Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (11): 150-167.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0616
Previous Articles Next Articles
YAN Xiong-ying(), WANG Zhen, WANG Xia(), YANG Shi-hui()
Received:
2023-06-28
Online:
2023-11-26
Published:
2023-12-20
Contact:
WANG Xia, YANG Shi-hui
E-mail:xiongying.Yan@stu.hubu.edu.cn;xxwang@hubu.edu.cn;Shihui.Yang@hubu.edu.cn
YAN Xiong-ying, WANG Zhen, WANG Xia, YANG Shi-hui. Microbial Sulfur Metabolism and Stress Resistance[J]. Biotechnology Bulletin, 2023, 39(11): 150-167.
Sulfur compounds | Host | Concentration/(mmol·L-1) | Resistance | Reference |
---|---|---|---|---|
Sodium hydrosulfide (H2S donor) | E. coli Bacillus anthracis Pseudomonas aeruginosa Staphylococcus aureus | 0.2 | Gentamicin, ampicillin, nalidixic acid | [ |
Vibrio cholerae | 1 | H2O2 | [ | |
Rice seedling | 0.1 | NaCl | [ | |
Z. mobilis 8b | 0.1 | Furfural | [ | |
Sodium sulfate | Z. mobilis | Ethanol | [ | |
Cysteine | E. coli LY180 | 0.1 | Furfural | [ |
Z. mobilis 8b | 8 | Furfural, acetate, ethanol | [ | |
Clostridium acetobutylicum | 0.2 | Lignocellulose hydrolysates | [ | |
Methionine | E. coli LY180 | 0.1 | Furfural | [ |
E. coli | 7.4 | Acetate | [ | |
E. coli Frag1 | 2 | Acetate | [ | |
Z. mobilis 8b | 8 | Furfural | [ | |
Glutathione | Z. mobilis 8b | 8 | Furfural | [ |
S cerevisiae | 5 | Furfural | [ |
Table 1 Summary of enhancing stress resistance by supplementing sulfur-containing compounds
Sulfur compounds | Host | Concentration/(mmol·L-1) | Resistance | Reference |
---|---|---|---|---|
Sodium hydrosulfide (H2S donor) | E. coli Bacillus anthracis Pseudomonas aeruginosa Staphylococcus aureus | 0.2 | Gentamicin, ampicillin, nalidixic acid | [ |
Vibrio cholerae | 1 | H2O2 | [ | |
Rice seedling | 0.1 | NaCl | [ | |
Z. mobilis 8b | 0.1 | Furfural | [ | |
Sodium sulfate | Z. mobilis | Ethanol | [ | |
Cysteine | E. coli LY180 | 0.1 | Furfural | [ |
Z. mobilis 8b | 8 | Furfural, acetate, ethanol | [ | |
Clostridium acetobutylicum | 0.2 | Lignocellulose hydrolysates | [ | |
Methionine | E. coli LY180 | 0.1 | Furfural | [ |
E. coli | 7.4 | Acetate | [ | |
E. coli Frag1 | 2 | Acetate | [ | |
Z. mobilis 8b | 8 | Furfural | [ | |
Glutathione | Z. mobilis 8b | 8 | Furfural | [ |
S cerevisiae | 5 | Furfural | [ |
Protein | Function | Gene source | Host | Resistance | Reference |
---|---|---|---|---|---|
MetC-CysK operon | Cysteine biosynthesis | Lactococcus lactis | Lactococcus lactis | High temperature(temp.) | [ |
GSH1/CYS3/GLR1 | Glutathione biosynthesis | S. cerevisiae | S. cerevisiae | Lignocellulose hydrolysates | [ |
SOD1-GSH1-GLR1 | Glutathione biosynthesis | S. cerevisiae | S. cerevisiae | Lignocellulose hydrolysates | [ |
YAP1C620F- CTT1/CTA1 /GSH1/GSH2/GLR1 | Glutathione biosynthesis | S. cerevisiae | S. cerevisiae | Furfural | [ |
GCSGS | Glutathione biosynthesis | S. thermophilus | S. cerevisiae | High temp., furfural, HMF, Cd2+ | [ |
GshA/AspB/MetC | Glutathione and H2S biosynthesis | Z. mobilis | Z. mobilis | Furfural | [ |
MetR | Methionine biosynthesis regulator | E. coli | E. coli | Isopentenol | [ |
CysCND | Sulfur assimilation | Z. mobilis | Z. mobilis | Furfural, acetate | [ |
McbR | Sulfur assimilation regulator | C. glutamicum | C. glutamicum | Acidic pH | [ |
TauE | Anion permease, Sulfite exporter | Z. mobilis | Z. mobilis | Furfural | [ |
Table 2 Overexpression of genes related to sulfur metabolism for enhancing microbial stress resistance
Protein | Function | Gene source | Host | Resistance | Reference |
---|---|---|---|---|---|
MetC-CysK operon | Cysteine biosynthesis | Lactococcus lactis | Lactococcus lactis | High temperature(temp.) | [ |
GSH1/CYS3/GLR1 | Glutathione biosynthesis | S. cerevisiae | S. cerevisiae | Lignocellulose hydrolysates | [ |
SOD1-GSH1-GLR1 | Glutathione biosynthesis | S. cerevisiae | S. cerevisiae | Lignocellulose hydrolysates | [ |
YAP1C620F- CTT1/CTA1 /GSH1/GSH2/GLR1 | Glutathione biosynthesis | S. cerevisiae | S. cerevisiae | Furfural | [ |
GCSGS | Glutathione biosynthesis | S. thermophilus | S. cerevisiae | High temp., furfural, HMF, Cd2+ | [ |
GshA/AspB/MetC | Glutathione and H2S biosynthesis | Z. mobilis | Z. mobilis | Furfural | [ |
MetR | Methionine biosynthesis regulator | E. coli | E. coli | Isopentenol | [ |
CysCND | Sulfur assimilation | Z. mobilis | Z. mobilis | Furfural, acetate | [ |
McbR | Sulfur assimilation regulator | C. glutamicum | C. glutamicum | Acidic pH | [ |
TauE | Anion permease, Sulfite exporter | Z. mobilis | Z. mobilis | Furfural | [ |
[1] |
Sano C. History of glutamate production[J]. Am J Clin Nutr, 2009, 90(3): 728S-732S.
