Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (10): 245-256.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1491
Previous Articles Next Articles
YE Na1,2(), ZHANG Xiao-lan2, BAO Peng-jia2, WANG Xing-dong1,2, YAN Ping2(), PAN He-ping1()
Received:
2020-12-09
Online:
2021-10-26
Published:
2021-11-12
Contact:
YAN Ping,PAN He-ping
E-mail:1573030432@qq.com;pingyanlz@163.com;panheping62@163.com
YE Na, ZHANG Xiao-lan, BAO Peng-jia, WANG Xing-dong, YAN Ping, PAN He-ping. Single Cell Sequencing Technology and Its Application in Hair Follicle Development[J]. Biotechnology Bulletin, 2021, 37(10): 245-256.
Fig. 1 Commonly used single cell isolation techniques Part cited from [26] a:Serial dilution. b:Micromanipulation. c:Fluorescence activated cell sorting technique. d:Laser capture microdissection. e:Microfluidic technology
方法 Method | cDNA合成 cDNA synthesis | 扩增方法 Amplification method | 捕获细胞量 Quantity of captured cells | cDNA覆盖 cDNA cover | Barcode | UMI | 参考文献Reference |
---|---|---|---|---|---|---|---|
Tang2009 | ployA尾 | PCR | ~10 | 3'端偏移的全长 | No | No | [23] |
Quartz-seq | ployA尾 | PCR | 1 000-10 000 | 3'端偏移的全长 | No | No | [76] |
SUPeR-seq | ployA尾 | PCR | ~10 | 全长 | Yes | No | [67] |
MATQ-seq | ployA尾 | PCR | 10-100 | 全长 | Yes | Yes | [68] |
STRT-seq | 5'端模板转换 | PCR | 100-1 000 | 5'末端 | Yes | Yes | [37] |
Smart-seq | 5'端模板转换 | PCR | 100-1 000 | 3'偏倚的全长 | No | No | [41] |
10xGenomics | 5'端模板转换 | PCR | 1 000-10 000 | 3'末端 | Yes | Yes | [44] |
Seq-well | 5'端模板转换 | PCR | 100-1 000 | 3'末端 | Yes | Yes | [46] |
Microwell-seq | 5'端模板转换 | PCR | 100-10 000 | 全长 | Yes | Yes | [45] |
Drop-seq | 5'端模板转换 | PCR | 1 000-10 000 | 3'末端 | Yes | Yes | [43] |
CEL-seq | IVT | IVT | 100-1 000 | 3'末端 | Yes | Yes | [73] |
MARS-seq | IVT | IVT | 1 000-5 000 | 3'末端 | Yes | Yes | [27] |
inDrops | IVT | IVT | 1 000-10 000 | 3'末端 | Yes | Yes | [42] |
Table 1 Summary of single cell sequencing techniques
方法 Method | cDNA合成 cDNA synthesis | 扩增方法 Amplification method | 捕获细胞量 Quantity of captured cells | cDNA覆盖 cDNA cover | Barcode | UMI | 参考文献Reference |
---|---|---|---|---|---|---|---|
Tang2009 | ployA尾 | PCR | ~10 | 3'端偏移的全长 | No | No | [23] |
Quartz-seq | ployA尾 | PCR | 1 000-10 000 | 3'端偏移的全长 | No | No | [76] |
SUPeR-seq | ployA尾 | PCR | ~10 | 全长 | Yes | No | [67] |
MATQ-seq | ployA尾 | PCR | 10-100 | 全长 | Yes | Yes | [68] |
STRT-seq | 5'端模板转换 | PCR | 100-1 000 | 5'末端 | Yes | Yes | [37] |
Smart-seq | 5'端模板转换 | PCR | 100-1 000 | 3'偏倚的全长 | No | No | [41] |
10xGenomics | 5'端模板转换 | PCR | 1 000-10 000 | 3'末端 | Yes | Yes | [44] |
Seq-well | 5'端模板转换 | PCR | 100-1 000 | 3'末端 | Yes | Yes | [46] |
Microwell-seq | 5'端模板转换 | PCR | 100-10 000 | 全长 | Yes | Yes | [45] |
Drop-seq | 5'端模板转换 | PCR | 1 000-10 000 | 3'末端 | Yes | Yes | [43] |
CEL-seq | IVT | IVT | 100-1 000 | 3'末端 | Yes | Yes | [73] |
MARS-seq | IVT | IVT | 1 000-5 000 | 3'末端 | Yes | Yes | [27] |
inDrops | IVT | IVT | 1 000-10 000 | 3'末端 | Yes | Yes | [42] |
[1] |
Fuchs E. Scratching the surface of skin development[J]. Nature, 2007, 445(7130):834-842.
