[1] Alizadeh AA, Eisen MB, Davis RE, et al.Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling[J]. Nature, 2000, 403(6769):503-511. [2] 董磊. 乳腺癌各分子亚型的临床特点及其预后情况[J]. 实用癌症杂志, 2015, 30(3):451-453. [3] Perez EA, Suman VJ, Davidson NE, et al.HER2 testing by local, central, and reference laboratories in specimens from the North Central Cancer Treatment Group N9831 intergroup adjuvant trial[J]. Journal of Clinical Oncology, 2006, 24(19):3032-3038. [4] Eroles P, Bosch A, Perez-Fidalgo JA, Lluch A.Molecular biology in breast cancer:intrinsic subtypes and signaling pathways[J]. Cancer Treatment Reviews, 2012, 38(6):698-707. [5] Cossetti RJ, Tyldesley SK, Speers CH, Zheng Y, Gelmon KA.Comparison of breast cancer recurrence and outcome patterns between patients treated from 1986 to 1992 and from 2004 to 2008[J]. Journal of Clinical Oncology, 2015, 33(1):65-73. [6] Chan AL, Leung HW, Lu CL, Lin SJ.Cost-effectiveness of trastuzumab as adjuvant therapy for early breast cancer:a systematic review[J]. The Annals of Pharmacotherapy, 2009, 43(2):296-303. [7] Nguyen PL, Taghian AG, Katz MS, et al.Breast cancer subtype approximated by estrogen receptor, progesterone receptor, and HER-2 is associated with local and distant recurrence after breast-conserving therapy[J]. Journal of Clinical Oncology, 2008, 26(14):2373-2378. [8] Yakes FM, Chinratanalab W, Ritter CA, et al.Herceptin-induced inhibition of phosphatidylinositol-3 kinase and Akt Is required for antibody-mediated effects on p27, cyclin D1, and antitumor action[J]. Cancer Research, 2002, 62(14):4132-4141. [9] Junttila TT, Akita RW, Parsons K, et al.Ligand-independent HER2/HER3/PI3K complex is disrupted by trastuzumab and is effectively inhibited by the PI3K inhibitor GDC-0941[J]. Cancer Cell, 2009, 15(5):429-440. [10] Nahta R, O’Regan RM. Evolving strategies for overcoming resistance to HER2-directed therapy:targeting the PI3K/Akt/mTOR pathway[J]. Clinical Breast Cancer, 2010, 10 Suppl 3:S72-78. [11] Molina MA, Codony-Servat J, Albanell J, Rojo F, Arribas J, Baselga J.Trastuzumab(herceptin), a humanized anti-Her2 receptor monoclonal antibody, inhibits basal and activated Her2 ectodomain cleavage in breast cancer cells[J]. Cancer Research, 2001, 61(12):4744-4749. [12] Cartron G, Dacheux L, Salles G, et al.Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene[J]. Blood, 2002, 99(3):754-758. [13] Clynes RA, Towers TL, Presta LG, Ravetch JV.Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets[J]. Nature Medicine, 2000, 6(4):443-446. [14] Beano A, Signorino E, Evangelista A, et al.Correlation between NK function and response to trastuzumab in metastatic breast cancer patients[J]. Journal of Translational Medicine, 2008, 6:25. [15] Jiang XR, Song A, Bergelson S, et al.Advances in the assessment and control of the effector functions of therapeutic antibodies[J]. Nature Reviews Drug Discovery, 2011, 10(2):101-11. [16] Niwa R, Sakurada M, Kobayashi Y, et al.Enhanced natural killer cell binding and activation by low-fucose IgG1 antibody results in potent antibody-dependent cellular cytotoxicity induction at lower antigen density[J]. Clinical Cancer Research, 2005, 11(6):2327-2336. [17] Iida S, Misaka H, Inoue M, et al.Nonfucosylated therapeutic IgG1 antibody can evade the inhibitory effect of serum immunoglobulin G on antibody-dependent cellular cytotoxicity through its high binding to FcgammaRIIIa[J]. Clinical Cancer Research, 2006, 12(9):2879-2887. [18] Matsumiya S, Yamaguchi Y, Saito J, et al.Structural comparison of fucosylated and nonfucosylated Fc fragments of human immunoglobulin G1[J]. Journal of Molecular Biology, 2007, 368(3):767-779. [19] Kanda Y, Yamada T, Mori K, Okazaki A, et al.Comparison of biological activity among nonfucosylated therapeutic IgG1 antibodies with three different N-linked Fc