doi: 10.3945/ajcn.2009.27462F URL |
[2] |
Otero JM, Nielsen J. Industrial systems biology[J]. Biotechnol Bioeng, 2010, 105(3): 439-460.
doi: 10.1002/bit.22592 pmid: 19891008 |
[3] |
Atsumi S, Higashide W, Liao JC. Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde[J]. Nat Biotechnol, 2009, 27(12): 1177-1180.
doi: 10.1038/nbt.1586 pmid: 19915552 |
[4] |
Galanie S, Thodey K, Trenchard IJ, et al. Complete biosynthesis of opioids in yeast[J]. Science, 2015, 349(6252): 1095-1100.
doi: 10.1126/science.aac9373 pmid: 26272907 |
[5] |
Yang SH, Franden MA, Wang X, et al. Transcriptomic profiles of Zymomonas mobilis 8b to furfural acute and long-term stress in both glucose and xylose conditions[J]. Front Microbiol, 2020, 11: 13.
doi: 10.3389/fmicb.2020.00013 URL |
[6] | Motohashi H, Akaike T. Sulfur-utilizing cytoprotection and energy metabolism[J]. Curr Opin Physiol, 2019, 9: 1-8. |
[7] |
Aguilar-Barajas E, Díaz-Pérez C, Ramírez-Díaz MI, et al. Bacterial transport of sulfate, molybdate, and related oxyanions[J]. Biometals, 2011, 24(4): 687-707.
doi: 10.1007/s10534-011-9421-x pmid: 21301930 |
[8] |
Kertesz MA. Bacterial transporters for sulfate and organosulfur compounds[J]. Res Microbiol, 2001, 152(3-4): 279-290.
pmid: 11421275 |
[9] |
Mansilla MC, de Mendoza D. The Bacillus subtilis cysP gene encodes a novel sulphate permease related to the inorganic phosphate transporter(Pit)family[J]. Microbiology, 2000, 146(Pt 4): 815-821.
doi: 10.1099/00221287-146-4-815 URL |
[10] |
Zhang L, Jiang WS, Nan J, et al. The Escherichia coli CysZ is a pH dependent sulfate transporter that can be inhibited by sulfite[J]. Biochim Biophys Acta, 2014, 1838(7): 1809-1816.
doi: 10.1016/j.bbamem.2014.03.003 pmid: 24657232 |
[11] |
Rückert C, Koch DJ, Rey DA, et al. Functional genomics and expression analysis of the Corynebacterium glutamicum fpr2-cysIXHDNYZ gene cluster involved in assimilatory sulphate reduction[J]. BMC Genomics, 2005, 6: 121.
doi: 10.1186/1471-2164-6-121 |
[12] |
Eichhorn E, van der Ploeg JR, Leisinger T. Deletion analysis of the Escherichia coli taurine and alkanesulfonate transport systems[J]. J Bacteriol, 2000, 182(10): 2687-2695.
doi: 10.1128/JB.182.10.2687-2695.2000 pmid: 10781534 |
[13] | Thurmond S. Regulation of cysteine biosynthesis in Acinetobacter baylyi ADP1[D]. Georgia: University of Georgia, 2014. |
[14] |
Kawano Y, Suzuki K, Ohtsu I. Current understanding of sulfur assimilation metabolism to biosynthesize L-cysteine and recent progress of its fermentative overproduction in microorganisms[J]. Appl Microbiol Biotechnol, 2018, 102(19): 8203-8211.
doi: 10.1007/s00253-018-9246-4 pmid: 30046857 |
[15] |
Nakatani T, Ohtsu I, Nonaka G, et al. Enhancement of thioredoxin/glutaredoxin-mediated L-cysteine synthesis from S-sulfocysteine increases L-cysteine production in Escherichia coli[J]. Microb Cell Fact, 2012, 11: 62.