doi: 10.1038/nature05659 URL |
[2] |
Niemann C, Watt FM. Designer skin:lineage commitment in postnatal epidermis[J]. Trends Cell Biol, 2002, 12(4):185-192.
doi: 10.1016/S0962-8924(02)02263-8 URL |
[3] |
Fuchs E. Epidermal differentiation:the bare essentials[J]. J Cell Biol, 1990, 111:2807-2814.
pmid: 2269655 |
[4] |
Oshima H, Rochat A, Kedzia C, et al. Morphogenesis and renewal of hair follicles from adult multipotent stem cells[J]. Cell, 2001, 104(2):233-245.
pmid: 11207364 |
[5] |
Guasch G, Blanpain C. Defining the epithelial stem cell niche in skin[J]. Med Sci(Paris), 2004, 20(3):265-267.
doi: 10.1051/medsci/2004203265 URL |
[6] |
Morris RJ, Liu Y, Marles L, et al. Capturing and profiling adult hair follicle stem cells[J]. Nat Biotechnol, 2004, 22(4):411-417.
doi: 10.1038/nbt950 URL |
[7] | Wu Z, Sun L, Liu G, et al. Hair follicle development and related gene and protein expression of skins in Rex rabbits during the first 8 weeks of life[J]. Asian-Australas J Anim Sci, 2019, 32(4):477-484. |
[8] |
Messenger AG, Botchkareva NV. Unraveling the secret life of the hair follicle:from fungi to innovative hair loss therapies[J]. Exp Dermatol, 2017, 26(6):471.
doi: 10.1111/exd.13384 pmid: 28608517 |
[9] | Botchkarev VA, Paus R. Molecular biology of hair morphogenesis:development and cycling[J]. J Exp Zool B Mol Dev Evol, 2003, 298(1):164-180. |
[10] |
Watabe R, Yamaguchi T, Kabashima-Kubo R, et al. Leptin controls hair follicle cycling[J]. Exp Dermatol, 2014, 23(4):228-229.
doi: 10.1111/exd.12335 pmid: 24494978 |
[11] |
Mikkola ML. Genetic basis of skin appendage development[J]. Semin Cell Dev Biol, 2007, 18(2):225-236.
pmid: 17317239 |
[12] |
Clavel C, Grisanti L, Zemla R, et al. Sox2 in the dermal papilla niche controls hair growth by fine-tuning BMP signaling in differentiating hair shaft progenitors[J]. Dev Cell, 2012, 23(5):981-994.
doi: 10.1016/j.devcel.2012.10.013 URL |
[13] |
Morgan BA. The dermal papilla:an instructive niche for epithelial stem and progenitor cells in development and regeneration of the hair follicle[J]. Cold Spring Harb Perspect Med, 2014, 4(7):a015180.
doi: 10.1101/cshperspect.a015180 URL |
[14] |
Yang H, Adam RC, Ge Y, et al. Epithelial-mesenchymal micro-niches govern stem cell lineage choices[J]. Cell, 2017, 169(3):483-496.e413.
doi: 10.1016/j.cell.2017.03.038 URL |
[15] |
Sequeira I, Nicolas JF. Redefining the structure of the hair follicle by 3D clonal analysis[J]. Development, 2012, 139(20):3741-3751.
pmid: 22991440 |
[16] |
Ge W, Tan SJ, Wang SH, et al. Single-cell transcriptome profiling reveals dermal and epithelial cell fate decisions during embryonic hair follicle development[J]. Theranostics, 2020, 10(17):7581-7598.
doi: 10.7150/thno.44306 URL |
[17] |
Saxena N, Mok KW, Rendl M. An updated classification of hair follicle morphogenesis[J]. Exp Dermatol, 2019, 28(4):332-344.
