Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (10): 32-39.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0103
Previous Articles Next Articles
XU Qiang(), ZUO Hui, CHAO Yue-hui, ZENG Hui-ming()
Received:
2020-02-04
Online:
2020-10-26
Published:
2020-11-02
Contact:
ZENG Hui-ming
E-mail:hahahahahuo@bjfu.edu.cn;sciinfo@bjfu.edu.cn
XU Qiang, ZUO Hui, CHAO Yue-hui, ZENG Hui-ming. Identification of SA Synthetic Pathways Responding to Rhizoctonia solani Infection in Zoysia japonica[J]. Biotechnology Bulletin, 2020, 36(10): 32-39.
索引基因及关联家族 | 结缕草基因座基因座编号 | 基因名称 |
---|---|---|
AtPAL1(AT2G37040)AtPAL2(AT3G53260) AtPAL3(AT5G04230)AtPAL4(AT3G10340) HOM04D000680家族含276条双子叶植物序列 HOM04M000387家族含212条单子叶植物序列 | Zjn_sc00017.1.g00060.1.sm.mkhc Zjn_sc00007.1.g11910.1.sm.mkhc Zjn_sc00004.1.g04560.1.sm.mkhc Zjn_sc00017.1.g00050.1.sm.mkhc Zjn_sc00004.1.g04570.1.sm.mkhc Zjn_sc00103.1.g00580.1.am.mk Zjn_sc00007.1.g11880.1.am.mk Zjn_sc00007.1.g11890.1.sm.mk Zjn_sc06393.1.g00010.1.am.mk | ZjPAL1 ZjPAL2 ZjPAL3 ZjPAL4 ZjPAL5 ZjPAL6 ZjPAL7 ZjPAL8 ZjPAL9 |
AtICS1(AT1G74710)AtICS2(AT1G18870) HOM04D003911家族含57条双子叶植物序列 HOM04M000507家族含18条单子叶植物序列 | Zjn_sc00039.1.g05120.1.sm.mkhc Zjn_sc00018.1.g05620.1.am.mkhc Zjn_sc00039.1.g05130.1.sm.mkhc Zjn_sc00018.1.g05610.1.sm.mkhc | ZjICS1 ZjICS2 ZjICS3 ZjICS4 |
索引基因及关联家族 | 结缕草基因座基因座编号 | 基因名称 |
---|---|---|
AtPAL1(AT2G37040)AtPAL2(AT3G53260) AtPAL3(AT5G04230)AtPAL4(AT3G10340) HOM04D000680家族含276条双子叶植物序列 HOM04M000387家族含212条单子叶植物序列 | Zjn_sc00017.1.g00060.1.sm.mkhc Zjn_sc00007.1.g11910.1.sm.mkhc Zjn_sc00004.1.g04560.1.sm.mkhc Zjn_sc00017.1.g00050.1.sm.mkhc Zjn_sc00004.1.g04570.1.sm.mkhc Zjn_sc00103.1.g00580.1.am.mk Zjn_sc00007.1.g11880.1.am.mk Zjn_sc00007.1.g11890.1.sm.mk Zjn_sc06393.1.g00010.1.am.mk | ZjPAL1 ZjPAL2 ZjPAL3 ZjPAL4 ZjPAL5 ZjPAL6 ZjPAL7 ZjPAL8 ZjPAL9 |
AtICS1(AT1G74710)AtICS2(AT1G18870) HOM04D003911家族含57条双子叶植物序列 HOM04M000507家族含18条单子叶植物序列 | Zjn_sc00039.1.g05120.1.sm.mkhc Zjn_sc00018.1.g05620.1.am.mkhc Zjn_sc00039.1.g05130.1.sm.mkhc Zjn_sc00018.1.g05610.1.sm.mkhc | ZjICS1 ZjICS2 ZjICS3 ZjICS4 |
[1] | 宣继萍. 结缕草属(Zoysia Willd. )植物种质资源多样性研究[D]. 南京:南京农业大学, 2008. |
Xuan JP. Study on genetic diversity of Zoysia Willd. germplasm resource[D]. Nanjing: Nanjing Agricultural University, 2008. | |
[2] |
Inokuma C, Sugiura K, Imaizumi N, et al. Transgenic Japanese lawngrass(Zoysia japonica Steud. )plants regenerated from protoplasts[J]. Plant Cell Rep, 1998,17(5):334-338.
