[1] 董彦红, 刘彬彬, 张旭, 等. 黄瓜幼苗非结构性碳水化合物代谢对干旱胁迫与CO 2 倍增的响应[J]. 应用生态学报, 2015, 26(1):53-60. [2] Uprety DC, Sen S, Dwivedi N. Rising atmospheric carbon dioxide on grain quality in crop plants[J]. Physiology and Molecular Biology of Plants, 2010, 16(3):215-227. [3] 付士磊. 银杏、油松对CO 2 和O 3 浓度升高的生理响应[D]. 北京:中国科学院, 2007. [4] 王丽萍, 李志刚, 谭乐和, 等. 植物内源激素研究进展[J]. 安徽农业科学, 2011, 39(4):1912-1914. [5] 汪宝卿, 慈敦伟, 张礼凤, 等. 同化物供应和内源激素信号对大豆花荚发育的调控[J]. 大豆科学, 2010, 29(5):878-882. [6] Dörffling K. The discovery of abscisic acid:a retrospect[J]. Journal of Plant Growth Regulation, 2015, 34(4):795-808. [7] Zhang XF, Jiang T, Yu YT. Arabidopsis co-chaperonin CPN20 antagonizes Mg-chelatase H subunit to derepress ABA-responsive WRKY40 transcription repressor[J]. Science China Life Sciences, 2014, 57(1):11-21. [8] 李雪梅, 何兴元, 陈玮, 等. 大气二氧化碳浓度升高对银杏叶片内源激素的影响[J]. 应用生态学报, 2007, 18(7):1420-1424. [9] Li XM, Zhang LH, Ma LJ, et al. Elevated carbon dioxide and/or ozone concentrations induce hormonal changes in Pinus tabulaeformis[J]. Journal of Chemical Ecology, 2011, 37(7):779-784. [10] Raschke K. Simultaneous requirement of carbon dioxide and abscisic acid for stomatal closing in Xanthium strumariun L. [J]. Planta, 1975, 125(3):243-259. [11] 翟晓朦, 臧春鑫, 王敏, 等. CO 2 浓度升高对不同秋眠型苜蓿内源激素含量的影响[J]. 草业科学, 2016, 33(3):442-449. [12] Li CR, Gan LJ, Xia K, et al. Responses of carboxylating enzymes, sucrose metabolizing enzymes and plant hormones in a tropical epiphytic CAM orchid to CO 2 enrichment[J]. Plant, Cell and Environment, 2002, 25(3):369-377. [13] Dalal M, Chinnusamy V. ABA receptors:prospects for enhancing biotic and abiotic stress tolerance of crops[J]. Elucidation of Abiotic Stress Signaling in Plants, 2015, 88:271-298. [14] Zhou YM, Han SJ, Liu Y, et al. Stomatal response of Pinus sylvestriformis to elevated CO 2 concentrations during the four years of exposure[J]. Journal of Forestry Research, 2005, 16(1):15-18. [15] Ainsworth EA, Rogers A. The response of photosynthesis and stomatal conductance to rising[CO 2 ]:Mechanisms and environmental interactions[J]. Plant Cell and Environment, 2007, 30(3):258-270. [16] Gehring CA, Irving HR, Mcconchie R, et al. Jasmonates induce intracellular alkalinization and closure of Paphiopedilum guard cells[J]. Annals of Botany, 1997, 80(4):485-489. [17] 胡鹏伟, 黄桃鹏, 李媚娟, 等. 脱落酸的生物合成和信号调控进展[J]. 生命科学, 2015, 27(9):1193-1196. [18] Wang Y, Du ST, Li LL, et al. Effect of CO 2 Elevation on root growth and its relationship with indole acetic acid and ethylene in tomato seedlings[J]. Pedosphere, 2009, 19(5):570-576. [19] Li XM, He XY, Zhang LH, et al. Influence of elevated CO 2 and O 3 on IAA, IAA oxidase and peroxidase in the leaves of ginkgo trees[J]. Biologia Plantarum, 2009, 53:339-342. [20] Teng NJ, Wang J, Chen T, et al. Elevated CO 2 induces physiological, biochemical andstructural changes in leaves of Arabidopsis thaliana[J]. New Phytologist, 2006, 172(1):92-103. [21] Masle J. The Effects of elevated CO 2 concentration ons cell division rates, growth patterns, and blade anatomy in young wheat plants are modulated by factors related to leaf position, vernalization and genotype[J]. Plant Physiology, 2000, 122:1399-1416. [22] 翟开恩, 潘伟槐, 叶晓帆, 等. 