[1] Tang W, Chen H, Xu C, et al. Development of insect-resistant transgenic indica rice with a synthetic cry1C* gene[J]. Molecular Breeding, 2006, 18(1):1-10. [2] Zhang ZL, Xie Z, Zou X, et al. A rice WRKY gene encodes a transcr-iptional repressor of the gibberellin signaling pathway in aleurone cells[J]. Plant Physiology, 2004, 134(4):1500-1513. [3] Duan H, Schuler MA. Differential expression and evolution of the Arabidopsis CYP86A subfamily[J]. Plant Physiology, 2005, 137 (3):1067-1081. [4] Dubouzet JG, Sakuma Y, Ito Y, et al. OsDREB genes in rice, Oryza sativa L. , encode transcription activators that function in drought-, high-salt and cold-responsive gene expression[J]. The Plant Journal, 2003, 33(4):751-763. [5] Korobczak A, Aksamit A, kaszewicz M, et al. The potato glucosyltransferase gene promoter is environmentally regulated[J]. Plant Science, 2005, 168(2):339-348. [6] Cheng X, Sardana R, Kaplan H, et al. Agrobacterium-transformed rice plants expressing synthetic cryIA(b)and cryIA(c)genes are highly toxic to striped stem borer and yellow stem borer[J]. Proceedings of the National Academy of Sciences, 1998, 95(6):2767-2772. [7] Alam MF, Datta K, Abrigo E, et al. Transgenic insect-resistant maintainer line(IR68899B)for improvement of hybrid rice[J]. Plant Cell Reports, 1999, 18(18):572-575. [8] Tu J, Zhang G, Datta K, et al. Field performance of transgenic elite commercial hybrid rice expressing Bacillus thuringiensis-endotoxin[J]. Nature Biotechnology, 2000, 18(10):1101-1104. [9] Chen H, Tang W, Xu C, et al. Transgenic indica rice plants harboring a synthetic cry2A* gene of Bacillus thuringiensis exhibit enhanced resistance against lepidopteran rice pests[J]. Theoretical and applied genetics, 2005, 111(7):1330-1337. [10] Bolle C. The role of GRAS proteins in plant signal transduction and development[J]. Planta, 2004, 218(5):683-692. [11] Hirsch S, Kim J, Muñoz A, et al. GRAS proteins form a DNA bind-ing complex to induce gene expression during nodulation signaling in Medicago truncatula[J]. The Plant Cell, 2009, 21(2):545-557. [12] Torres-Galea P, Hirtreiter B, Bolle C. Two GRAS proteins, SCAR- ECROW-LIKE21 and PHYTOCHROME A SIGNAL TRANSDUC-TION1, function cooperatively in phytochrome A signal transduc-tion[J]. Plant Physiology, 2013, 161(1):291-304. [13] 石瑞, 曹诣斌, 陈文荣, 等. 佛手GRAS基因的克隆及表达分析[J]. 浙江师范大学学报:自然科学版, 2011, 34(4):446-451. [14] Xu K, Chen S, Li T, et al. OsGRAS23, a rice GRAS transcription factor gene, is involved in drought stress response through regulating expression of stress-responsive genes[J]. BMC plant biology, 2014, 15(1):1-13. [15] 杨明贵. 甘蓝型油菜 GRAS 家族基因 BnLAS 的分离和功能分析[D]. 武汉:华中农业大学, 2010. [16] Ma HS. The salt- and drought-inducible poplar GRAS protein SCL7 confers salt and drought tolerance in Arabidopsis thaliana[J]. Journal of Experimental Botany, 2010, 61(14):4011-4019. [17] Yuan Y, Fang L, Karungo SK, et al. Overexpression of VaPAT1, a GRAS transcription factor from Vitis amurensis, confers abiotic stress tolerance in Arabidopsis[J]. Plant Cell Reports, 2015, 35(3):1-12. [18] 李雪燕, 金胶胶, 赵玉琳, 等. 