Biotechnology Bulletin ›› 2018, Vol. 34 ›› Issue (11): 1-7.doi: 10.13560/j.cnki.biotech.bull.1985.2018-0464
LI Su-zhen, CHEN Ru-mei
Received:
2018-05-18
Online:
2018-11-26
Published:
2018-11-28
LI Su-zhen, CHEN Ru-mei. Function Analysis of ZIP in Plant[J]. Biotechnology Bulletin, 2018, 34(11): 1-7.
[1] Kobayashi T, Nishizawa NK.Iron uptake, translocation, and regulation in higher plants[J]. Annual Review of Plant Biology, 2012, 63:131-152. [2] 张凌云, 张先发, 翟衡. 土壤因子对植物缺铁失绿的影响[J]. 土壤通报, 2002, 33(1):74-77. [3] 王华梅. 儿童缺铁性贫血的临床分析[J]. 中国城乡企业卫生, 2016(6):65-66. [4] 邱建萍. 妊娠期妇女缺铁性贫血分析[J]. 世界最新医学信息文摘, 2016, 16(42):61. [5] Haydon MJ, Cobbett CS.A novel major facilitator superfamily protein at the tonoplast influences zinc tolerance and accumulation in Arabidopsis[J]. Plant Physiol, 2007, 143(4):1705-1719. [6] Mathews WR, Wang F, Eide DJ, et al.Drosophila fear of intimacy encodes a Zrt/IRT-like protein(ZIP)family zinc transporter functionally related to mammalian ZIP proteins[J]. The Journal of Biological Chemistry, 2005, 280(1):787-795. [7] 倪卫东, 成少华, 迟金和, 等. 玉米种植过程中缺锌症状及其防治措施[J]. 现代农业科技, 2014(1):93-94. [8] 刘陵霞. 缺锌对儿童发育身高影响分析[J]. 微量元素与健康研究, 2000, 17(1):29-30. [9] Wessells KR, Brown KH.Estimating the global prevalence of zinc deficiency:results based on zinc availability in national food supp-lies and the prevalence of stunting[J]. PLoS One, 2012, 7(11):e50568. [10] Guerinot ML.The ZIP family of metal transporters[J]. Biochimica et Biophysica Acta, 2000, 1465(1-2):190-198. [11] Henriques R, et al.Knock-out of Arabidopsis metal transporter gene IRT1 results in iron deficiency accompanied by cell differentiation defects[J]. Plant Mol Biol, 2002, 50(4-5):587-597. [12] Connolly EL, Fett JP, Guerinot ML.Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation[J]. Plant Cell, 2002(6):1347-1357. [13] Nishida S, Tsuzuki C, et al.AtIRT1, the primary iron uptake trans-porter in the root, mediates excess nickel accumulation in Arabido-psis thaliana[J]. Plant Cell Physiol, 2011(8):1433-1442. [14] Vert G, Briat JF, Curie C.Arabidopsis IRT2 gene encodes a root-periphery iron transporter[J]. Plant J, 2001, 26(2):181-189. [15] Vert G, Barberon M, et al.Arabidopsis IRT2 cooperates with the high-affinity iron uptake system to maintain iron homeostasis in root epidermal cells[J]. Planta, 2009(6):1171-1179. [16] Lin YF, Liang HM, Yang SY, et al.Arabidopsis IRT3 is a zinc-regulated and plasma membrane localized zinc/iron transporter[J]. New Phytol, 2009, 182(2):392-404. [17] Krämer U, Talke IN, Hanikenne M.Transition metal transport[J]. Febs Letters, 2007, 581(12):2263-2272. [18] Grotz N, Fox T, Connolly E, et al.Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency[J]. Proc Natl Acad Sci USA, 1998(12):7220-7224. [19] Ramesh SA, Choimes S, Schachtman DP.Over-expression of an Arabidopsis zinc transporter in hordeum vulgare increases short-term zinc uptake after zinc deprivation and seed zinc content[J]. Plant Mol Biol, 2004, 54(3):373-385. [20] Milner MJ, Seamon J, Craft E, Kochian LV.Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis[J]. J Exp Bot, 2013, 64(1):369-381. [21] Ishimaru Y, Kim S, et al.Mutational reconstructed ferric chelate reductase confers enhanced tolerance in rice to iron deficiency in calcareous soil[J]. Proc Natl Acad Sci USA, 2007(18):7373-7378. [22] Lee S, An G.Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice[J]. Plant Cell and Environment, 2009, 32(4):408-416. [23] Ramesh SA, Shin R, Eide DJ, et al.Differential metal selectivity and gene expression of two zinc transporters from rice[J]. Plant Physiol, 2003, 133(1):126-134. [24] Sasaki A, Yamaji N, et al.A node-localized transporter OsZIP3 is responsible for the preferential distribution of Zn to developing tissues in rice[J]. Plant J, 2015(2):374-384. [25] 孟璐, 孙亮, 谭龙涛. 水稻锌铁转运蛋白ZIP 基因家族研究进展[J]. 