochondrial nucleoside diphosphate kinase with a novel 86-kilodalton protein[J]. Plant Physiol, 2001, 126(1):69-77. [48] Knorpp C, Johansson M, Baird AM. Plant mitochondrial nucleoside diphosphate kinase is attached to the membrane through interaction with the adenine nucleotide translocator[J]. Febs Letters, 2003, 555(2):363-366. [49] Galvis MLE, Marttila S, HaKansson G, et al. Heat stress response in pea involves interaction of mitochondrial nucleoside diphosphate kinase with a novel 86-kilodalton protein[J]. Plant Physiol, 2001, 126(1):69-77. [50] Johansson M. The role of nucleoside diphosphate kinase in plant mitochondria[D]. Acta U Agr Sueciae, 2006. [51] Monika J, Jenni H, Eva U, et al. The activities of nucleoside diphosphate kinase and adenylate kinase are influenced by their interaction[J]. Plant Sci, 2008, 174(2):192-199. [52] Hammargren J, Sundström J, Johansson M, et al. On the phylogeny, expression and targeting of plant nucleoside diphosphatekinases[J]. Physiol Plantarum, 2007, 129(1):79-89. [53] Hammargren J, Salinas T, Maréchal-Drouard L, et al. The pea mitochondrial nucleoside diphosphate kinase cleaves DNA and RNA[J]. Febs Letters, 2007, 581(18):3507-3511. [54] Hammargren J, Rosenquist S, Jansson C, et al. A novel connection between nucleotide and carbohydrate metabolism in mitochondria:sugar regulation of the Arabidopsis, nucleoside diphosphate kinase 3a gene[J]. Plant Cell Rep, 2008, 27(3):529-534. [55] Kihara A, Saburi W, Wakuta S, et al. Physiological and biochemical characterization of three nucleoside diphosphate kinase isozymes from rice(Oryza sativa L.)[J]. Biosci Biotech Bioch, 2011, 75(9):1740-1745. [56] Manigbas NL, Park DS, Park SK, et al. Enhanced tolerance of transgenic rice overexpressing Arabidopsis thaliana nucleoside diphosphate kinase(AtNDPK2)against various environmental stresses[J]. Philipp Agric Sci, 2011, 94(1):29-37. [57] Hetmann A, Kowalczyk S. Nucleoside diphosphate kinase isoforms regulated by phytochrome A isolated from oat coleoptiles[J]. Acta Biochimica Poloni, 2009, 56(1):143-153. [58] Zrenner R, Stitt M, Sonnewald U, et al. Pyrimidine and purine biosynthesis and degradation in plants[J]. Annu Rev Plant Biol, 2006, 57(1):805-836. [59] Anderca MI, Furuichi T, Muto S. Mitochondrial NDP kinase from Dunaliella tertiolecta(Chlorophyceae, Chlorophyta)[J]. Phycol Res, 2003, 51(3):147-153. [60] Dharmasiri S, Harrington HM, Dharmasiri N. Heat shock modulates phosphorylation status and activity of nucleoside diphosphate kinase in cultured sugarcane cells[J]. Plant Cell Rep, 2010, 29(11):1305-1314. [61] Cao TS, Srivastava S, Rahman MH, et al. Proteome-level changes in the roots of Brassica napus as a result of Plasmodiophora brassicae infection[J]. Plant Sci, 2008, 174(1):97-115. [62] Sharma N, Rahman MH, Strelkov S, et al. Proteome-level changes in two Brassica napus lines exhibiting differential responses to the fungal pathogen Alternaria brassicae[J]. Plant Sci, 2007, 172(1):95-110. [63] Postel EH. Multiple biochemical activities of NM23/NDP kinase in gene regulation[J]. J Bioenerg Biomer, 2003, 35(1):31-40. [64] Lübeck J, Soll J. Nucleoside diphosphate kinase from pea chloroplasts:purification, cDNA cloning and import into chloroplasts[J]. Planta, 