doi: 10.1111/exd.2019.28.issue-4 URL |
[18] |
Mok KW, Saxena N, Heitman N, et al. Dermal condensate niche fate specification occurs prior to formation and is placode progenitor dependent[J]. Dev Cell, 2019, 48(1):32-48.e35.
doi: 10.1016/j.devcel.2018.11.034 URL |
[19] | Joost S, Zeisel A, Jacob T, et al. Single-cell transcriptomics reveals that differentiation and spatial signatures shape epidermal and hair follicle heterogeneity[J]. Cell Syst, 2016, 3(3):221-237.e229. |
[20] |
Joost S, Annusver K, Jacob T, et al. The molecular anatomy of mouse skin during hair growth and rest[J]. Cell Stem Cell, 2020, 26(3):441-457.e447.
doi: 10.1016/j.stem.2020.01.012 URL |
[21] |
Dexter DL, Spremulli EN, Fligiel Z, et al. Heterogeneity of cancer cells from a single human colon carcinoma[J]. Am J Med, 1981, 71(6):949-956.
pmid: 7315857 |
[22] |
Yasen A, Aini A, Wang H, et al. Progress and applications of single-cell sequencing techniques[J]. Infect Genet Evol, 2020, 80:104198.
doi: 10.1016/j.meegid.2020.104198 URL |
[23] | Tang F, Barbacioru C, Wang Y, et al. mRNA-Seq whole-transcriptome analysis of a single cell[J]. Nat Methods, 2009, 6(5):377-382. |
[24] |
Tang X, Huang Y, Lei J, et al. The single-cell sequencing:new developments and medical applications[J]. Cell Biosci, 2019, 9:53.
doi: 10.1186/s13578-019-0314-y URL |
[25] | Stegle O, Teichmann SA, Marioni JC. Computational and analytical challenges in single-cell transcriptomics[J]. Nat Rev Genet, 2015, 16(3):133-145. |
[26] | Hwang B, Lee JH, Bang D. Single-cell RNA sequencing technologies and bioinformatics pipelines[J]. Exp Mol Med, 2018, 50(8):96. |
[27] |
Jaitin DA, Kenigsberg E, Keren-Shaul H, et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types[J]. Science, 2014, 343(6172):776-779.
doi: 10.1126/science.1247651 URL |
[28] |
Crow M, Paul A, Ballouz S, et al. Characterizing the replicability of cell types defined by single cell RNA-sequencing data using MetaNeighbor[J]. Nat Commun, 2018, 9(1):884.
doi: 10.1038/s41467-018-03282-0 URL |
[29] |
Usoskin D, Furlan A, Islam S, et al. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing[J]. Nat Neurosci, 2015, 18(1):145-153.
doi: 10.1038/nn.3881 pmid: 25420068 |
[30] |
Papalexi E, Satija R. Single-cell RNA sequencing to explore immune cell heterogeneity[J]. Nat Rev Immunol, 2018, 18(1):35-45.
doi: 10.1038/nri.2017.76 URL |
[31] | Farrell JA, Wang Y, Riesenfeld SJ, et al. Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis[J]. Science, 2018, 360(6392):eaar 3131. |
[32] |
Semrau S, Goldmann JE, Soumillon M, et al. Dynamics of lineage commitment revealed by single-cell transcriptomics of differentiating embryonic stem cells[J]. Nat Commun, 2017, 8(1):1096.
doi: 10.1038/s41467-017-01076-4 URL |
[33] |
Packer J, Trapnell C. Single-cell multi-omics:an engine for new quantitative models of gene regulation[J]. Trends Genet, 2018, 34(9):653-665.
doi: 10.1016/j.tig.2018.06.001 URL |
[34] | Venteicher AS, Tirosh I, Hebert C, et al. Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq[J]. Science, 2017, 355(6332):eaai 8478. |
[35] |
Patel AP, Tirosh I, Trombetta JJ, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma[J]. Science, 2014, 344(6190):1396-1401.
doi: 10.1126/science.1254257 URL |
[36] |
Kolodziejczyk AA, Kim JK, Svensson V, et al. The technology and biology of single-cell RNA sequencing[J]. Mol Cell, 2015, 58(4):610-620.