doi: 10.1186/1475-2859-11-62 pmid: 22607201 |
[16] |
Funahashi E, Saiki K, Honda K, et al. Finding of thiosulfate pathway for synthesis of organic sulfur compounds in Saccharomyces cerevisiae and improvement of ethanol production[J]. J Biosci Bioeng, 2015, 120(6): 666-669.
doi: 10.1016/j.jbiosc.2015.04.011 pmid: 26188417 |
[17] |
Kredich NM. The molecular basis for positive regulation of cys promoters in Salmonella typhimurium and Escherichia coli[J]. Mol Microbiol, 1992, 6(19): 2747-2753.
pmid: 1435253 |
[18] | Guédon E, Martin-Verstraete I. Cysteine metabolism and its regulation in bacteria[M]//Wendisch VF, Ed. Amino Acid Biosynthesis - Pathways, Regulation and Metabolic Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006: 195-218. |
[19] |
van der Ploeg JR, Eichhorn E, Leisinger T. Sulfonate-sulfur metabolism and its regulation in Escherichia coli[J]. Arch Microbiol, 2001, 176(1-2): 1-8.
pmid: 11479697 |
[20] |
Guillouard I, Auger S, Hullo MF, et al. Identification of Bacillus subtilis CysL, a regulator of the cysJI operon, which encodes sulfite reductase[J]. J Bacteriol, 2002, 184(17): 4681-4689.
doi: 10.1128/JB.184.17.4681-4689.2002 pmid: 12169591 |
[21] |
Sperandio B, Polard P, Ehrlich DS, et al. Sulfur amino acid metabolism and its control in Lactococcus lactis IL1403[J]. J Bacteriol, 2005, 187(11): 3762-3778.
pmid: 15901700 |
[22] |
Rey DA, Pühler A, Kalinowski J. The putative transcriptional repressor McbR, member of the TetR-family, is involved in the regulation of the metabolic network directing the synthesis of sulfur containing amino acids in Corynebacterium glutamicum[J]. J Biotechnol, 2003, 103(1): 51-65.
doi: 10.1016/S0168-1656(03)00073-7 URL |
[23] | Deparis Q, Claes A, Foulquié-Moreno MR, et al. Engineering tolerance to industrially relevant stress factors in yeast cell factories[J]. FEMS Yeast Res, 2017, 17(4): fox036. |
[24] |
Beales N. Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress: a review[J]. Compr Rev Food Sci Food Saf, 2004, 3(1): 1-20.
doi: 10.1111/crfs.2004.3.issue-1 URL |
[25] |
许可, 王靖楠, 李春. 智能抗逆微生物细胞工厂与绿色生物制造[J]. 合成生物学, 2020, 1(4): 427-439.
doi: 10.12211/2096-8280.2020-045 |
Xu K, Wang JN, Li C. Intelligent microbial cell factory with tolerance for green biological manufacturing[J]. Synth Biol J, 2020, 1(4): 427-439. | |
[26] |
Xu K, Yu LP, Bai WX, et al. Construction of thermo-tolerant yeast based on an artificial protein quality control system(APQC)to improve the production of bio-ethanol[J]. Chem Eng Sci, 2018, 177: 410-416.
doi: 10.1016/j.ces.2017.12.009 URL |
[27] |
Cunha JT, Soares PO, Baptista SL, et al. Engineered Saccharomyces cerevisiae for lignocellulosic valorization: a review and perspectives on bioethanol production[J]. Bioengineered, 2020, 11(1): 883-903.
doi: 10.1080/21655979.2020.1801178 URL |
[28] | Caspeta L, Nielsen J. Thermotolerant yeast strains adapted by laboratory evolution show trade-off at ancestral temperatures and preadaptation to other stresses[J]. mBio, 2015, 6(4): e00431. |
[29] |
Tian XJ, Yu QQ, Shao LL, et al. Comparative transcriptomic study of Escherichia coli O157: H7 in response to ohmic heating and conventional heating[J]. Food Res Int, 2021, 140: 109989.
doi: 10.1016/j.foodres.2020.109989 URL |
[30] |
Zhou LZ, Ma Y, Wang KH, et al. Omics-guided bacterial engineering of Escherichia coli ER2566 for recombinant protein expression[J]. Appl Microbiol Biotechnol, 2023, 107(2-3): 853-865.
doi: 10.1007/s00253-022-12339-6 |
[31] |
Samappito J, Yamada M, Klanrit P, et al. Characterization of a thermo-adapted strain of Zymomonas mobilis for ethanol production at high temperature[J]. 3 Biotech, 2018, 8(11): 474.
doi: 10.1007/s13205-018-1493-7 pmid: 30456008 |
[32] | Lu Z, Sethu R, Imlay JA. Endogenous superoxide is a key effector of the oxygen sensitivity of a model obligate anaerobe[J]. Proc Natl Acad Sci USA, 2018, 115(14): E3266-E3275. |
[33] |
Sund CJ, Rocha ER, Tzianabos AO, et al. The Bacteroides fragilis transcriptome response to oxygen and H2O2: the role of OxyR and its effect on survival and virulence[J]. Mol Microbiol, 2008, 67(1): 129-142.