1995, 196(4):668-673. [65] Bovet L, Meylan-Bettex M, Eggman T, et al. CDP phosphotransferase activity in spinach intact chloroplasts:Possible involvement of nucleoside diphosphate kinase II[J]. Plant Physiol Bioch, 1999, 37(37):645-652. [66] Hamada T, Hasunuma K, Komatsu S. Phosphorylation of proteins in the stem section of etiolated rice seedling irradiated with red light[J]. Biol Pharm Bull, 1999, 22(2):122-126. [67] Ito K, Hamada T, Hasunuma K. Blue light signal transmission to 15 kDa proteins in the crude membrane fraction from the stem section of etiolated pea seedlings[J]. J Photoch Photobio B, 1995, 28(3):223-227. [68] Im YJ, Kim JI, Shen Y, et al. Structural analysis of Arabidopsis thaliana nucleoside diphosphate kinase-2 for phytochrome-mediated light signaling[J]. J Mol Biol, 2004, 343(3):659-670. [69] Kim JI, Song PS. Phytochrome phosphorylation modulates light signaling by influencing the protein-protein interaction[J]. Plant Cell, 2004, 16(10):2629-2640. [70] Hetmann A, Wujak M, Kowalczyk S. Protein transphosphorylation during the mutual interaction between phytochrome a and a nuclear isoform of nucleoside diphosphate kinase is regulated by red light[J]. Biochemistry, 2016, 81(10):1153-1162. [71] 王丽娜, 王丽艳, 刘景文, 等. AtNDPK2基因转化敖汉苜蓿及其耐盐性分析[J]. 激光生物学报, 2014, 23(1):65-70. [72] 侯夫云, 赵兵, 王庆美, 等. 转AtNDPK2基因甘薯的耐盐性鉴定[J]. 山东农业科学, 2014(2):29-31. [73] Kim YH, Kim MD, Choi YI, et al. Transgenic poplar expressing Arabidopsis NDPK2 enhances growth as well as oxidative stress tolerance[J]. Plant Biotechnol J, 2011, 9(3):334-347. [74] Manigbas NL, Park DS, Park SK, et al. Enhanced tolerance of transgenic rice overexpressing Arabidopsis thaliana nucleoside diphosphate kinase(AtNDPK2)against various environmental stresses[J]. Philipp Agric Sci, 2011, 94(1):29-37. [75] Kim YH, Lim S, Yang KS, et al. Expression of Arabidopsis NDPK2 increases antioxidant enzyme activities and enhances tolerance to multiple environmental stresses in transgenic sweet potato plants[J]. Mol Breeding, 2009, 24(3):233-244. [76] Tang L, Kim MD, Yang KS, et al. Enhanced tolerance of transgenic potato plants overexpressing nucleoside diphosphate kinase2 against multiple environmental stresses[J]. Transgenic Res, 2008, 17(4):705-715. [77] Verslues PE, Batelli G, Grillo S, et al. Interaction of SOS2 with nucleoside diphosphate kinase 2 and catalases reveals a point of connection between salt stress and H 2 O 2 signaling in Arabidopsis thaliana[J]. Mol Cell Biol, 2007, 27(22):7771-7780. [78] Yang KA, Moon H, Kim G, et al. NDP kinase 2 regulates expression of antioxidant genes in Arabidopsis[J]. P Jpn Acad B-Phys, 2003, 79(3):86-91. [79] Spetea C, Hundal T, Lundin B, et al. Multiple evidence for nucleotide metabolism in the chloroplast thylakoid lumen[J]. P Natl Acad Sci USA, 2004, 101(5):1409-1414. [80] Monika J, Jenni H, Eva U, et al. The activities of nucleoside diphosphate kinase and adenylate kinase are influenced by their interaction[J]. Plant Sci, 2008, 174(2):192-199. [81] Matsushita Y, Suzuki T, Kubota R, et al. Isolation of a cDNA for a nucleoside diphosphate kinase capable of phosphorylating the kinase domain of the self-incompatibility factor SRK of Brassica campestris[J]. J Exp Bot, 2002, 53(369):765-767. |