高等植物局部生长素合成的生物学功能及其调控机制[J]. 植物学报, 2015, 50(2):149-158. [23] 杨金华. 转基因毛白杨试管苗气孔运动调控的研究[D]. 保定:河北农业大学, 2011:1-45. [24] 田露, 杨波, 田甜, 等. 植物激素对气孔运动的调节[J]. 沈阳师范大学学报:自然科学版, 2015, 33(3):442-446. [25] Peng JR. Gibberellin and jasmonate crosstalk during stamen development[J]. Journal of Integrative Plant Biology, 2009, 51(12):1064-1070. [26] 蔡铁, 徐海成, 尹燕枰, 等. 外源IAA、GA 3 、ABA影响不同穗型小麦分蘖发生的机制[J]. 作物学报, 2013, 39(10):1835-1842. [27] 黄桃鹏, 李媚娟, 王睿. 赤霉素生物合成及信号转导途径研究进展[J]. 植物生理学报, 2015, 51(8):1241-1247. [28] Haworth M, Elliott-Kingston C, Mcelwain JC, et al. The stomatal CO 2 proxy does not saturate at high atmospheric CO 2 concentrations:evidence from stomatal index responses of Araucariaceae conifers[J]. Oecologia, 2011, 167(1):11-19. [29] Du H, Chang Y, Huang F, et al. GID1 modulates stomatal response and submergence tolerance involving abscisic acid and gibberellic acid signaling in rice[J]. Journal of Integrative Plant Biology, 2015, 57:954-968. [30] 曹柳青, 贾晓梅. 赤霉素对冬枣光合特性的影响及其持续期的研究[J]. 中国果树, 2013(6):44-46. [31] 李杰, 邱丽艳, 赵方贵, 等. 一氧化氮在乙烯诱导蚕豆气孔关闭中的作用[J]. 植物生理与分子生物学学报, 2007, 33(4):349-353. [32] 刘菁, 刘国华, 侯丽霞, 等. 胞质pH变化介导乙烯诱导的拟南芥保卫细胞NO产生和气孔关闭[J]. 科学通报, 2010, 55(22):2003-2009. [33] 刘菁, 侯丽霞, 刘国华, 等. NO介导的H 2 S合成参与乙烯诱导的拟南芥气孔关闭[J]. 科学通报, 2011, 56(30):2515-2522. [34] Kamínek M. Tracking the story of cytokinin research[J]. Journal of Plant Growyh Regulation, 2015, 34(4):723-739. [35] Yong JWH, Wong SC, Letham DS, et al. Effects of elevated[CO 2 ]and nitrogen nutrition on cytokinins in the xylem sap and leaves of cotton[J]. Plant Physiology, 2000, 124:767-780. [36] Moura FB, Vieira MR, Sim Õ es AN, et al. Partisipation of cytokinin on gas exchange and antioxidant enzymes activities[J]. Indian Journal of Plant Physiology, 2017, 22(1):16-29. [37] 罗超, 黄世文, 王菡, 等. 细胞分裂素的生物合成、受体和信号转导的研究进展[J]. 特产研究, 2011, 2:71-75. [38] Michael G. The control of root hair formation:suggested mechanisms[J]. Journal of Plant Nutrition and Soil Science, 2001, 164(2):111-119. [39] Bakshi A, Shemansky JM, Chang C, et al. History of research on the plant hormone ethylene[J]. Journal of Plant Growth Regulation, 2015, 34:809-827. [40] 张少颖, 饶景萍. Ca 2+ 参与NO对切花月季瓶插期间乙烯合成的调控[J]. 中国农学通报, 2009, 25(13):82-87. [41] 刘国华, 侯丽霞, 刘菁, 等. H 2 O 2 介导的NO合成参与乙烯诱导的拟南芥叶片气孔关闭[J]. 自然科学进展, 2009, 19(8):841-851. [42] 梁艳, 沈海龙, 高美玲, 等. 红松种子发育过程中内源激素含量的动态变化[J]. 林业科学, 2016, 52(3):105-111. [43] Zheng YR, Xie ZX, Glyn MR, et al. Elevated CO 2 accelerates net assimilation rate and enhance growth of dominant shrub species in a sand dune in central Inner Mongolia[J]. Environmental and Experimental Botany, 2010, 68(1):31-36. [44] King JS, Kubiske ME, Pregitzer KS, et al. Tropospheric O 3 compromises net primary production in young stands of trembling aspen, paper birch and sugar maple in response to elevated atmospheric CO 2 [J]. New Phytologist, 2005, 168(3):623-636. [45] 陈楠楠, 周超, 王浩成, 等. 大气二氧化碳含量升高对稻麦产量影响的整合分析[J]. 南京农业大学学报, 2013, 36(2):83-90. [46] 杨连新, 王云霞, 朱建国, 等. 开放式空气中CO 2 增高(FACE)对水稻生长和发育的影响[J]. 生态学报, 2010, 30(6):1573-1585. |