doi: 10.1016/j.molcel.2015.04.005 pmid: 26000846 |
[37] |
Islam S, Kjällquist U, Moliner A, et al. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq[J]. Genome Res, 2011, 21(7):1160-1167.
doi: 10.1101/gr.110882.110 URL |
[38] |
Natarajan KN. Single-cell tagged reverse transcription(STRT-Seq)[J]. Methods Mol Biol, 2019, 1979:133-153.
doi: 10.1007/978-1-4939-9240-9_9 pmid: 31028636 |
[39] |
Hashimshony T, Wagner F, Sher N, et al. CEL-Seq:single-cell RNA-Seq by multiplexed linear amplification[J]. Cell Rep, 2012, 2(3):666-673.
doi: 10.1016/j.celrep.2012.08.003 pmid: 22939981 |
[40] |
Picelli S, Björklund ÅK, Faridani OR, et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells[J]. Nat Methods, 2013, 10(11):1096-1098.
doi: 10.1038/nmeth.2639 pmid: 24056875 |
[41] |
Ramsköld D, Luo S, Wang YC, et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells[J]. Nat Biotechnol, 2012, 30(8):777-782.
pmid: 22820318 |
[42] |
Klein AM, Mazutis L, Akartuna I, et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells[J]. Cell, 2015, 161(5):1187-1201.
doi: 10.1016/j.cell.2015.04.044 URL |
[43] |
Macosko EZ, Basu A, Satija R, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets[J]. Cell, 2015, 161(5):1202-1214.
doi: S0092-8674(15)00549-8 pmid: 26000488 |
[44] |
Zheng GX, Terry JM, Belgrader P, et al. Massively parallel digital transcriptional profiling of single cells[J]. Nat Commun, 2017, 8:14049.
doi: 10.1038/ncomms14049 URL |
[45] |
Han X, Wang R, Zhou Y, et al. Mapping the mouse cell atlas by microwell-seq[J]. Cell, 2018, 172(5):1091-1107.e1017.
doi: 10.1016/j.cell.2018.02.001 URL |
[46] |
Gierahn TM, Wadsworth MH, Hughes TK, et al. Seq-Well:portable, low-cost RNA sequencing of single cells at high throughput[J]. Nat Methods, 2017, 14(4):395-398.
doi: 10.1038/nmeth.4179 pmid: 28192419 |
[47] |
Rosenberg AB, Roco CM, Muscat RA, et al. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding[J]. Science, 2018, 360(6385):176-182.
doi: 10.1126/science.aam8999 URL |
[48] |
Lafzi A, Moutinho C, Picelli S, et al. Tutorial:guidelines for the experimental design of single-cell RNA sequencing studies[J]. Nat Protoc, 2018, 13(12):2742-2757.
doi: 10.1038/s41596-018-0073-y URL |
[49] |
Navin NE. Cancer genomics:one cell at a time[J]. Genome Biol, 2014, 15(8):452.
doi: 10.1186/s13059-014-0452-9 URL |
[50] |
Navin N, Kendall J, Troge J, et al. Tumor evolution inferred by single cell sequencing[J]. Nature, 2011, 472(7341):90-94.
doi: 10.1038/nature09807 URL |
[51] |
Rota LM, Lazzarino DA, Ziegler AN, et al. Determining mammosphere-forming potential:application of the limiting dilution analysis[J]. J Mammary Gland Biol Neoplasia, 2012, 17(2):119-123.
doi: 10.1007/s10911-012-9258-0 URL |
[52] |
Kirkness EF, Grindberg RV, Yee-Greenbaum J, et al. Sequencing of isolated sperm cells for direct haplotyping of a human genome[J]. Genome Res, 2013, 23(5):826-832.
doi: 10.1101/gr.144600.112 pmid: 23282328 |
[53] |
Sato T, Hongoh Y, Noda S, et al. Candidatus Desulfovibrio trichonymphae, a novel intracellular symbiont of the flagellate Trichonympha agilis in termite gut[J]. Environ Microbiol, 2009, 11(4):1007-1015.