oligosaccharides:the high-mannose, hybrid, and complex types[J]. Glycobiology, 2007, 17(1):104-118. [20] Okazaki A, Shoji-Hosaka E, Nakamura K, et al.Fucose depletion from human IgG1 oligosaccharide enhances binding enthalpy and association rate between IgG1 and FcgammaRIIIa[J]. Journal of Molecular Biology, 2004, 336(5):1239-1249. [21] Peipp M, Lammerts van Bueren JJ, Schneider-Merck T, Bleeker WW, et al. Antibody fucosylation differentially impacts cytotoxicity mediated by NK and PMN effector cells[J]. Blood, 2008, 112(6):2390-2399. [22] Miyoshi E, Noda K, Yamaguchi Y, et al.The alpha1-6-fucosyltransferase gene and its biological significance[J]. Biochimica Et Biophysica Acta. 1999, 1473(1):9-20. [23] Miyoshi E, Moriwaki K, Nakagawa T.Biological function of fucosylation in cancer biology[J]. J Biochem, 2008, 143(6):725-729. [24] Yamane-Ohnuki N, Kinoshita S, Inoue-Urakubo M, et al.Establishment of FUT8 knockout Chinese hamster ovary cells:an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity[J]. Biotechnology and Bioengineering, 2004, 87(5):614-622. [25] Sedivy JM, Sharp PA.Positive genetic selection for gene disruption in mammalian cells by homologous recombination[J]. Proceedings of the National Academy of Sciences of the United States of America. 1989, 86(1):227-231. [26] Malphettes L, Freyvert Y, Chang J, et al.Highly efficient deletion of FUT8 in CHO cell lines using zinc-finger nucleases yields cells that produce completely nonfucosylated antibodies[J]. Biotechnology and bioengineering, 2010, 106(5):774-783. [27] Mori K, Kuni-Kamochi R, Yamane-Ohnuki N, et al.Engineering Chinese hamster ovary cells to maximize effector function of produced antibodies using FUT8 siRNA[J]. Biotechnology and Bioengineering, 2004, 88(7):901-908. [28] Cristea S, Freyvert Y, Santiago Y, et al.In vivo cleavage of trans-gene donors promotes nuclease-mediated targeted integration[J]. Biotechnology and Bioengineering, 2013, 110(3):871-880. [29] Sun T, Li C, Han L, Jiang H, et al.Functional knockout of FUT8 in Chinese hamster ovary cells using CRISPR/Cas9 to produce a defucosylated antibody[J]. Engineering in Life Sciences, 2015, 15(6):660-666. [30] Gaj T, Gersbach CA, Barbas CF, 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering[J]. Trends in biotechnology, 2013, 31(7):397-405. [31] Ronda C, Pedersen LE, Hansen HG, et al.Accelerating genome editing in CHO cells using CRISPR Cas9 and CRISPy, a web-based target finding tool[J]. Biotechnology and Bioengineering, 2014, 111(8):1604-1616. [32] Grav LM, Lee JS, Gerling S, et al.One-step generation of triple knockout CHO cell lines using CRISPR/Cas9 and fluorescent enrichment[J]. Biotechnology Journal, 2015, 10(9):1446-1456. [33] Becker DJ, Lowe JB.Fucose:biosynthesis and biological function in mammals[J]. Glycobiology, 2003, 13(7):41r-53r. [34] Omasa T, Tanaka R, Doi T, et al. Decrease in antithrombin III fucosylation by expressing GDP-fucose transporter siRNA in Chinese hamster ovary cells[J]. Journal of Bioscience and Bioengineering, 2008, 106(2):168-173. [35] Kanda Y, Yamane-Ohnuki N, Sakai N, et al.Comparison of cell lines for stable production of fucose-negative antibodies with enhanced ADCC[J]. Biotechnology and Bioengineering, 2006, 94(4):680-688. [36] Imai-Nishiya H, Mori K, Inoue M, et al.Double knockdown of alpha1, 6-fucosyltransferase(FUT8)and GDP-mannose 4, 6-dehydratase(GMD)in antibody-producing cells:a new strategy for generating fully non-fucosylated therapeutic antibodies with enhanced ADCC[J]. BMC Biotechnology, 2007, 7:84. [37] Kelly RM, Kowle RL, Lian Z, et al.Modulation of IgG1 immunoeff-ector function by glycoengineering of the GDP-fucose biosynthesis pathway[J]. Biotechnology and Bioengineering, 2018, 115(3):705-718. [38] Louie S, Haley B, Marshall B, Heidersbach A, Yim M, Brozynski M, et al.FX knockout