[1] | SONG Zhi-zhong, XU Wei-hua, XIAO Hui-lin, TANG Mei-ling, CHEN Jing-hui, GUAN Xue-qiang, LIU Wan-hao. Cloning, Expression and Function of Iron Regulated Transporter VvIRT1 in Wine Grape(Vitis vinifera L.) [J]. Biotechnology Bulletin, 2023, 39(8): 234-240. |
[2] | XIE Dong, WANG Liu-wei, LI Ning-jian, LI Ze-lin, XU Zi-hang, ZHANG Qing-hua. Exploration, Identification and Phosphorus-solubilizing Condition Optimization of a Multifunctional Strain [J]. Biotechnology Bulletin, 2023, 39(7): 241-253. |
[3] | WU Hao, LIU Zi-wei, ZHENG Ying, DAI Ya-wen, SHI Quan. Study on the Heterogeneity of Human Gingival Mesenchymal Stem Cells at Single Cell Level [J]. Biotechnology Bulletin, 2023, 39(7): 325-332. |
[4] | YOU Zi-juan, CHEN Han-lin, DENG Fu-cai. Research Progress in the Extraction and Functional Activities of Bioactive Peptides from Fish Skin [J]. Biotechnology Bulletin, 2023, 39(7): 91-104. |
[5] | MA Xue-hu, MA Li-hua, GOU Yan, MA Yan-fen. Related Inflammatory Diseases Caused by Mitochondrial Dysfunction and Targeted Therapy to Them [J]. Biotechnology Bulletin, 2023, 39(6): 119-125. |
[6] | XIAO Liang, WU Zheng-dan, LU Liu-ying, SHI Ping-li, SHANG Xiao-hong, CAO Sheng, ZENG Wen-dan, YAN Hua-bing. Research Progress of Important Traits Genes in Cassava [J]. Biotechnology Bulletin, 2023, 39(6): 31-48. |
[7] | LIU Hui, LU Yang, YE Xi-miao, ZHOU Shuai, LI Jun, TANG Jian-bo, CHEN En-fa. Comparative Transcriptome Analysis of Cadmium Stress Response Induced by Exogenous Sulfur in Tartary Buckwheat [J]. Biotechnology Bulletin, 2023, 39(5): 177-191. |
[8] | ZHANG Xue-ping, LU Yu-qing, ZHANG Yue-qian, LI Xiao-juan. Advances in Plant Extracellular Vesicles and Analysis Techniques [J]. Biotechnology Bulletin, 2023, 39(5): 32-43. |
[9] | XIONG Shu-qi. Towards the Understanding on the Physiological Functions of Bile Acids and Interactions with Gut Microbiota [J]. Biotechnology Bulletin, 2023, 39(4): 187-200. |
[10] | HU Ming-yue, YANG Yu, GUO Yang-dong, ZHANG Xi-chun. Functional Analysis of SlMYB96 Gene in Tomato Under Cold Stress [J]. Biotechnology Bulletin, 2023, 39(4): 236-245. |
[11] | YANG Jun-zhao, ZHANG Xin-rui, ZHAO Guo-zhu, ZHENG Fei. Structure and Function Analysis of Novel GH5 Multi-domain Cellulase [J]. Biotechnology Bulletin, 2023, 39(4): 71-80. |
[12] | LI Tian-shun, LI Chen-wei, WANG Jia, ZHU Long-Jiao, XU Wen-tao. Efficient Generation of Secondary Libraries During Functional Nucleic Acids Screening [J]. Biotechnology Bulletin, 2023, 39(3): 116-122. |
[13] | LIU Cheng-xia, SUN Zong-yan, LUO Yun-bo, ZHU Hong-liang, QU Gui-qin. Multifaceted Roles of bHLH Phosphorylation in Regulation of Plant Physiological Functions [J]. Biotechnology Bulletin, 2023, 39(3): 26-34. |
[14] | CHEN Chu-wen, LI Jie, ZHAO Rui-peng, LIU Yuan, WU Jin-bo, LI Zhi-xiong. Cloning, Tissue Expression Profile and Function Prediction of GPX3 Gene in Tibetan Chicken [J]. Biotechnology Bulletin, 2023, 39(3): 311-320. |
[15] | ZHANG Yu-juan, LI Dong-hua, GONG Hui-hui, CUI Xin-xiao, GAO Chun-hua, ZHANG Xiu-rong, YOU Jun, ZHAO Jun-sheng. Cloning and Salt-tolerance Analysis of NAC Transcription Factor SiNAC77 from Sesamum indicum L. [J]. Biotechnology Bulletin, 2023, 39(11): 308-317. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||