doi: 10.1111/emi.2009.11.issue-4 URL |
[54] | McKinnon KM. Flow cytometry:an overview[J]. Curr Protoc Immunol, 2018, 120:5. 1. 1-5. 1. 11. |
[55] |
Nakamura N, Ruebel K, Jin L, et al. Laser capture microdissection for analysis of single cells[J]. Methods Mol Med, 2007, 132:11-18.
pmid: 17876072 |
[56] |
Tang F, Hajkova P, Barton SC, et al. 220-plex microRNA expression profile of a single cell[J]. Nat Protoc, 2006, 1(3):1154-1159.
doi: 10.1038/nprot.2006.161 URL |
[57] |
Sansonno D, Lauletta G, Dammacco F. Detection and quantitation of HCV core protein in single hepatocytes by means of laser capture microdissection and enzyme-linked immunosorbent assay[J]. J Viral Hepat, 2004, 11(1):27-32.
doi: 10.1046/j.1365-2893.2003.00474.x URL |
[58] |
Foley JW, Zhu C, Jolivet P, et al. Gene expression profiling of single cells from archival tissue with laser-capture microdissection and Smart-3SEQ[J]. Genome Res, 2019, 29(11):1816-1825.
doi: 10.1101/gr.234807.118 URL |
[59] |
Beck AH, Weng Z, Witten DM, et al. 3'-end sequencing for expression quantification(3SEQ)from archival tumor samples[J]. PLoS One, 2010, 5(1):e8768.
doi: 10.1371/journal.pone.0008768 URL |
[60] |
Sims CE, Allbritton NL. Analysis of single mammalian cells on-chip[J]. Lab Chip, 2007, 7(4):423-440.
doi: 10.1039/b615235j URL |
[61] |
Lecault V, White AK, Singhal A, et al. Microfluidic single cell analysis:from promise to practice[J]. Curr Opin Chem Biol, 2012, 16(3-4):381-390.
doi: 10.1016/j.cbpa.2012.03.022 URL |
[62] | Luni C, Giulitti S, Serena E, et al. High-efficiency cellular reprogramming with microfluidics[J]. Nat Methods, 2016, 13(5):446-452. |
[63] | Xu X, Wang J, Wu L, et al. Microfluidic single-cell omics analysis[J]. Small, 2020, 16(9):e1903905. |
[64] | Islam S, Zeisel A, Joost S, et al. Quantitative single-cell RNA-seq with unique molecular identifiers[J]. Nat Methods, 2014, 11(2):163-166. |
[65] |
Bhargava V, Ko P, Willems E, et al. Quantitative transcriptomics using designed primer-based amplification[J]. Sci Rep, 2013, 3:1740.
doi: 10.1038/srep01740 pmid: 23624976 |
[66] | Hebenstreit D. Methods, Challenges and potentials of single cell RNA-seq[J]. Biology(Basel), 2012, 1(3):658-667. |
[67] |
Fan X, Zhang X, Wu X, et al. Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in mouse preimplantation embryos[J]. Genome Biol, 2015, 16(1):148.
doi: 10.1186/s13059-015-0706-1 URL |
[68] | Sheng K, Cao W, Niu Y, et al. Effective detection of variation in single-cell transcriptomes using MATQ-seq[J]. Nat Methods, 2017, 14(3):267-270. |
[69] |
Zhu YY, Machleder EM, Chenchik A, et al. Reverse transcriptase template switching:a SMART approach for full-length cDNA library construction[J]. Biotechniques, 2001, 30(4):892-897.
pmid: 11314272 |
[70] |
Nakamura T, Yabuta Y, Okamoto I, et al. SC3-seq:a method for highly parallel and quantitative measurement of single-cell gene expression[J]. Nucleic Acids Res, 2015, 43(9):e60.
doi: 10.1093/nar/gkv134 URL |
[71] |
Islam S, Kjällquist U, Moliner A, et al. Highly multiplexed and strand-specific single-cell RNA 5' end sequencing[J]. Nat Protoc, 2012, 7(5):813-828.
doi: 10.1038/nprot.2012.022 URL |
[72] |
Aird D, Ross MG, Chen WS, et al. Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries[J]. Genome Biol, 2011, 12(2):R18.