URL pmid: 30736568 |
[3] | Burpee L. Biology of Rhizoctonia species associated with turfgrasses[J]. Plant Disease, 1992,76(2):112. |
[4] | Papazlatani C, Rousidou C, Katsoula A, et al. Assessment of the impact of the fumigant dimethyl disulfide on the dynamics of major fungal plant pathogens in greenhouse soils[J]. European Journal of Plant Pathology, 2016,146(2):391-400. |
[5] | Hannukkala AO, Rastas M, Laitinen P, et al. Rhizoctonia solani injuries in oilseed crops in Finland and impacts of different crop management practices on disease incidence and severity[J]. Annals of Applied Biology, 2016,169(2):257-273. |
[6] | Zarlengo PJ. Influence of shading on the response of tall fescue cultivars to Rhizoctonia solani AG-1IA[J]. Plant Disease, 1994,78(2):126. |
[7] | 江绍锋, 王陈骄子, 舒灿伟, 周而勋. 水稻纹枯病菌RsPhm基因的克隆及其表达分析[J]. 中国水稻科学, 2018,32(2):111-118. |
Jiang SF, Wang C, Shu CW, Zhou EX. Cloning and expression analysis of RsPhm gene in rhizoctonia solani AG-1ⅠA of rice sheath blight pathogen[J]. Chin J Rice Sci, 2018,32(2):111-118. | |
[8] | 拓宁, 张君, 邱慧珍. 立枯丝核菌对马铃薯侵染过程的显微结构观察与胞壁降解酶活性的测定[J]. 草业学报, 2015,24(12):74-82. |
Tuo N, Zhang J, Qiu HZ, et al. Pathogenic mechanism of Rhizoctonia solani potato blight I Micro-structure observation of the infection process and measurement of cell wall degradation enzyme activity[J]. Acta Prataculturae Sinica, 2015,24(12):74-82. | |
[9] | 殷萍萍. 日本结缕草响应立枯丝核菌侵染及其转录组学研究[D]. 北京:北京林业大学, 2015. |
Yin PP. Infection and transcripyome analysis of zoysia japonica response to rhizoctonia solani[D]. Beijing:Beijing Forestry University, 2015. | |
[10] | Hadi MR, Balali GR. The effect of salicylic acid on the reduction of Rizoctonia solani damage in the tubers of marfona potato cultivar[J]. American-Eurasian Journal of Agricultural and Environmental Science, 2010,7(4):492-496. |
[11] | Li Z, Shi J, Yang T. Research on salicylic acid-mediated signal transduction pathway of systemic acquired resistance in plant[J]. Chinese Agricultural Science Bulletin, 2006,22, 84-89. |
[12] |
Kumar D. Salicylic acid signaling in disease resistance[J]. Plant Sci, 2014,228:127-134.
URL pmid: 25438793 |
[13] |
Kouzai Y, Kimura M, et al. Salicylic acid-dependent immunity contributes to resistance against Rhizoctonia solani, a necrotrophic fungal agent of sheath blight, in rice and Brachypodium distachyon[J]. New Phytol, 2018,217(2):771-783.
URL pmid: 29048113 |
[14] |
Wildermuth MC. Variations on a theme:Synjournal and modification of plant benzoic acids[J]. Curr Opin Plant Biol, 2006,9(3):288-296.
URL pmid: 16600669 |
[15] |
Chen K, Liu J, Ji R, et al. Biogenic synjournal and spatial distribution of endogenous phytohormones and ginsenosides provide insights on their intrinsic relevance in Panax ginseng[J]. Front Plant Sci, 2018,9:1951.
doi: 10.3389/fpls.2018.01951 URL pmid: 30687354 |
[16] |
Chen Z, Zheng Z, Huang J, et al. Biosynjournal of salicylic acid in plants[J]. Plant Signal Behav, 2009,4(6):493-496.
URL pmid: 19816125 |
[17] |
Wildermuth MC, Dewdney J, Wu G, et al. Isochorismate synthase is required to synthesize salicylic acid for plant defence[J]. Nature, 2001,414(6863):562-565.
URL pmid: 11734859 |
[18] |
Tanaka H, Hirakawa H, Kosugi S, et al. Sequencing and comparative analyses of the genomes of zoysiagrasses[J]. DNA Res, 2016,23(2):171-180.