遗传, 2018, 40(1):33-43. [26] Ishimaru Y, et al.OsZIP4, a novel zinc-regulated zinc transporter in rice[J]. J Exp Bot, 2005, 422:3207-3214. [27] Ishimaru Y, Masuda H, Suzuki M, et al.Overexpression of the OsZIP4 zinc transporter confers disarrangement of zinc distribution in rice plants[J]. J Exp Bot, 2007, 58(11):2909-2915. [28] P GK, Kuruvilla S, Mathew MK. Functional characterization of a transition metal ion transporter, OsZIP6 from rice(Oryza sativa L.)[J]. Plant Physiol Biochem, 2015, 97:165-174. [29] Yang X, Huang J, Jiang Y, et al.Cloning and functional identification of two members of the ZIP(Zrt, Irt-like protein)gene family in rice(Oryza sativa L.)[J]. Molecular Biology Reports, 2009, 36(2):281-287. [30] Lee S, Jeong HJ, et al.OsZIP5 is a plasma membrane zinc transpo-rter in rice[J]. Plant Mol Biol, 2010, 73(4-5):507-517. [31] Lee S, Kim SA, Lee J, et al.Zinc deficiency-inducible OsZIP8 encodes a plasma membrane-localized zinc transporter in rice[J]. Molecules and Cells, 2010, 29(6):551-558. [32] Pedas P, Ytting CK, Fuglsang AT, et al.Manganese efficiency in barley:identification and characterization of the metal ion transporter HvIRT1[J]. Plant Physiol, 2008(1):455-466. [33] Pedas P, Schjoerring JK, Husted S.Identification and characterization of zinc-starvation-induced ZIP transporters from barley roots[J]. Plant Physiol Biochem, 2009(5):377-383. [34] Tiong J, McDonald GK, Genc Y, et al. HvZIP7 mediates zinc accumulation in barley(Hordeum vulgare)at moderately high zinc supply[J]. New Phytol, 2014, 201(1):131-143. [35] Tiong J, McDonald G, Genc Y, et al. Increased expression of six ZIP family genes by zinc(Zn)deficiency is associated with enhanced uptake and root-to-shoot translocation of Zn in barley(Hordeum vulgare)[J]. New Phytol, 2015(4):1097-1109. [36] Burleigh SH, Kristensen BK, Bechmann IE.A plasma membrane zinc transporter from Medicago truncatula is up-regulated in roots by Zn fertilization, yet down-regulated by arbuscular mycorrhizal colonization[J]. Plant Mol Biol, 2003, 52(5):1077-1088. [37] Lopez-Millan AF, Ellis DR, Grusak MA.Identification and characterization of several new members of the ZIP family of metal ion transporters in Medicago truncatula[J]. Plant Mol Biol Reporter, 2004, 54(4):583-596. [38] Stephens BW, et al.Characterization of zinc transport by divalent metal transporters of the ZIP family from the model legume Medicago truncatula[J]. Biometals, 2011, 24(1):51-58. [39] Li S, Zhou X, et al.Identification and characterization of the zinc-regulated transporters, iron-regulated transporter-like protein(ZIP)gene family in maize[J]. BMC Plant Biol, 2013, 13:114. [40] Li S, Zhou X, Zhao Y, et al.Constitutive expression of the ZmZIP7 in Arabidopsis alters metal homeostasis and increases Fe and Zn content[J]. Plant Physiol Biochem, 2016, 106:1-10. [41] Li S, Zhou X, Li H, et al.Overexpression of ZmIRT1 and ZmZIP3 enhances iron and zinc accumulation in transgenic Arabidopsis[J]. PLoS One, 2015, 10(8):e0136647. [42] Eckhardt U, Mas Marques A, Buckhout TJ.Two iron-regulated cation transporters from tomato complement metal uptake-deficient yeast mutants[J]. Plant Mol Biol, 2001, 45(4):437-448. [43] Moreau S, Thomson RM, Kaiser BN, et al.GmZIP1 encodes a symbiosis-specific zinc transporter in soybean[J]. The Journal of Biological Chemistry, 2002, 277(7):4738-4746. [44] Gainza-Cortes F, Perez-Diaz R, Perez-Castro R, et al.Characterization of a putative grapevine Zn transporter, VvZIP3, suggests its involvement in early reproductive development in Vitis vinifera L.[J]. BMC Plant Biology, 2012, 12:111. [45] Tan S, Han R, Li P, et al.Over-expression of the MxIRT1 gene increases iron and zinc content in rice seeds[J]. Transgenic Research, 2014, 24(1):109-122. [46] Durmaz E, Coruh C, Dinler G, et al.Expression and cellular localization of ZIP1 transporter under zinc deficiency in wild emmer wheat[J]. Plant Mol Biol Reporter, 2011, 3:582-596. [47] Ishimaru Y, Suzuki M, Tsukamoto T, et al.Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+[J]. Plant J, 2006, 45(3):335-346. [48] Chen WR, Feng Y, Chao YE.Genomic analysis and expression pattern of OsZIP1, OsZIP3, and OsZIP4 in two rice(Oryza sativa L.)genotypes with different zinc efficiency[J]. Russian Journal of Plant Physiology, 2008, 55(3):400-409. |