doi: 10.1186/gb-2011-12-2-r18 URL |
[73] |
Hashimshony T, Senderovich N, Avital G. et al. CEL-Seq2:sensitive highly-multiplexed single-cell RNA-Seq[J]. Genome Biol, 2016, 17(1):1-7.
doi: 10.1186/s13059-015-0866-z URL |
[74] |
Ziegenhain C, Vieth B, Parekh S, et al. Comparative analysis of single-cell RNA sequencing methods[J]. Mol Cell, 2017, 65(4):631-643. e634.
doi: S1097-2765(17)30049-7 pmid: 28212749 |
[75] |
Liang J, Cai W, Sun Z. Single-cell sequencing technologies:current and future[J]. J Genet Genomics, 2014, 41(10):513-528.
doi: 10.1016/j.jgg.2014.09.005 URL |
[76] |
Sasagawa Y, Nikaido I, Hayashi T, et al. Erratum to:Quartz-Seq:a highly reproducible and sensitive single-cell RNA sequencing method, reveals non-genetic gene-expression heterogeneity[J]. Genome Biol, 2017, 18(1):9.
doi: 10.1186/s13059-017-1154-x pmid: 28100273 |
[77] | 葛伟. 单细胞分辨率解析绒山羊及小鼠毛囊发生的转录调控机制[D]. 杨凌:西北农林科技大学, 2019. |
Ge W. Dissecting the transcriptional regulatory mechanism underlying Cashmere goat and murine hair follicle morphogenesis at single-cell resolution[D]. Yangling:Northwest A&F University, 2019. | |
[78] |
La Manno G, Soldatov R, Zeisel A, et al. RNA velocity of single cells[J]. Nature, 2018, 560(7719):494-498.
doi: 10.1038/s41586-018-0414-6 URL |
[79] |
Sennett R, Wang Z, Rezza A, et al. An integrated transcriptome atlas of embryonic hair follicle progenitors, their niche, and the developing skin[J]. Dev Cell, 2015, 34(5):577-591.
doi: 10.1016/j.devcel.2015.06.023 pmid: 26256211 |
[80] |
He W, Ye J, Xu H, et al. Differential expression of α6 and β1 integrins reveals epidermal heterogeneity at single-cell resolution[J]. J Cell Biochem, 2020, 121(3):2664-2676.
doi: 10.1002/jcb.v121.3 URL |
[81] |
Chovatiya G, Ghuwalewala S, Walter LD, et al. High-resolution single-cell transcriptomics reveals heterogeneity of self-renewing hair follicle stem cells[J]. Exp Dermatol, 2021, 30(4):457-471.
doi: 10.1111/exd.14262 pmid: 33319418 |
[82] |
Šošić D, Richardson JA, Yu K, et al. Twist regulates cytokine gene expression through a negative feedback loop that represses NF-kappaB activity[J]. Cell, 2003, 112(2):169-180.
doi: 10.1016/S0092-8674(03)00002-3 URL |
[83] |
van Genderen C, Okamura RM, Fariñas I, et al. Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in LEF-1-deficient mice[J]. Genes Dev, 1994, 8(22):2691-2703.
doi: 10.1101/gad.8.22.2691 URL |
[84] |
Fantauzzo KA, Tadin-Strapps M, You Y, et al. A position effect on TRPS1 is associated with Ambras syndrome in humans and the Koala phenotype in mice[J]. Hum Mol Genet, 2008, 17(22):3539-3551.
doi: 10.1093/hmg/ddn247 URL |
[85] |
Villani R, Hodgson S, Legrand J, et al. Dominant-negative Sox18 function inhibits dermal papilla maturation and differentiation in all murine hair types[J]. Development, 2017, 144(10):1887-1895.
doi: 10.1242/dev.143917 pmid: 28512199 |
[86] |
Leishman E, Howard JM, Garcia GE, et al. Foxp1 maintains hair follicle stem cell quiescence through regulation of Fgf18[J]. Development, 2013, 140(18):3809-3818.
doi: 10.1242/dev.097477 pmid: 23946441 |
[1] | ZHAO Jin-ling, AN Lei, REN Xiao-liang. Development of Single Cell Transcriptome Sequencing Technology and Its Application in Caenorhabditis elegans [J]. Biotechnology Bulletin, 2023, 39(6): 158-170. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||