Biotechnology Bulletin ›› 2019, Vol. 35 ›› Issue (5): 157-169.doi: 10.13560/j.cnki.biotech.bull.1985.2018-0600
Previous Articles Next Articles
XIE Yin-xia, WANG Wei-ran, CHENG Nan, XU Wen-tao
Received:
2018-07-02
Online:
2019-05-26
Published:
2019-05-23
XIE Yin-xia, WANG Wei-ran, CHENG Nan, XU Wen-tao. Research Progress on Electrical Signal Molecules in Electrochemical Functional Nucleic Acids Biosensors[J]. Biotechnology Bulletin, 2019, 35(5): 157-169.
[1] Tjong V, Tang L, Zauscher S, et al.“Smart” DNA interfaces[J]. Chemical Society Reviews, 2014, 43(5):1612-1626. [2] Pinheiro AV, Han D, et al.Challenges and opportunities for structural DNA nanotechnology[J]. Nat Nanotechnol, 2011, 6(12):763. [3] Gong L, Zhao Z, Lv YF, et al.DNAzyme-based biosensors and nanodevices[J]. Chem Commun, 2015, 51(6):979-995. [4] Mariani S, Scarano S, Spadavecchia J, et al.A reusable optical biosensor for the ultrasensitive and selective detection of unamplified human genomic DNA with gold nanostars[J]. Biosensors and Bioelectronics, 2015, 74:981-988. [5] Huang Y, Tian Z, Sun LP, et al.High-sensitivity DNA biosensor based on optical fiber taper interferometer coated with conjugated polymer tentacle[J]. Opt Express, 2015, 21:26962-26968. [6] Li S, Qiu W, Zhang X, et al.A high-performance DNA biosensor based on the assembly of gold nanoparticles on the terminal of hairpin-structured probe DNA[J]. Sensors and Actuators B:Chemical, 2016, 223:861-867. [7] Kim S, Choi SJ.A lipid-based method for the preparation of a piezoelectric DNA biosensor[J]. Anal Biochem, 2014, 458:1-3. [8] Xuan F, Luo X, Hsing IM.Conformation-dependent exonuclease III activity mediated by metal ions reshuffling on thymine-rich DNA duplexes for an ultrasensitive electrochemical method for Hg2+ detection[J]. Anal Chem, 2013, 85(9):4586-4593. [9] Hu W, Min X, Li X, et al.DNAzyme catalytic beacons-based a label-free biosensor for copper using electrochemical impedance spectroscopy[J]. RSC Advances, 2016, 6(8):6679-6685. [10] Liu A, et al.Development of electrochemical DNA biosensors[J]. TrAC Trends Anal Chem, 2012, 37:101-111. [11] 尤加宇. 有机染料分子和DNA相互作用的电化学研究及分析应用[D]. 青岛:青岛科技大学, 2006. [12] 姜吉刚. 苏木精与DNA作用机理的荧光光谱[J]. 光谱实验室, 2012, 29(5):2814-2817. [13] Mao Y, Liu J, He D, et al.Aptamer/target binding-induced triple helix forming for signal-on electrochemical biosensing[J]. Talanta, 2015, 143:381-387. [14] Kerman K, et al.Voltammetric determination of DNA hybridization using methylene blue and self-assembled alkanethiol monolayer on gold electrodes[J]. Anal Chim Acta, 2002, 462(1):39-47. [15] Yun W, Jiang J, Cai D, et al.Ultrasensitive electrochemical detection of UO22+ based on DNAzyme and isothermal enzyme-free amplification[J]. RSC Advances, 2016, 6(5):3960-3966. [16] Zhu Y, Zeng G, Zhang Y, et al.Highly sensitive electrochemical sensor using a MWCNTs/GNPs-modified electrode for lead(II)detection based on Pb2+-induced G-rich DNA conformation[J]. Analyst, 2014, 139(19):5014-5020. [17] Liu P, Pang J, Yin H, et al.G-quadruplex functionalized nano mesoporous silica for assay of the DNA methyltransferase activity[J]. Analytica Chimica Acta, 2015, 879:34-40. [18] Kong DM, Ma YE, Wu J, et al.Discrimination of G-quadruplexes from duplex and single-stranded DNAs with fluorescence and energy-transfer fluorescence spectra of crystal violet[J]. Chemistry-A European Journal, 2009, 15(4):901-909. [19] Li F, Feng Y, Zhao C, et