[1] | ZHAN Yan, ZHOU Li-bin, JIN Wen-jie, DU Yan, YU Li-xia, QU Ying, MA Yong-gui, LIU Rui-yuan. Research Progress in Plant Leaf Color Mutation Induced by Radiation [J]. Biotechnology Bulletin, 2023, 39(8): 106-113. |
[2] | WANG Bao-bao, WANG Hai-yang. Molecular Design of Ideal Plant Architecture for High-density Tolerance of Maize Plant [J]. Biotechnology Bulletin, 2023, 39(8): 11-30. |
[3] | JIANG Run-hai, JIANG Ran-ran, ZHU Cheng-qiang, HOU Xiu-li. Research Progress in Mechanisms of Microbial-enhanced Phytoremediation for Lead-contaminated Soil [J]. Biotechnology Bulletin, 2023, 39(8): 114-125. |
[4] | WU Yuan-ming, LIN Jia-yi, LIU Yu-xi, LI Dan-ting, ZHANG Zong-qiong, ZHENG Xiao-ming, PANG Hong-bo. Identification of Rice Plant Height-associated QTL Using BSA-seq and RNA-seq [J]. Biotechnology Bulletin, 2023, 39(8): 173-184. |
[5] | LIU Bao-cai, CHEN Jing-ying, ZHANG Wu-jun, HUANG Ying-zhen, ZHAO Yun-qing, LIU Jian-chao, WEI Zhi-cheng. Characteristics Analysis of Seed Microrhizome Gene Expression of Polygonatum cyrtonema [J]. Biotechnology Bulletin, 2023, 39(8): 220-233. |
[6] | SONG Zhi-zhong, XU Wei-hua, XIAO Hui-lin, TANG Mei-ling, CHEN Jing-hui, GUAN Xue-qiang, LIU Wan-hao. Cloning, Expression and Function of Iron Regulated Transporter VvIRT1 in Wine Grape(Vitis vinifera L.) [J]. Biotechnology Bulletin, 2023, 39(8): 234-240. |
[7] | SHI Jia-xin, LIU Kai, ZHU Jin-jie, QI Xian-tao, XIE Chuan-xiao, LIU Chang-lin. Gene Editing Reshaping Maize Plant Type for Increasing Hybrid Yield [J]. Biotechnology Bulletin, 2023, 39(8): 62-69. |
[8] | ZHANG Yong, XU Tian-jun, LYU Tian-fang, XING Jin-feng, LIU Hong-wei, CAI Wan-tao, LIU Yue-e, ZHAO Jiu-ran, WANG Rong-huan. Effects of Planting Density on the Stem Quality and Root Phenotypic Characters of Summer Sowing Maize [J]. Biotechnology Bulletin, 2023, 39(8): 70-79. |
[9] | YAO Sha-sha, WANG Jing-jing, WANG Jun-jie, LIANG Wei-hong. Molecular Mechanisms of Rice Grain Size Regulation Related to Plant Hormone Signaling Pathways [J]. Biotechnology Bulletin, 2023, 39(8): 80-90. |
[10] | ZHANG Man, ZHANG Ye-zhuo, HE Qi-zou-hong, E Yi-lan, LI Ye. Advances in Plant Cell Wall Structure and Imaging Technology [J]. Biotechnology Bulletin, 2023, 39(7): 113-122. |
[11] | SUN Ming-hui, WU Qiong, LIU Dan-dan, JIAO Xiao-yu, WANG Wen-jie. Cloning and Expression Analysis of CsTMFs Gene in Tea Plant [J]. Biotechnology Bulletin, 2023, 39(7): 151-159. |
[12] | XU Jian-xia, DING Yan-qing, FENG Zhou, CAO Ning, CHENG Bin, GAO Xu, ZOU Gui-hua, ZHANG Li-yi. QTL Mapping of Sorghum Plant Height and Internode Numbers Based on Super-GBS Technique [J]. Biotechnology Bulletin, 2023, 39(7): 185-194. |
[13] | YU Hui, WANG Jing, LIANG Xin-xin, XIN Ya-ping, ZHOU Jun, ZHAO Hui-jun. Isolation and Functional Verification of Genes Responding to Iron and Cadmium Stresses in Lycium barbarum [J]. Biotechnology Bulletin, 2023, 39(7): 195-205. |
[14] | LI Yu, LI Su-zhen, CHEN Ru-mei, LU Hai-qiang. Advances in the Regulation of Iron Homeostasis by bHLH Transcription Factors in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 26-36. |
[15] | ZHOU Zhen-chao, ZHENG Ji, SHUAI Xin-yi, LIN Ze-jun, CHEN Hong. High-throughput Profiling and Analysis of Shared Antibiotic Resistance Genes in Human Feces, Skin and Water Environments [J]. Biotechnology Bulletin, 2023, 39(7): 288-297. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||