doi: 10.1111/mmi.2008.67.issue-1 URL |
[34] |
Betteken MI, Rocha ER, Smith CJ. Dps and DpsL mediate survival in vitro and in vivo during the prolonged oxidative stress response in Bacteroides fragilis[J]. J Bacteriol, 2015, 197(20): 3329-3338.
doi: 10.1128/JB.00342-15 pmid: 26260459 |
[35] |
Lauret R, Morel-Deville F, Berthier F, et al. Carbohydrate utilization in Lactobacillus sake[J]. Appl Environ Microbiol, 1996, 62(6): 1922-1927.
doi: 10.1128/aem.62.6.1922-1927.1996 URL |
[36] |
Veiga-da-Cunha M, Santos H, Van Schaftingen E. Pathway and regulation of erythritol formation in Leuconostoc oenos[J]. J Bacteriol, 1993, 175(13): 3941-3948.
pmid: 8391532 |
[37] |
Yang SH, Fei Q, Zhang YP, et al. Zymomonas mobilis as a model system for production of biofuels and biochemicals[J]. Microb Biotechnol, 2016, 9(6): 699-717.
doi: 10.1111/mbt2.2016.9.issue-6 URL |
[38] |
LaCroix RA, Sandberg TE, O'Brien EJ, et al. Use of adaptive laboratory evolution to discover key mutations enabling rapid growth of Escherichia coli K-12 MG1655 on glucose minimal medium[J]. Appl Environ Microbiol, 2015, 81(1): 17-30.
doi: 10.1128/AEM.02246-14 URL |
[39] |
González-Ramos D, Gorter de Vries AR, Grijseels SS, et al. A new laboratory evolution approach to select for constitutive acetic acid tolerance in Saccharomyces cerevisiae and identification of causal mutations[J]. Biotechnol Biofuels, 2016, 9: 173.
doi: 10.1186/s13068-016-0583-1 pmid: 27525042 |
[40] |
Xu N, Lv HF, Wei L, et al. Impaired oxidative stress and sulfur assimilation contribute to acid tolerance of Corynebacterium glutamicum[J]. Appl Microbiol Biotechnol, 2019, 103(4): 1877-1891.
doi: 10.1007/s00253-018-09585-y |
[41] |
Yang Q, Yang YF, Tang Y, et al. Development and characterization of acidic-pH-tolerant mutants of Zymomonas mobilis through adaptation and next-generation sequencing-based genome resequencing and RNA-Seq[J]. Biotechnol Biofuels, 2020, 13: 144.
doi: 10.1186/s13068-020-01781-1 |
[42] |
Zaldivar J, Martinez A, Ingram LO. Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli[J]. Biotechnol Bioeng, 1999, 65(1): 24-33.
doi: 10.1002/(sici)1097-0290(19991005)65:1<24::aid-bit4>3.0.co;2-2 pmid: 10440668 |
[43] | Hadi SM, Shahabuddin, Rehman A. Specificity of the interaction of furfural with DNA[J]. Mutat Res, 1989, 225(3): 101-106. |
[44] |
Khan QA, Hadi SM. Effect of furfural on plasmid DNA[J]. Biochem Mol Biol Int, 1993, 29(6): 1153-1160.
pmid: 8330021 |
[45] |
闻远, 夏娟, 戚良华, 等. 抗氧化基因过表达提高运动发酵单胞菌糠醛耐受性[J]. 生物技术通报, 2019, 35(8): 85-94.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0040 |
Wen Y, Xia J, Qi LH, et al. Enhanced furfural tolerance in Zymomonas mobilis by the overexpression of antioxidant genes[J]. Biotechnol Bull, 2019, 35(8): 85-94. | |
[46] |
Jiang T, Li CY, Teng YX, et al. Recent advances in improving metabolic robustness of microbial cell factories[J]. Curr Opin Biotechnol, 2020, 66: 69-77.
doi: 10.1016/j.copbio.2020.06.006 URL |
[47] |
常瀚文, 郑鑫铃, 骆健美, 等. 抗逆元件及其在高效微生物细胞工厂构建中的应用进展[J]. 生物技术通报, 2020, 36(6): 13-34.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0259 |
Chang HW, Zheng XL, Luo JM, et al. Tolerance elements and their application progress on the construction of highly-efficient microbial cell factory[J]. Biotechnol Bull, 2020, 36(6): 13-34. | |
[48] |
Yan XY, Wang X, Yang YF, et al. Cysteine supplementation enhanced inhibitor tolerance of Zymomonas mobilis for economic lignocellulosic bioethanol production[J]. Bioresour Technol, 2022, 349: 126878.
doi: 10.1016/j.biortech.2022.126878 URL |
[49] |
Geng BN, Liu SY, Chen YH, et al. A plasmid-free Zymomonas mobilis mutant strain reducing reactive oxygen species for efficient bioethanol production using industrial effluent of xylose mother liquor[J]. Front Bioeng Biotechnol, 2022, 10: 1110513.
doi: 10.3389/fbioe.2022.1110513 URL |
[50] |
Nieves IU, Geddes CC, Miller EN, et al. Effect of reduced sulfur compounds on the fermentation of phosphoric acid pretreated sugarcane bagasse by ethanologenic Escherichia coli[J]. Bioresour Technol, 2011, 102(8): 5145-5152.