URL pmid: 26975196 |
[19] |
Zhu C, Ai L, Wang L, et al. De novo Transcriptome analysis of Rhizoctonia solani AG1 IA strain early invasion in Zoysia japonica root[J]. Front Microbiol, 2016,7:708.
URL pmid: 27242730 |
[20] | Dempsey DA, Vlot AC, et al. Salicylic acid biosynjournal and metabolism[J]. Arabidopsis Book, 2011,9:e156. |
[21] |
Van Bel M, Diels T, Vancaester E, et al. PLAZA 4. 0:An integrative resource for functional, evolutionary and comparative plant genomics[J]. Nucleic Acids Res, 2018,46(D1):D1190-D1196.
URL pmid: 29069403 |
[22] |
Moreno-Hagelsieb G, Latimer K. Choosing BLAST options for better detection of orthologs as reciprocal best hits[J]. Bioinformatics, 2007,24(3):319-324.
URL pmid: 18042555 |
[23] |
Mitchell AL, et al. InterPro in 2019:Improving coverage, classification and access to protein sequence annotations[J]. Nucleic Acids Res, 2019,47(D1):D351-D360.
URL pmid: 30398656 |
[24] | Marchler-Bauer A, Bo Y, Han L, et al. CDD/SPARCLE:Functional classification of proteins via subfamily domain architectures[J]. Nucleic Acids Res, 2017,45(D1):D200-D203. |
[25] |
Bailey TL, Johnson J, Grant CE, et al. The MEME suite[J]. Nucleic Acids Research, 2015,43(W1):W39-W49.
URL pmid: 25953851 |
[26] | Tamura K, Peterson D, Peterson N, et al. MEGA5:molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Molecular Biology and Evolution, 2011,28(10):2731-2739. |
[27] | Wang Y, Tang H, Debarry JD, et al. MCScanX:a toolkit for detection and evolutionary analysis of gene synteny and collinearity[J]. Nucleic Acids Research, 2012,40(7):e49. |
[28] |
Mortazavi A, Williams BA, Mccue K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq[J]. Nat Methods, 2008,5(7):621-628.
doi: 10.1038/nmeth.1226 URL pmid: 18516045 |
[29] | Chen C, Chen H, He Y, et al. TBtools, a toolkit for biologists integrating various biological data handling tools with a user-friendly interface[J]. BioRxiv, 2018: 289660. |
[30] | Lisker N, Cohen L, et al. Fungal infections suppress ethylene-induced phenylalanine ammonia-lyase activity in grapefruits[J]. Physiological Plant Pathology, 1983,22(3):331-338. |
[31] |
Rekhter D, Ludke D, Ding Y, et al. Isochorismate-derived biosynjournal of the plant stress hormone salicylic acid[J]. Science, 2019,365(6452):498-502.
URL pmid: 31371615 |
[32] |
Torrens-Spence MP, Bobokalonova A, Carballo V, et al. PBS3 and EPS1 complete salicylic acid biosynjournal from isochorismate in Arabidopsis[J]. Molecular Plant, 2019,12(12):1577-1586.
URL pmid: 31760159 |
[33] |
Cochrane FC, Davin LB, Lewis NG. The Arabidopsis phenylalanine ammonia lyase gene family:Kinetic characterization of the four PAL isoforms[J]. Phytochemistry, 2004,65(11):1557-1564.
doi: 10.1016/j.phytochem.2004.05.006 URL pmid: 15276452 |
[34] |
An C, Mou Z. Salicylic acid and its function in plant immunity[J]. J Integr Plant Biol, 2011,53(6):412-428.
URL pmid: 21535470 |
[35] |
Garcion C, Lohmann A, Lamodiere E, et al. Characterization and biological function of the ISOCHORISMATE SYNTHASE2 gene of Arabidopsis[J]. Plant Physiol, 2008,147(3):1279-1287.
URL pmid: 18451262 |
[36] |
Shine MB, Yang JW, El-Habbak M, et al. Cooperative functioning between phenylalanine ammonia lyase and isochorismate synthase activities contributes to salicylic acid biosynjournal in soybean[J]. New Phytol, 2016,212(3):627-636.
URL pmid: 27411159 |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||