al.Crystal violet as a G-quadruplex-selective probe for sensitive amperometric sensing of lead[J]. Chem Commun, 2011, 47(43):11909-11911. [20] Raoof JB, Ojani R, Ebrahimi M, et al.Developing a nano-biosensor for DNA hybridization using a new electroactive Label[J]. Chinese Journal of Chemistry, 2011, 29(11):2541-2551. [21] Ebrahimi M, Raoof JB, Ojani R.Novel electrochemical DNA hybridization biosensors for selective determination of silver ions[J]. Talanta, 2015, 144:619-626. [22] Aghili Z, Nasirizadeh N, et al.A nanobiosensor composed of exfoliated graphene oxide and gold nano-urchins, for detection of GMO products[J]. Biosens Bioelectron, 2017, 95:72-80. [23] Ligaj M, Tichoniuk M, Gwiazdowska D, et al.Electrochemical DNA biosensor for the detection of pathogenic bacteria Aeromonas hydrophila[J]. Electrochimica Acta, 2014, 128:67-74. [24] Ahmed MU, Saito M, Hossain MM, et al.Electrochemical genosensor for the rapid detection of GMO using loop-mediated isothermal amplification[J]. Analyst, 2009, 134(5):966-972. [25] Ju H, Ye Y, Zhu Y.Interaction between nile blue and immobilized single-or double-stranded DNA and its application in electrochemical recognition[J]. Electrochimica Acta, 2005, 50(6):1361-1367. [26] Alipour E, Allaf FN, Mahmoudi-Badiki T.Investigation of specific interactions between Nile blue and single type oligonucleotides and its application in electrochemical detection of hepatitis C 3a virus[J]. J Solid State Electrochem, 2016, 20(1):183-192. [27] 徐佳. 过渡金属有机配合物的合成、表征及催化应用[D]. 合肥:合肥工业大学, 2017. [28] Zhou J, Xu M, Tang D, et al.Nanogold-based bio-bar codes for label-free immunosensing of proteins coupling with an in situ DNA-based hybridization chain reaction[J]. Chem Commun, 2012, 48(100):12207-12209. [29] Dai S, Xue Q, Zhu J, et al.An ultrasensitive fluorescence assay for protein detection by hybridization chain reaction-based DNA nanotags[J]. Biosens Bioelectron, 2014, 51(2):421-425. [30] Huang YL, Gao ZF, Jia J, et al.A label-free electrochemical sensor for detection of mercury(II)ions based on the direct growth of guanine nanowire[J]. J Hazard Mater, 2016, 308:173-178. [31] Cai W, Xie S, Zhang J, et al.An electrochemical impedance biosensor for Hg2+ detection based on DNA hydrogel by coupling with DNAzyme-assisted target recycling and hybridization chain reaction[J]. Biosensors and Bioelectronics, 2017, 98:466-472. [32] 陈灿辉, 李红, 朱伟, 张全新. 二茂铁及其与DNA复合物的电化学行为[J]. 物理化学学报, 2005(10):1067-1072. [33] Wei W, Zhang L, Ni Q, et al.Fabricating a reversible and regenerable electrochemical biosensor for quantitative detection of antibody by using “triplex-stem” DNA molecular switch[J]. Analytica Chimica Acta, 2014, 845:38-44. [34] Zhang Y, Xiao S, Li H, et al.A Pb2+-ion electrochemical biosensor based on single-stranded DNAzyme catalytic beacon[J]. Sensors and Actuators B:Chemical, 2016, 222:1083-1089. [35] Xiong E, Wu L, Zhou J, et al.A ratiometric electrochemical biosensor for sensitive detection of Hg2+ based on thymine-Hg2+-thymine structure[J]. Anal Chim Acta, 2015, 853:242-248. [36] Jia J, et al.A regenerative ratiometric electrochemical biosensor for selective detecting Hg2+ based on Y-shaped/hairpin DNA transformation[J]. Anal Chim Acta, 2016, 908:95-101. [37] Miao P, et al.DNA modified Fe3O4@Au magnetic nanoparticles as selective probes for simultaneous detection of heavy metal ions[J]. ACS Appl Mater Interfaces, 2017, 9(4):3940-3947. [38] 黄敏. 