CHO hosts can express desired ratios of fucosylated or afucosylated antibodies with high titers and comparable product quality[J]. Biotechnology and Bioengineering, 2017, 114(3):632-644. [39] Chan KF, Shahreel W, Wan C, et al.Inactivation of GDP-fucose transporter gene(Slc35c1)in CHO cells by ZFNs, TALENs and CRISPR-Cas9 for production of fucose-free antibodies[J]. Biotechnology Journal, 2016, 11(3):399-414. [40] Cua S, Tan HL, Fong WJ, et al.Targeting of embryonic annexin A2 expressed on ovarian and breast cancer by the novel monoclonal antibody 2448[J]. Oncotarget, 2018, 9(17):13206-13221. [41] Bardhi A, Wu Y, Chen W, et al. Potent in vivo NK cell-mediated elimination of HIV-1-infected cells mobilized by a gp120-bispecific and hexavalent broadly neutralizing fusion protein[J]. Journal of Virology, 2017, 91(20). pii:e00937. [42] Rathore AS, Winkle H.Quality by design for biopharmaceuticals [J]. Nature Biotechnology, 2009, 27(1):26-34. [43] Hossler P, Chumsae C, Racicot C, et al.Arabinosylation of recom-binant human immunoglobulin-based protein therapeutics[J]. MAbs, 2017, 9(4):715-734. [44] Okeley NM, Alley SC, Anderson ME, et al.Development of orally active inhibitors of protein and cellular fucosylation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(14):5404-5409. [45] Cox KM, Sterling JD, Regan JT, et al.Glycan optimization of a human monoclonal antibody in the aquatic plant lemna minor[J]. Nature Biotechnology, 2006, 24(12):1591-1597. [46] Lin CW, Tsai MH, Li ST, et al.A common glycan structure on immunoglobulin G for enhancement of effector functions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(34):10611-10616. [47] Vogel CL, Cobleigh MA, Tripathy D, et al.Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer[J]. Journal of Clinical Oncology, 2002, 20(3):719-726. [48] Yamane-Ohnuki N, Satoh M.Production of therapeutic antibodies with controlled fucosylation[J]. MAbs, 2009, 1(3):230-236. [49] Junttila TT, Parsons K, Olsson C, et al.Superior in vivo efficacy of afucosylated trastuzumab in the treatment of HER2-amplified breast cancer[J]. Cancer Research, 2010, 70(11):4481-4489. [50] Vugmeyster Y, Howell K.Rituximab-mediated depletion of cynomolgus monkey B cells in vitro in different matrices:possible inhibitory effect of IgG[J]. International Immunopharmacology, 2004, 4(8):1117-1124. [51] Suzuki E, Niwa R, Saji S, et al.A nonfucosylated anti-HER2 anti-body augments antibody-dependent cellular cytotoxicity in breast cancer patients[J]. Clinical Cancer Research, 2007, 13(6):1875-1882. [52] Fiedler W, Stoeger H, Perotti A, et al.Phase I study of TrasGEX, a glyco-optimised anti-HER2 monoclonal antibody, in patients with HER2-positive solid tumours[J]. ESMO Open, 2018, 3(4):e000381. [53] Barok M, Isola J, Palyi-Krekk Z, et al.Trastuzumab causes antibody-dependent cellular cytotoxicity-mediated growth inhibition of submacroscopic JIMT-1 breast cancer xenografts despite intrinsic drug resistance[J]. Mol Cancer Ther, 2007, 6(7):2065-2072. [54] Nordstrom JL, Gorlatov S, Zhang W, et al.Anti-tumor activity and toxicokinetics analysis of MGAH22, an anti-HER2 monoclonal antibody with enhanced Fcgamma receptor binding properties[J]. Breast Cancer Research:BCR, 2011, 13(6):R123. [55] Jo M, Kwon HS, Lee KH, et al.Engineered aglycosylated full-length IgG Fc variants exhibiting improved FcgammaRIIIa binding and tumor cell clearance[J]. MAbs, 2018, 10(2):278-289. [56] Stopforth RJ, Cleary KL, Cragg MS. Regulation of monoclonal antibody immunotherapy by fcgammaRIIB[J]. Journal of Clinical Immunology, 2016, 36 Suppl 1:88-94. [57] Chen TF, Sazinsky SL, Houde D, et al.Engineering aglycosylated IgG variants with wild-type or improved binding affinity to human Fc gamma RIIA and Fc gamma RIIIAs[J]. Journal of Molecular Biology, 2017, 429(16):2528-2541. |