[1] Van Dijk WJ, Klaassen RV, Schuurmans M, et al. Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors[J]. Nature, 2001, 411(6835):2692-2676. [2] Smit AB, Syed NI, Schaap D, et al. A glia-derived acetylcholine-binding protein that modulates synaptic transmission[J]. Nature, 2001, 411(6835):261-268. [3] Hansen SB, Talley TT, Radic Z, et al. Structural and ligand recognition characteristics of an acetylcholine-binding protein from Aplysia californica[J]. The Journal of Biological Chemistry, 2004, 279(23):24197-24202. [4] Celie PH, Klaassen RV, van Rossum-Fikkert SE, et al. Crystal structure of acetylcholine-binding protein from Bulinus truncatus reveals the conserved structural scaffold and sites of variation in nicotinic acetylcholine receptors[J]. The Journal of Biological Chemistry, 2005, 280(28):26457-26466. [5] Celie PH, Kasheverov IE, Mordvintsev DY, et al. Crystal structure of nicotinic acetylcholine receptor homolog AChBP in complex with an α-conotoxin PnIA variant[J]. Nature Structural & Molecular Biology, 2005, 12(7):582-588. [6] Hansen SB, Sulzenbacher G, Huxford T, et al. Structures of Aplysia AChBP complexes with nicotinic agonists and antagonists reveal distinctive binding interfaces and conformations[J]. The EMBO Journal, 2005, 24(20):3635-3646. [7] Ulens C, Hogg RC, Celie PH, et al. Structural determinants of selective alpha-conotoxin binding to a nicotinic acetylcholine receptor homolog AChBP[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(10):3615-3620. [8] Dutertre S, Ulens C, Büttner R, et al. AChBP-targeted α-conotoxin correlates distinct binding orientations with nAChR subtype selectivity[J]. The EMBO journal, 2007, 26(16):3858-3867. [9] Lin B, Xu M, Zhu X, et al. From crystal structure of alpha-conotoxin GIC in complex with Ac-AChBP to molecular determinants of its high selectivity for alpha3beta2 nAChR[J]. Scientific Reports, 2016, 6:22349. [10] Gorrec F. Protein crystallization screens developed at the MRC Laboratory of Molecular Biology[J]. Drug Discovery Today, 2016, 21(5):819-825. [11] Liu J, Yin DC, Guo YZ, et al. Selecting temperature for protein crystallization screens using the temperature dependence of the second virial coefficient[J]. PLoS One, 2011, 6(3):e17950. [12] Juarez-Martinez G, Steinmann P, Roszak AW, et al. High-throughput screens for postgenomics:studies of protein crystallization using microsystems technology[J]. Analytical Chemistry, 2002, 74(14):3505-3510. [13] Lin B, Meng H, Bing H, et al. Efficient expression of Acetylcholine-binding protein from Aplysia californica in Bac-to-Bac System[J]. Biomed Res Int, 2014, 2014:691480. [14] Wang N, Shi X, Jiang L, et al. Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4[J]. Cell Research, 2013, 23(8):986-993. [15] 林波, 孟海玲, 吴勇, 等. 转染乙酰胆碱结合蛋白基因到昆虫细胞的研究[J]. 生命科学研究, 2014, 18(1):1-5. [16] 林波, 孟海玲, 吴勇, 等. 静水椎螺乙酰胆碱结合蛋白在Bac-to-Bac系统中的表达、纯化与结晶[J]. 生物技术通报, 2014(8):126-131. [17] Luo S, Akondi KB, Zhangsun D, et al. Atypical alpha-conotoxin LtIA from Conus litteratus targets a novel microsite of the alpha3beta2 nicotinic receptor[J]. The Journal of Biological Chemistry, 2010, 285(16):12355-12366. [18] Luo S, Zhangsun D, Zhu X, et al. Characterization of a novel alpha-conotoxin TxID from Conus textile that potently blocks rat alpha3beta4 nicotinic acetylcholine receptors[J]. Journal of Medicinal Chemistry, 2013, 56(23):9655-9663. [19] Luo S, Zhangsun D, Wu Y, et al. Characterization of a novel alpha-conotoxin from conus textile that selectively targets alpha6/alpha3beta2beta3 nicotinic acetylcholine receptors[J]. The Journal of Biological Chemistry, 2013, 288(2):894-902. [20] Kompella SN, Cuny H, Hung A, et al. Molecular basis for differential sensitivity of alpha-Conotoxin RegIIA at rat and human neuronal nicotinic acetylcholine receptors[J]. Molecular Pharmacology, 2015, 88(6):993-1001. |