doi: 10.1016/j.biortech.2011.02.008 URL |
[51] |
Moraitis C, Curran BPG. Reactive oxygen species may influence the heat shock response and stress tolerance in the yeast Saccharomyces cerevisiae[J]. Yeast, 2004, 21(4): 313-323.
doi: 10.1002/yea.v21:4 URL |
[52] |
Li RX, Shen W, Yang YF, et al. Investigation of the impact of a broad range of temperatures on the physiological and transcriptional profiles of Zymomonas mobilis ZM4 for high-temperature-tolerant recombinant strain development[J]. Biotechnol Biofuels, 2021, 14(1): 146.
doi: 10.1186/s13068-021-02000-1 |
[53] |
Zhang CC, Gui Y, Chen X, et al. Transcriptional homogenization of Lactobacillus rhamnosus hsryfm 1301 under heat stress and oxidative stress[J]. Appl Microbiol Biotechnol, 2020, 104(6): 2611-2621.
doi: 10.1007/s00253-020-10407-3 |
[54] |
Dijkstra AR, Alkema W, Starrenburg MJC, et al. Fermentation-induced variation in heat and oxidative stress phenotypes of Lactococcus lactis MG1363 reveals transcriptome signatures for robustness[J]. Microb Cell Fact, 2014, 13: 148.
doi: 10.1186/s12934-014-0148-6 URL |
[55] |
Liu YP, Tang HZ, Lin ZL, et al. Mechanisms of acid tolerance in bacteria and prospects in biotechnology and bioremediation[J]. Biotechnol Adv, 2015, 33(7): 1484-1492.
doi: 10.1016/j.biotechadv.2015.06.001 pmid: 26057689 |
[56] |
Kanjee U, Houry WA. Mechanisms of acid resistance in Escherichia coli[J]. Annu Rev Microbiol, 2013, 67: 65-81.
doi: 10.1146/micro.2013.67.issue-1 URL |
[57] |
Krulwich TA, Sachs G, Padan E. Molecular aspects of bacterial pH sensing and homeostasis[J]. Nat Rev Microbiol, 2011, 9(5): 330-343.
doi: 10.1038/nrmicro2549 pmid: 21464825 |
[58] |
Papadimitriou K, Alegría Á, Bron PA, et al. Stress physiology of lactic acid bacteria[J]. Microbiol Mol Biol Rev, 2016, 80(3): 837-890.
doi: 10.1128/MMBR.00076-15 URL |
[59] |
Follmann M, Ochrombel I, Krämer R, et al. Functional genomics of pH homeostasis in Corynebacterium glutamicum revealed novel links between pH response, oxidative stress, iron homeostasis and methionine synthesis[J]. BMC Genomics, 2009, 10: 621.
doi: 10.1186/1471-2164-10-621 pmid: 20025733 |
[60] |
Miller EN, Jarboe LR, Turner PC, et al. Furfural inhibits growth by limiting sulfur assimilation in ethanologenic Escherichia coli strain LY180[J]. Appl Environ Microbiol, 2009, 75(19): 6132-6141.
doi: 10.1128/AEM.01187-09 URL |
[61] |
Kanna MC, Matsumura Y. Effect of low-concentration furfural on sulfur amino acid biosynthesis in Saccharomyces cerevisiae[J]. J Jpn Petrol Inst, 2015, 58(3): 165-168.
doi: 10.1627/jpi.58.165 URL |
[62] |
Kim D, Hahn JS. Roles of the Yap1 transcription factor and antioxidants in Saccharomyces cerevisiae's tolerance to furfural and 5-hydroxymethylfurfural, which function as thiol-reactive electrophiles generating oxidative stress[J]. Appl Environ Microbiol, 2013, 79(16): 5069-5077.
doi: 10.1128/AEM.00643-13 URL |
[63] |
Liu ZL, Ma MG. Pathway-based signature transcriptional profiles as tolerance phenotypes for the adapted industrial yeast Saccharomyces cerevisiae resistant to furfural and HMF[J]. Appl Microbiol Biotechnol, 2020, 104(8): 3473-3492.
doi: 10.1007/s00253-020-10434-0 |
[64] | Liu ZL, Slininger PJ, Gorsich SW. Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains[J]. Appl Biochem Biotechnol, 2005, 121-124: 451-460. |
[65] |
Yang YF, Hu MM, Tang Y, et al. Progress and perspective on lignocellulosic hydrolysate inhibitor tolerance improvement in Zymomonas mobilis[J]. Bioresour Bioprocess, 2018, 5(1): 6.
doi: 10.1186/s40643-018-0193-9 |
[66] |
He MX, Wu B, Shui ZX, et al. Transcriptome profiling of Zymomonas mobilis under furfural stress[J]. Appl Microbiol Biotechnol, 2012, 95(1): 189-199.
doi: 10.1007/s00253-012-4155-4 URL |
[67] |
Yi X, Gu HQ, Gao QQ, et al. Transcriptome analysis of Zymomonas mobilis ZM4 reveals mechanisms of tolerance and detoxification of phenolic aldehyde inhibitors from lignocellulose pretreatment[J]. Biotechnol Biofuels, 2015, 8: 153.
