[1] Devries AL. Antifreeze glycopeptides and peptides:interactions with ice and water[J]. Methods in Enzymology, 1986, 127(127):293-303. [2] Duman JG, Wu DW, Olsen TM, et al. Thermal hysteresis proteins[J]. Adv Low Temp Biol, 1993, 2:131-182. [3] Bang JK, Lee JH, Murugan RN, et al. Antifreeze peptides and glycopeptides, and their derivatives:potential uses in biotechnology[J]. Marine Drugs, 2013, 11(6):2013-2041. [4] Davies PL. Ice-binding proteins:a remarkable diversity of structures for stopping and starting ice growth[J]. Trends in Biochemical Sciences, 2014, 39(11):548-555. [5] Graether SP, Kulper MJ, Gagné SM, et al. β-Helix structure and ice-binding properties of a hyperactive antifreeze protein from an insect[J]. Nature, 2000, 406(6793):325-328. [6] Olijve LL, Meister K, DeVries AL, et al. Blocking rapid ice crystal growth through nonbasal plane adsorption of antifreeze proteins[J]. Proceedings of the National Academy of Sciences, 2016, 113(14):3740-3745. [7] Graether SP, Sykes BD. Cold survival in freeze-intolerant insects:the structure and function of beta-helical antifreeze proteins[J]. European Journal of Biochemistry, 2004, 271(16):3285-3296. [8] Friis DS, Kristiansen E, Solms NV, et al. Antifreeze activity enhancement by site directed mutagenesis on an antifreeze protein from the beetle Rhagium mordax[J]. Febs Letters, 2014, 588(9):1767-1772. [9] Kuiper MJ, Morton CJ, Abraham SE, et al. The biological function of an insect antifreeze protein simulated by molecular dynamics[J]. Elife Sciences, 2015, 4, doi:10. 7554/eLife. 05142. [10] Leinala EK, Davies PL, Doucet D, et al. A β-helical antifreeze protein isoform with increased activity[J]. Journal of Biological Chemistry, 2002, 277(36):33349-33352. [11] Marshall CB, Daley ME, Sykes BD, et al. Enhancing the activity of a beta-helical antifreeze protein by the engineered addition of coils[J]. Biochemistry, 2004, 43(43):11637-11646. [12] Mao XF, Liu ZY, Li H, et al. Calorimetric studies on an insect antifreeze protein ApAFP752 from Anatolica polita[J]. Journal of Thermal Analysis & Calorimetry, 2011, 104(1):343-349. [13] Amornwittawat N, Wang S, Duman JG, et al. Polycarboxylates enhance beetle antifreeze protein activity[J]. Biochimica Et Biophysica Acta Proteins & Proteomics, 2008, 1784(12):1942-1948. [14] Mao XF, Liu ZY, Ma J, et al. Characterization of a novel β-helix antifreeze protein from the desert beetle Anatolica polita[J]. Cryobiology, 2011, 62(2):91-99. [15] Verdu JR, Casas JL, Lobo JM, et al. Dung beetles eat acorns to increase their ovarian development and thermal tolerance[J]. PLoS One, 2012, 5(4):61. [16] Drori R, Celik Y, Davies PL, et al. Ice-binding proteins that accumulate on different ice crystal planes produce distinct thermal hysteresis dynamics[J]. Journal of the Royal Society Interface, 2014, 11(98):20140526. [17] Pertaya N, Marshall CB, Celik Y, et al. Direct visualization of spruce budworm antifreeze protein interacting with ice crystals:basal plane affinity confers hyperactivity[J]. Biophysical Journal, 2008, 95(1):333-341. [18] Wen X, Wang S, Amornwittawat N, et al. Interaction of reduced nicotinamide adenine dinucleotide with an antifreeze protein from Dendroides canadensis:mechanistic implication of antifreeze activity enhancement[J]. J Mol Recognit, 2011, 24:1025-1032. [19] Kim JS, Yethiraj A. The effect of salt on the melting of ice:A molecular dynamics simulation study[J]. Journal of Chemical Physics, 2008, 129(12):191-195. [20] Haji-Akbari A, Debenedetti PG. Direct calculation of ice homogeneous nucleation rate for a molecular model of water[J]. Proc Natl Acad Sci USA, 2015, 112(34):10582-10588. |