萘啶衍生物的合成及其在电化学检测DNA中的应用研究[D]. 武汉:湖北大学, 2016. [39] Cui HF, Xu TB, Sun YL, et al.Hairpin DNA as a biobarcode modified on gold nanoparticles for electrochemical DNA detection[J]. Anal Chem, 2015, 87(2):1358-1365. [40] Shen L, Chen Z, Li Y, et al.Electrochemical DNAzyme sensor for lead based on amplification of DNA- Au Bio-Bar codes[J]. Anal Chem, 2008, 80(16):6323-6328. [41] Huang H, et al.An ultrasensitive electrochemical DNA biosensor based on graphene/Au nanorod/polythionine for human papilloma-virus DNA detection[J]. Biosens Bioelectron, 2015, 68:442-446. [42] Liu Z, et al.Label-free and signal-on electrochem-iluminescence aptasensor for ATP based on target-induced linkage of split aptamer fragments by using[Ru(phen)3]2+ intercalated into double-strand DNA as a probe[J]. Chem A European J, 2010, 16(45):13356-13359. [43] Zhan F, Liao X, Gao F, et al.Electroactive crown ester-Cu2+ complex with in-situ modification at molecular beacon probe serving as a facile electrochemical DNA biosensor for the detection of CaMV 35s[J]. Biosens Bioelectron, 2017, 92:589-595. [44] Zhu H, et al.Electrochemical sensor for melamine based on its copper complex[J]. Chem Commun, 2010, 13:2259-2261. [45] Wang Q, Gao F, Ni J, et al.Facile construction of a highly sensitive DNA biosensor by in-situ assembly of electro-active tags on hairpin-structured probe fragment[J]. Sci Rep, 2016, 6:22441. [46] Wang X, et al.A Novel DNA electrochemical sensor based on grafting of L-aspartic acid and Cu2+ ions on the terminal of molecule beacons[J]. Int J Electrochem Sci, 2013, 8:7529-7541. [47] Mix M, Rüger J, Krüger S, et al.Electrochemical detection of 0. 6% genetically modified maize MON810 in real flour samples[J]. Electrochemistry Communications, 2012, 22:137-140. [48] Wang MQ, Du XY, Liu LY, et al.DNA biosensor prepared by electrodeposited Pt-nanoparticles for the detection of specific deoxyribonucleic acid sequence in genetically modified soybean[J]. Chinese J Anal Chem, 2008, 36(7):890-894. [49] Fan H, Chang Z, Xing R, et al.An Electrochemical aptasensor for detection of thrombin based on target protein-induced strand displacement[J]. Electroanalysis, 2008, 20(19):2113-2117. [50] Tang S, Lu W, Gu F, et al.A novel electrochemical sensor for lead ion based on cascade DNA and quantum dots amplification[J]. Electrochimica Acta, 2014, 134:1-7. [51] Yang Y, Yuan Z, Liu XP, et al.Electrochemical biosensor for Ni2+ detection based on a DNAzyme-CdSe nanocomposite[J]. Biosensors and Bioelectronics, 2016, 77:13-18. [52] Park H, Hwang SJ, Kim K.An electrochemical detection of Hg2+ ion using graphene oxide as an electrochemically active indicator[J]. Electrochemistry Communications, 2012, 24:100-103. [53] Zhang Z, et al.One-step fabrication of electrochemical biosensor based on DNA-modified three-dimensional reduced graphene oxide and chitosan nanocomposite for highly sensitive detection of Hg(II)[J]. Sensor Actuat Chem, 2016, 225:453-462. [54] Wang H, et al.Electrochemical DNA probe for Hg2+ detection based on a triple-helix DNA and Multistage Signal Amplification Strategy[J]. Biosensor Bioelectron, 2016, 86:907-912. [55] Wang N, Lin M, Dai H, et al.Functionalized gold nanoparticles/reduced graphene oxide nanocomposites for ultrasensitive electrochemical sensing of mercury ions based on thymine-mercury-thymine structure[J]. Biosens Bioelectron, 2016, 79:320-326. [56] Xu W, Zhou X, et