doi: 10.1186/s13068-015-0333-9 URL |
[68] |
Tan T, Liu C, Liu L, et al. Hydrogen sulfide formation as well as ethanol production in different media by cysND- and/or cysIJ-inactivated mutant strains of Zymomonas mobilis ZM4[J]. Bioprocess Biosyst Eng, 2013, 36(10): 1363-1373.
doi: 10.1007/s00449-012-0839-5 URL |
[69] |
Hu DS, Wang ZQ, He MX, et al. Functional gene identification and corresponding tolerant mechanism of high furfural-tolerant Zymomonas mobilis strain F211[J]. Front Microbiol, 2021, 12: 736583.
doi: 10.3389/fmicb.2021.736583 URL |
[70] |
Tang Y, Wang Y, Yang Q, et al. Molecular mechanism of enhanced ethanol tolerance associated with hfq overexpression in Zymomonas mobilis[J]. Front Bioeng Biotechnol, 2022, 10: 1098021.
doi: 10.3389/fbioe.2022.1098021 URL |
[71] |
Li J, Shi S, Tu MB, et al. Detoxification of organosolv-pretreated pine prehydrolysates with anion resin and cysteine for butanol fermentation[J]. Appl Biochem Biotechnol, 2018, 186(3): 662-680.
doi: 10.1007/s12010-018-2769-4 pmid: 29717408 |
[72] |
Roe AJ, O'Byrne C, McLaggan D, et al. Inhibition of Escherichia coli growth by acetic acid: a problem with methionine biosynthesis and homocysteine toxicity[J]. Microbiology, 2002, 148(Pt 7): 2215-2222.
doi: 10.1099/00221287-148-7-2215 URL |
[73] |
Shatalin K, Shatalina E, Mironov A, et al. H2S: a universal defense against antibiotics in bacteria[J]. Science, 2011, 334(6058): 986-990.
doi: 10.1126/science.1209855 pmid: 22096201 |
[74] |
Shatalin K, Nuthanakanti A, Kaushik A, et al. Inhibitors of bacterial H2S biogenesis targeting antibiotic resistance and tolerance[J]. Science, 2021, 372(6547): 1169-1175.
doi: 10.1126/science.abd8377 URL |
[75] |
Ma Y, Yang XM, Wang HO, et al. CBS-derived H2S facilitates host colonization of Vibrio cholerae by promoting the iron-dependent catalase activity of KatB[J]. PLoS Pathog, 2021, 17(7): e1009763.
doi: 10.1371/journal.ppat.1009763 URL |
[76] | Wei MY, Liu JY, Li H, et al. Proteomic analysis reveals the protective role of exogenous hydrogen sulfide against salt stress in rice seedlings[J]. Nitric Oxide, 2021, 111-112: 14-30. |
[77] |
Liu YB, Long MX, Yin YJ, et al. Physiological roles of mycothiol in detoxification and tolerance to multiple poisonous chemicals in Corynebacterium glutamicum[J]. Arch Microbiol, 2013, 195(6): 419-429.
doi: 10.1007/s00203-013-0889-3 URL |
[78] |
Han K, Hong J, Lim HC. Relieving effects of glycine and methionine from acetic acid inhibition in Escherichia coli fermentation[J]. Biotechnol Bioeng, 1993, 41(3): 316-324.
pmid: 18609555 |
[79] |
Aroca A, Benito JM, Gotor C, et al. Persulfidation proteome reveals the regulation of protein function by hydrogen sulfide in diverse biological processes in Arabidopsis[J]. J Exp Bot, 2017, 68(17): 4915-4927.
doi: 10.1093/jxb/erx294 URL |
[80] |
Lin YL, Shi JY, Feng W, et al. Periplasmic biomineralization for semi-artificial photosynthesis[J]. Sci Adv, 2023, 9(29): eadg5858.
doi: 10.1126/sciadv.adg5858 URL |
[81] |
Mironov A, Seregina T, Nagornykh M, et al. Mechanism of H2S-mediated protection against oxidative stress in Escherichia coli[J]. Proc Natl Acad Sci USA, 2017, 114(23): 6022-6027.
doi: 10.1073/pnas.1703576114 URL |
[82] |
Xiao AY, Maynard MR, Piett CG, et al. Sodium sulfide selectively induces oxidative stress, DNA damage, and mitochondrial dysfunction and radiosensitizes glioblastoma(GBM)cells[J]. Redox Biol, 2019, 26: 101220.
doi: 10.1016/j.redox.2019.101220 URL |
[83] |
Attene-Ramos MS, Wagner ED, Gaskins HR, et al. Hydrogen sulfide induces direct radical-associated DNA damage[J]. Mol Cancer Res, 2007, 5(5): 455-459.
pmid: 17475672 |
[84] |
Shackelford R, Ozluk E, Islam MZ, et al. Hydrogen sulfide and DNA repair[J]. Redox Biol, 2021, 38: 101675.
doi: 10.1016/j.redox.2020.101675 URL |
[85] |
Schafer FQ, Buettner GR. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple[J]. Free Radic Biol Med, 2001, 30(11): 1191-1212.