柽柳GRAS转录因子基因启动子克隆和表达分析[J]. 中国农学通报, 2016, 2016(2):28-32. [19] 关波, 胡有贞, 张富春, 等. 盐穗木甜菜碱醛脱氢酶基因(BADH)的克隆及其在盐胁迫下的表达分析[J]. 植物生理学通讯, 2010, 46(1):47-50. [20] 郭华军, 焦远年, 邸超, 等. 拟南芥转录因子GRAS家族基因群响应渗透和干旱胁迫的初步探索[J]. 植物学报, 2009, 44(3):290-299. [21] 郭华军. 拟南芥转录因子GRAS家族SCL15基因对干旱胁迫的响应分析[D]. 杨凌:西北农林科技大学, 2009. [22] 彭丹, 张霞, 张富春. 盐穗木过氧化氢酶基因的克隆与功能分析[J]. 西北植物学报, 2014, 33(10):1933-1939. [23] 周莲洁, 杨中敏, 张富春, 等. 新疆盐穗木GRAS转录因子基因克隆及表达分析[J]. 西北植物学报, 2013, 33(6):1091-1097. [24] Jefferson RA, Kavanagh TA, Bevan MW. GUS fusions:beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants[J]. Embo Journal, 1987, 6(13):3901-3907. [25] 王亚男, 刘晓楠, 戚伟, 等. 青香蕉苹果α-法尼烯合酶基因启动子的克隆及序列分析[J]. 科技视界, 2016, 2016(13):101-102. [26] Song J, Wang Z. Molecular cloning, expression and characterization of a phenylalanine ammonia-lyase gene(SmPAL1)from Salvia miltiorrhiza[J]. Molecular Biology Reports, 2009, 36(5):939-952. [27] Imura Y, Seki H, Toyoda K, et al. Contrary operations of Box-I element of pea phenylalanine ammonia-lyase gene 1 promoter for organ-specific expression[J]. Plant Physiology & Biochemistry, 2001, 39(5):355-362. [28] Cai G, Cao K. PAT1, a new member of the GRAS family, is involved in phytochrome A signal transduction[J]. Genes & Development, 2000, 14(10):1269-1278. [29] Dunn MA, Goddard NJ, Zhang L, et al. Low-temperature-responsive barley genes have different control mechanisms[J]. Plant Molecular Biology, 1994, 24(6):879-888. [30] Sugimoto K, Takeda S, Hirochika H. MYB-related transcription factor NtMYB2 induced by wounding and elicitors is a regulator of the tobacco retrotransposon Tto1 and defense-related genes[J]. Plant Cell, 2000, 12(12):2511-2528. [31] Li PC, Yu SW, Shen J, et al. The transcriptional response of apple alcohol acyltransferase(MdAAT2)to salicylic acid and ethylene is mediated through two apple MYB TFs in transgenic tobacco[J]. Plant Molecular Biology, 2014, 85(6):627-638. [32] Gallo-Ebert C, Donigan M, Liu HY, et al. The yeavast anaerobic response element AR1b regulates aerobic antifungal drug-dependent sterol gene expression[J]. Journal of Biological Chemistry, 2013, 288(49):35466-35477. [33] Winkler WC, Grundy FJ, Murphy BA, et al. The GA motif:an RNA element common to bacterial antitermination systems, rRNA, and eukaryotic RNAs[J]. RNA, 2001, 7(8):1165-1172. [34] Goldsbrough AP, Albrecht H, Stratford R. Salicylic acid-inducible binding of a tobacco nuclear protein to a 10 bp sequence which is highly conserved amongst stress-inducible genes[J]. Plant Journal for Cell & Molecular Biology, 1993, 3(4):563-571. [35] Mou S, Liu Z, Guan D, et al. Functional analysis and expressional characterization of rice ankyrin repeat-containing protein, Os PIANK1, in basal defense against Magnaporthe oryzae attack[J]. PLoS One, 2013, 8(3):2764-2767. [36] Ohme-Takagi M, Shinshi H. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element[J]. Plant Cell, 1995, 7(2):173-182. |