al.label-free and enzyme-free strategy for sensi- tive electrochemical lead aptasensor by using metal-organic frame- works Loaded with AgPt nanoparticles as signal probes and electro-catalytic enhancers[J]. Electrochim Acta, 2017, 251:25-31. [57] Rogez G, et al.Layered hydroxide hybrid nanostructures:a route to multifunctionality[J]. Chem Soc Rev, 2011, 40(2):1031. [58] Tang J, Huang Y, Zhang C, et al.DNA-based electrochemical determination of mercury(II)by exploiting the catalytic formation of gold amalgam and of silver nanoparticles[J]. Microchim Acta, 2016, 183(6):1805-1812. [59] Miao P, et al.Tetrahedral DNA nanostructureba-sed microRNA biosensor coupled with catalytic recycling of the analyte[J]. ACS Appli Mater Interfaces, 2015, 7(11):6238-6243. [60] Yuan Y, et al.An ultrasensitive electrochemical aptasensor with autonomous assembly of hemin-G-quadruplex DNAzyme nanowires for pseudo triple-enzyme cascade electrocatalytic amplification[J]. Chem Commun, 2013, 49(66):7328-7330. [61] Zhu Q, et al.Electrochemical preparation of polyaniline capped Bi2S3 nanocomposite and its application in impedimetric DNA biosensor[J]. Sensor Actuat B Chem, 2015, 207:819-826. [62] Zhang B, Chen J, Liu B, et al.Amplified electrochemical sensing of lead ion based on DNA-mediated self-assembly-catalyzed polymerization[J]. Biosens Bioelectron, 2015, 69:230-234. [63] Gao F, et al.label-free electrochemical lead(II)aptasensor using thionine as the signaling molecule and graphene as signal-enhancing platform[J]. Biosens Bioelectron, 2016, 81:15-22. [64] Zhou Q, Lin Y, Lin Y, et al.Highly sensitive electrochemical sensing platform for lead ion based on synergetic catalysis of DNAzyme and Au-Pd porous bimetallic nanostructures[J]. Biosensors and Bioelectronics, 2016, 78:236-243. [65] Jiang B, et al.label-free and amplified aptasensor for thrombin detection based on background reduction and direct electron trans-fer of hemin[J]. Biosensor Bioelectron, 2013, 43:289-292. [66] Yu Y, et al.Ultrasensitive electrochemical detection of microRNA based on an arched probe mediated isothermal exponential amplification[J]. Anal Chem, 2014, 86(16):8200-8205. [67] Balintová J, et al.Anthraquinone as a redox label for DNA:Synthesis, enzymatic incorporation, and electrochemistry of anthraquinone-modified nucleosides, nucleotides, and DNA[J]. Chem A European J, 2011, 17(50):14063-14073. [68] Zhang Y, Zeng GM, Tang L, et al.Quantitative detection of trace mercury in environmental media using a three-dimensional electrochemical sensor with an anionic intercalator[J]. RSC Advances, 2014, 4(36):18485-18492. [69] Zhou Y, et al.A novel biosensor for silver(I)ion detection based on nanoporous gold and duplex-like DNA scaffolds with anionic intercalator[J]. RSC Adv, 2015, 5(85):69738-69744. [70] Bala A, Pietrzak M, Górski Ł, et al.Electrochemical determination of lead ion with DNA oligonucleotide-based biosensor using anionic redox marker[J]. Electrochimica Acta, 2015, 180:763-769. [71] Fan H, Zhao K, Lin Y, et al.A new electrochemical biosensor for DNA detection based on molecular recognition and lead sulfide nanoparticles[J]. Anal Biochem, 2011, 419(2):168-172. [72] Li C, Hu X, Lu J, et al.Design of DNA nanostructure-based interfacial probes for the electrochemical detection of nucleic acids directly in whole blood[J]. Chem Sci, 2017, 9(4):979-984. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||