doi: 10.1016/S0891-5849(01)00480-4 URL |
[86] |
Ask M, Mapelli V, Höck H, et al. Engineering glutathione biosynthesis of Saccharomyces cerevisiae increases robustness to inhibitors in pretreated lignocellulosic materials[J]. Microb Cell Fact, 2013, 12: 87.
doi: 10.1186/1475-2859-12-87 |
[87] |
Rahman I, Kode A, Biswas SK. Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method[J]. Nat Protoc, 2006, 1(6): 3159-3165.
doi: 10.1038/nprot.2006.378 pmid: 17406579 |
[88] |
Mendoza-Cózatl D, Loza-Tavera H, Hernández-Navarro A, et al. Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants[J]. FEMS Microbiol Rev, 2005, 29(4): 653-671.
pmid: 16102596 |
[89] |
Dumond H, Danielou N, Pinto M, et al. A large-scale study of Yap1p-dependent genes in normal aerobic and H2O2-stress conditions: the role of Yap1p in cell proliferation control in yeast[J]. Mol Microbiol, 2000, 36(4): 830-845.
pmid: 10844671 |
[90] |
Jo I, Chung IY, Bae HW, et al. Structural details of the OxyR peroxide-sensing mechanism[J]. Proc Natl Acad Sci USA, 2015, 112(20): 6443-6448.
doi: 10.1073/pnas.1424495112 pmid: 25931525 |
[91] |
Herrero E, Ros J, Bellí G, et al. Redox control and oxidative stress in yeast cells[J]. Biochim Biophys Acta, 2008, 1780(11): 1217-1235.
doi: 10.1016/j.bbagen.2007.12.004 pmid: 18178164 |
[92] |
Seib KL, Wu HJ, Srikhanta YN, et al. Characterization of the OxyR regulon of Neisseria gonorrhoeae[J]. Mol Microbiol, 2007, 63(1): 54-68.
doi: 10.1111/mmi.2007.63.issue-1 URL |
[93] |
Ohtsu I, Wiriyathanawudhiwong N, Morigasaki S, et al. The L-cysteine/L-cystine shuttle system provides reducing equivalents to the periplasm in Escherichia coli[J]. J Biol Chem, 2010, 285(23): 17479-17487.
doi: 10.1074/jbc.M109.081356 pmid: 20351115 |
[94] |
Fujishiro T, Nakamura R, Kunichika K, et al. Structural diversity of cysteine desulfurases involved in iron-sulfur cluster biosynthesis[J]. Biophys Physicobiol, 2022, 19: 1-18.
doi: 10.2142/biophysico.bppb-v19.0001 pmid: 35377584 |
[95] |
Braymer JJ, Freibert SA, Rakwalska-Bange M, et al. Mechanistic concepts of iron-sulfur protein biogenesis in biology[J]. Biochim Biophys Acta Mol Cell Res, 2021, 1868(1): 118863.
doi: 10.1016/j.bbamcr.2020.118863 URL |
[96] |
Lill R, Freibert SA. Mechanisms of mitochondrial iron-sulfur protein biogenesis[J]. Annu Rev Biochem, 2020, 89: 471-499.
doi: 10.1146/annurev-biochem-013118-111540 pmid: 31935115 |
[97] | Martien JI, Hebert AS, Stevenson DM, et al. Systems-level analysis of oxygen exposure in Zymomonas mobilis: implications for isoprenoid production[J]. mSystems, 2019, 4(1): e00284-18. |
[98] |
Miao JX, Wang MM, Ma L, et al. Effects of amino acids on the lignocellulose degradation by Aspergillus fumigatus Z5: insights into performance, transcriptional, and proteomic profiles[J]. Biotechnol Biofuels, 2019, 12: 4.
doi: 10.1186/s13068-018-1350-2 |
[99] |
Van Laer K, Hamilton CJ, Messens J. Low-molecular-weight thiols in thiol-disulfide exchange[J]. Antioxid Redox Signal, 2013, 18(13): 1642-1653.
doi: 10.1089/ars.2012.4964 URL |
[100] |
Dumitrescu DG, Gordon EM, Kovalyova Y, et al. A microbial transporter of the dietary antioxidant ergothioneine[J]. Cell, 2022, 185(24): 4526-4540.e18.
doi: 10.1016/j.cell.2022.10.008 pmid: 36347253 |
[101] |
Sundquist AR, Fahey RC. The function of gamma-glutamylcysteine and bis-gamma-glutamylcystine reductase in Halobacterium halobium[J]. J Biol Chem, 1989, 264(2): 719-725.
pmid: 2910862 |
[102] |
Turner E, Hager LJ, Shapiro BM. Ovothiol replaces glutathione peroxidase as a hydrogen peroxide scavenger in sea urchin eggs[J]. Science, 1988, 242(4880): 939-941.
pmid: 3187533 |
[103] |
Helmann JD. Bacillithiol, a new player in bacterial redox homeostasis[J]. Antioxid Redox Signal, 2011, 15(1): 123-133.
doi: 10.1089/ars.2010.3562 URL |
[104] |
Newton GL, Buchmeier N, Fahey RC. Biosynthesis and functions of mycothiol, the unique protective thiol of Actinobacteria[J]. Microbiol Mol Biol Rev, 2008, 72(3): 471-494.
doi: 10.1128/MMBR.00008-08 URL |
[105] |
Ling XB, Wei HW, Wang J, et al. Mammalian metallothionein-2A and oxidative stress[J]. Int J Mol Sci, 2016, 17(9): 1483.
doi: 10.3390/ijms17091483 URL |
[106] |
Qin L, Dong SX, Yu J, et al. Stress-driven dynamic regulation of multiple tolerance genes improves robustness and productive capacity of Saccharomyces cerevisiae in industrial lignocellulose fermentation[J]. Metab Eng, 2020, 61: 160-170.
doi: 10.1016/j.ymben.2020.06.003 URL |
[107] | Foo JL, Jensen HM, Dahl RH, et al. Improving microbial biogasoline production in Escherichia coli using tolerance engineering[J]. mBio, 2014, 5(6): e01932. |
[108] |
Qiu ZQ, Deng ZJ, Tan HM, et al. Engineering the robustness of Saccharomyces cerevisiae by introducing bifunctional glutathione synthase gene[J]. J Ind Microbiol Biotechnol, 2015, 42(4): 537-542.
doi: 10.1007/s10295-014-1573-6 URL |
[109] |
Thakur M, Anand A. Hydrogen sulfide: an emerging signaling molecule regulating drought stress response in plants[J]. Physiol Plant, 2021, 172(2): 1227-1243.
doi: 10.1111/ppl.v172.2 URL |
[1] | JIANG Hai-rong, CUI Ruo-qi, WANG Yue BAI, Miao ZHANG, Ming-lu , REN Lian-hai. Isolation, Identification and Degradation Characteristics of Functional Bacteria for NH3 and H2S Degradation [J]. Biotechnology Bulletin, 2023, 39(9): 246-254. |
[2] | YAO Jin-dong, TANG Hua-mei, YANG Wen-xiao, ZHANG Li-shan, LIN Xiang-min. Comparative Proteomics Analysis of Aeromonas hydrophila Under Enrofloxacin Stress [J]. Biotechnology Bulletin, 2023, 39(4): 288-296. |
[3] | CUI Ruo-qi, ZHANG Ling-yue, JIANG Hai-rong, ZHANG Yu-ling, ZHANG Ming-lu, REN Lian-hai. Preparation of NH3 and H2S Deodorizing Microbial Agents and Their Deodorizing Effects and Mechanisms on Kitchen Waste Composting [J]. Biotechnology Bulletin, 2023, 39(10): 311-322. |
[4] | GAO Xue-yan, CHEN Lin-xu, CHEN Xian-ke, PANG Xin, PAN Deng, LIN Jian-qun. Application of Acidithiobacillus spp. in Industry and Agriculture [J]. Biotechnology Bulletin, 2022, 38(5): 36-46. |
[5] | XU Tao, XIA Dong-jian, WAN Jing, JIANG Shu-han, SONG Jiang-hua. Research Progress of F-box Protein Involved in Plant Stress [J]. Biotechnology Bulletin, 2021, 37(12): 205-211. |
[6] | PU Tian-lei, HAN Xue-qin, LIAO Cheng-fei, DEN Hong-shan, LUO Hui-ying, JIN Jie. Research Status on the Stress Resistance of Moringa oleifera and Its Application [J]. Biotechnology Bulletin, 2020, 36(11): 133-140. |
[7] | ZHANG Liang, CHEN Xiao-qing, SONG Jia-yu, MAO Ran-ran, JIANG Qian-wen, LIN Xiang-min. Comparative Proteomics Analysis of Escherichia coli in Response to Barofloxacin Stress [J]. Biotechnology Bulletin, 2019, 35(3): 103-109. |
[8] | CHEN Shui-hong, CAO Ying, CHEN Tai-xiang, LI Chun-jie. Research Process on the Endophyte Improving the Grass’s Salt and Alkali Resistance [J]. Biotechnology Bulletin, 2018, 34(4): 35-42. |
[9] | ZHOU Zhen-yu, HU Jin-li, SU Xin, LIU Dong-xue, BU Ning, MA Lian-ju. Identification and Resistance of an Endophytic Fungus YD02 Strain in Wild Glycine soja [J]. Biotechnology Bulletin, 2017, 33(11): 106-111. |
[10] | LIU Li-ping, ZHANG Dong-zhi, ZHANG Chong, CHEN Jin-huan. Research Progress of Stress Tolerance and Breeding Research on Lycium ruthenicum Murr [J]. Biotechnology Bulletin, 2016, 32(10): 118-127. |
[11] | Jiang Chaoqiang, Zu Chaolong. Advances in Melatonin and Its Roles in Abiotic Stress Resistance in Plants [J]. Biotechnology Bulletin, 2015, 31(4): 47-55. |
[12] | Yu Rui,Zuo Fanglei, Chen Xiling, Wei Yanjie,Chen Shangwu. Introducing gshF into Lactobacillus paracasei L14 to Influence Its Stress Risistance Ability [J]. Biotechnology Bulletin, 2014, 0(9): 149-156. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||